首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2). Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node. Additionally, HCN channels regulate dendritic excitability in a wide variety of neurons. Little is known about the early functional evolution of HCN channels, but the presence of HCN sequences in basal metazoan phyla and choanoflagellates, a protozoan sister group to the metazoans, indicate that the gene family predates metazoan emergence. We functionally characterized two HCN channel orthologs from Nematostella vectensis (Cnidaria, Anthozoa) to determine which properties of HCN channels were established prior to the emergence of bilaterians. We find Nematostella HCN channels share all the major functional features of bilaterian HCNs, including reversed voltage-dependence, activation by cAMP and PIP2, and block by extracellular Cs+. Thus bilaterian-like HCN channels were already present in the common parahoxozoan ancestor of bilaterians and cnidarians, at a time when the functional diversity of voltage-gated K+ channels was rapidly expanding. NvHCN1 and NvHCN2 are expressed broadly in planulae and in both the endoderm and ectoderm of juvenile polyps.  相似文献   

2.
Voltage-gated K+ channels share a common voltage sensor domain (VSD) consisting of four transmembrane helices, including a highly mobile S4 helix that contains the major gating charges. Activation of ether-a-go-go (EAG) family K+ channels is sensitive to external divalent cations. We show here that divalent cations slow the activation rate of two EAG family channels (Kv12.1 and Kv10.2) by forming a bridge between a residue in the S4 helix and acidic residues in S2. Histidine 328 in the S4 of Kv12.1 favors binding of Zn2+ and Cd2+, whereas the homologous residue Serine 321 in Kv10.2 contributes to effects of Mg2+ and Ni2+. This novel finding provides structural constraints for the position of transmembrane VSD helices in closed, ion-bound EAG family channels. Homology models of Kv12.1 and Kv10.2 VSD structures based on a closed-state model of the Shaker family K+ channel Kv1.2 match these constraints. Our results suggest close conformational conservation between closed EAG and Shaker family channels, despite large differences in voltage sensitivity, activation rates, and activation thresholds.  相似文献   

3.
4.
Among the different transport systems present in plant cells, Shaker channels constitute the major pathway for K+ in the plasma membrane. Plant Shaker channels are members of the 6 transmembrane-1 pore (6TM-1P) cation channel superfamily as the animal Shaker (Kv) and HCN channels. All these channels are voltage-gated K+ channels: Kv channels are outward-rectifiers, opened at depolarized voltages and HCN channels are inward-rectifiers, opened by membrane hyperpolarization. Among plant Shaker channels, we can find outward-rectifiers, inward-rectifiers and also weak-rectifiers, with weak voltage dependence. Despite the absence of crystal structures of plant Shaker channels, functional analyses coupled to homology modeling, mostly based on Kv and HCN crystals, have permitted the identification of several regions contributing to plant Shaker channel gating. In the present mini-review, we make an update on the voltage-gating mechanism of plant Shaker channels which seem to be comparable to that proposed for HCN channels.  相似文献   

5.
Potassium (K+) channels serve a wide range of functions in plants from mineral nutrition and osmotic balance to turgor generation for cell expansion and guard cell aperture control. Plant K+ channels are members of the superfamily of voltage-dependent K+ channels, or Kv channels, that include the Shaker channels first identified in fruit flies (Drosophila melanogaster). Kv channels have been studied in depth over the past half century and are the best-known of the voltage-dependent channels in plants. Like the Kv channels of animals, the plant Kv channels are regulated over timescales of milliseconds by conformational mechanisms that are commonly referred to as gating. Many aspects of gating are now well established, but these channels still hold some secrets, especially when it comes to the control of gating. How this control is achieved is especially important, as it holds substantial prospects for solutions to plant breeding with improved growth and water use efficiencies. Resolution of the structure for the KAT1 K+ channel, the first channel from plants to be crystallized, shows that many previous assumptions about how the channels function need now to be revisited. Here, I strip the plant Kv channels bare to understand how they work, how they are gated by voltage and, in some cases, by K+ itself, and how the gating of these channels can be regulated by the binding with other protein partners. Each of these features of plant Kv channels has important implications for plant physiology.  相似文献   

6.
Complexins are synaptic SNARE complex‐binding proteins that cooperate with synaptotagmins in activating Ca2+‐stimulated, synaptotagmin‐dependent synaptic vesicle exocytosis and in clamping spontaneous, synaptotagmin‐independent synaptic vesicle exocytosis. Here, we show that complexin sequences are conserved in some non‐metazoan unicellular organisms and in all metazoans, suggesting that complexins are a universal feature of metazoans that predate metazoan evolution. We show that complexin from Nematostella vectensis, a cnidarian sea anemone far separated from mammals in metazoan evolution, functionally replaces mouse complexins in activating Ca2+‐triggered exocytosis, but is unable to clamp spontaneous exocytosis. Thus, the activating function of complexins is likely conserved throughout metazoan evolution.  相似文献   

7.
Peptide toxins found in a wide array of venoms block K+ channels, causing profound physiological and pathological effects. Here we describe the first functional K+ channel-blocking toxin domain in a mammalian protein. MMP23 (matrix metalloprotease 23) contains a domain (MMP23TxD) that is evolutionarily related to peptide toxins from sea anemones. MMP23TxD shows close structural similarity to the sea anemone toxins BgK and ShK. Moreover, this domain blocks K+ channels in the nanomolar to low micromolar range (Kv1.6 > Kv1.3 > Kv1.1 = Kv3.2 > Kv1.4, in decreasing order of potency) while sparing other K+ channels (Kv1.2, Kv1.5, Kv1.7, and KCa3.1). Full-length MMP23 suppresses K+ channels by co-localizing with and trapping MMP23TxD-sensitive channels in the ER. Our results provide clues to the structure and function of the vast family of proteins that contain domains related to sea anemone toxins. Evolutionary pressure to maintain a channel-modulatory function may contribute to the conservation of this domain throughout the plant and animal kingdoms.  相似文献   

8.
Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates Shaker K+ channels and voltage-gated Ca2+ channels in a bimodal fashion by inhibiting voltage activation while stabilizing open channels. Bimodal regulation is conserved in hyperpolarization-activated cyclic nucleotide–gated (HCN) channels, but voltage activation is enhanced while the open channel state is destabilized. The proposed sites of PIP2 regulation in these channels include the voltage-sensor domain (VSD) and conserved regions of the proximal cytoplasmic C terminus. Relatively little is known about PIP2 regulation of Ether-á-go-go (EAG) channels, a metazoan-specific family of K+ channels that includes three gene subfamilies, Eag (Kv10), Erg (Kv11), and Elk (Kv12). We examined PIP2 regulation of the Elk subfamily potassium channel human Elk1 to determine whether bimodal regulation is conserved within the EAG K+ channel family. Open-state stabilization by PIP2 has been observed in human Erg1, but the proposed site of regulation in the distal C terminus is not conserved among EAG family channels. We show that PIP2 strongly inhibits voltage activation of Elk1 but also stabilizes the open state. This stabilization produces slow deactivation and a mode shift in voltage gating after activation. However, removal of PIP2 has the net effect of enhancing Elk1 activation. R347 in the linker between the VSD and pore (S4–S5 linker) and R479 near the S6 activation gate are required for PIP2 to inhibit voltage activation. The ability of PIP2 to stabilize the open state also requires these residues, suggesting an overlap in sites central to the opposing effects of PIP2 on channel gating. Open-state stabilization in Elk1 requires the N-terminal eag domain (PAS domain + Cap), and PIP2-dependent stabilization is enhanced by a conserved basic residue (K5) in the Cap. Our data shows that PIP2 can bimodally regulate voltage gating in EAG family channels, as has been proposed for Shaker and HCN channels. PIP2 regulation appears fundamentally different for Elk and KCNQ channels, suggesting that, although both channel types can regulate action potential threshold in neurons, they are not functionally redundant.  相似文献   

9.
10.
Crystal structures of potassium (K+) channels reveal that the selectivity filter, the narrow portion of the pore, is only ∼3-Å wide and buttressed from behind, so that its ability to expand is highly constrained, and the permeation of molecules larger than Rb+ (2.96 Å in diameter) is prevented. N-methyl-d-glucamine (NMDG+), an organic monovalent cation, is thought to be a blocker of Kv channels, as it is much larger (∼7.3 Å in mean diameter) than K+ (2.66 Å in diameter). However, in the absence of K+, significant NMDG+ currents could be recorded from human embryonic kidney cells expressing Kv3.1 or Kv3.2b channels and Kv1.5 R487Y/V, but not wild-type channels. Inward currents were much larger than outward currents due to the presence of intracellular Mg2+ (1 mM), which blocked the outward NMDG+ current, resulting in a strong inward rectification. The NMDG+ current was inhibited by extracellular 4-aminopyridine (5 mM) or tetraethylammonium (10 mM), and largely eliminated in Kv3.2b by an S6 mutation that prevents the channel from opening (P468W) and by a pore helix mutation in Kv1.5 R487Y (W472F) that inactivates the channel at rest. These data indicate that NMDG+ passes through the open ion-conducting pore and suggest a very flexible nature of the selectivity filter itself. 0.3 or 1 mM K+ added to the external NMDG+ solution positively shifted the reversal potential by ∼16 or 31 mV, respectively, giving a permeability ratio for K+ over NMDG+ (PK+/PNMDG+) of ∼240. Reversal potential shifts in mixtures of K+ and NMDG+ are in accordance with PK+/PNMDG+, indicating that the ions compete for permeation and suggesting that NMDG+ passes through the open state. Comparison of the outer pore regions of Kv3 and Kv1.5 channels identified an Arg residue in Kv1.5 that is replaced by a Tyr in Kv3 channels. Substituting R with Y or V allowed Kv1.5 channels to conduct NMDG+, suggesting a regulation by this outer pore residue of Kv channel flexibility and, as a result, permeability.  相似文献   

11.
Cnidarian nervous systems utilize chemical transmission to transfer signals through synapses and neurons. To date, ample evidence has been accumulated for the participation of neuropeptides, primarily RFamides, in neurotransmission. Yet, it is still not clear if this is the case for the classical fast neurotransmitters such as GABA, Glutamate, Acetylcholine and Monoamines. A large repertoire of cnidarian Fast Neurotransmitter related Genes (FNGs) has been recently identified in the genome of the sea anemone, Nematostella vectensis. In order to test whether FNGs are localized in cnidarian neurons, we characterized the expression patterns of eight Nematostella genes that are closely or distantly related to human central and peripheral nervous systems genes, in adult Nematostella and compared them to the RFamide localization. Our results show common expression patterns for all tested genes, in a single endodermal cell layer. These expressions did not correspond with the RFamide expressing nerve cell network. Following these results we suggest that the tested Nematostella genes may not be directly involved in vertebrate-like fast neurotransmission.  相似文献   

12.
Several potassium (K+) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K+ channels allow sodium reabsorption in the proximal tubule (PT), K+ recycling and K+ reabsorption in the thick ascending limb (TAL) and K+ secretion and K+ reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K+ to function as a secretory K+ channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K+ channels. Our results expand the repertoire of K+ channels that contribute to K+ homeostasis to include the Kv1 family.  相似文献   

13.
Immunocytochemical methods were used to determine the comparative distribution of Shaker Kv1.4 and Shal Kv4.2 A-type voltage-gated K+ channels and AMPA-type GluR4 glutamate receptors in the goldfish retina. Kv1.4-immunoreactivity (IR) was restricted to a very narrow band of bright puncta and filamentous processes in the outer plexiform layer (OPL), whereas GluR4-IR was found in radial processes of Müller cells in addition to a narrow band in the OPL. Kv4.2-IR was most prominent over cell bodies of horizontal cell, amacrine cells and ganglion cells, with very weak labeling over the synaptic terminal of cone photoreceptors. Double label experiments revealed complete co-localization of Kv1.4-IR and GluR4-IR in the OPL and showed that the Kv1.4 puncta in the OPL appeared enclosed by the Kv4.2-IR cone terminals. Electron microscopical immunocytochemistry showed that Kv1.4-IR and GluR4-IR were restricted to the dendrites of OFF-bipolar cells that innervated cone photoreceptor terminals and thin processes that coursed between the rod and cone terminals in the OPL. These data are consistent with other studies demonstrating the selective clustering of A-type voltage-gated K+ channels and ionotropic glutamate receptors. However, they differ from mammalian preparations in which Shal-like Kv4.2 rather than Shaker-like Kv1.4 co-localize postsynaptically with glutamate receptors.  相似文献   

14.
Fluorescence-based approaches provide powerful techniques to directly report structural dynamics underlying gating processes in Shaker KV channels. Here, following on from work carried out in Shaker channels, we have used voltage clamp fluorimetry for the first time to study voltage sensor motions in mammalian KV1.5 channels, by attaching TMRM fluorescent probes to substituted cysteine residues in the S3-S4 linker of KV1.5 (A397C). Compared with the Shaker channel, there are significant differences in the fluorescence signals that occur on activation of the channel. In addition to a well-understood fluorescence quenching signal associated with S4 movement, we have recorded a unique partial recovery of fluorescence after the quenching that is attributable to gating events at the outer pore mouth,1 that is not seen in Shaker despite significant homology between it and Kv1.5 channels in the S5-P loop-S6 region. Extracellular potassium is known to modulate C-type inactivation in Shaker and KV channels at sites in the outer pore mouth, and so here we have measured the concentration-dependence of potassium effects on the fluorescence recovery signals from A397C. Elevation of extracellular K+ inhibits the rapid fluorescence recovery, with complete abolition at 99 mM K+, and an IC50 of 29 mM K+o. These experiments suggest that the rapid fluorescence recovery reflects early gating movements associated with inactivation, modulated by extracellular K+, and further support the idea that outer pore motions occur rapidly after KV1.5 channel opening and can be observed by fluorophores attached to the S3-S4 linker.  相似文献   

15.
Phosphatidylinositol (4,5)-bisphosphate (PIP2) is a phospholipid of the plasma membrane that has been shown to be a key regulator of several ion channels. Functional studies and more recently structural studies of Kir channels have revealed the major impact of PIP2 on the open state stabilization. A similar effect of PIP2 on the delayed rectifiers Kv7.1 and Kv11.1, two voltage-gated K+ channels, has been suggested, but the molecular mechanism remains elusive and nothing is known on PIP2 effect on other Kv such as those of the Shaker family. By combining giant-patch ionic and gating current recordings in COS-7 cells, and voltage-clamp fluorimetry in Xenopus oocytes, both heterologously expressing the voltage-dependent Shaker channel, we show that PIP2 exerts 1) a gain-of-function effect on the maximal current amplitude, consistent with a stabilization of the open state and 2) a loss-of-function effect by positive-shifting the activation voltage dependence, most likely through a direct effect on the voltage sensor movement, as illustrated by molecular dynamics simulations.  相似文献   

16.
KCNQ1 voltage-gated K+ channels (Kv7.1) associate with the family of five KCNE peptides to form complexes with diverse gating properties and pharmacological sensitivities. The varied gating properties of the different KCNQ1-KCNE complexes enables the same K+ channel to function in both excitable and non excitable tissues. Small molecule activators would be valuable tools for dissecting the gating mechanisms of KCNQ1-KCNE complexes; however, there are very few known activators of KCNQ1 channels and most are ineffective on the physiologically relevant KCNQ1-KCNE complexes. Here we show that a simple boronic acid, phenylboronic acid (PBA), activates KCNQ1/KCNE1 complexes co-expressed in Xenopus oocytes at millimolar concentrations. PBA shifts the voltage sensitivity of KCNQ1 channel complexes to favor the open state at negative potentials. Analysis of different-sized charge carriers revealed that PBA also targets the permeation pathway of KCNQ1 channels. Activation by the boronic acid moiety has some specificity for the Kv7 family members (KCNQ1, KCNQ2/3, and KCNQ4) since PBA does not activate Shaker or hERG channels. Furthermore, the commercial availability of numerous PBA derivatives provides a large class of compounds to investigate the gating mechanisms of KCNQ1-KCNE complexes.  相似文献   

17.
The mammalian CatSper ion channel family consists of four sperm-specific voltage-gated Ca2+ channels that are crucial for sperm hyperactivation and male fertility. All four CatSper subunits are believed to assemble into a heteromultimeric channel complex, together with an auxiliary subunit, CatSperβ. Here, we report a comprehensive comparative genomics study and evolutionary analysis of CatSpers and CatSperβ, with important correlation to physiological significance of molecular evolution of the CatSper channel complex. The development of the CatSper channel complex with four CatSpers and CatSperβ originated as early as primitive metazoans such as the Cnidarian Nematostella vectensis. Comparative genomics revealed extensive lineage-specific gene loss of all four CatSpers and CatSperβ through metazoan evolution, especially in vertebrates. The CatSper channel complex underwent rapid evolution and functional divergence, while distinct evolutionary constraints appear to have acted on different domains and specific sites of the four CatSper genes. These results reveal unique evolutionary characteristics of sperm-specific Ca2+ channels and their adaptation to sperm biology through metazoan evolution.  相似文献   

18.
Kv4 potassium channels undergo rapid inactivation but do not seem to exhibit the classical N-type and C-type mechanisms present in other Kv channels. We have previously hypothesized that Kv4 channels preferentially inactivate from the preopen closed state, which involves regions of the channel that contribute to the internal vestibule of the pore. To further test this hypothesis, we have examined the effects of permeant ions on gating of three Kv4 channels (Kv4.1, Kv4.2, and Kv4.3) expressed in Xenopus oocytes. Rb+ is an excellent tool for this purpose because its prolonged residency time in the pore delays K+ channel closing. The data showed that, only when Rb+ carried the current, both channel closing and the development of macroscopic inactivation are slowed (1.5- to 4-fold, relative to the K+ current). Furthermore, macroscopic Rb+ currents were larger than K+ currents (1.2- to 3-fold) as the result of a more stable open state, which increases the maximum open probability. These results demonstrate that pore occupancy can influence inactivation gating in a manner that depends on how channel closing impacts inactivation from the preopen closed state. By examining possible changes in ionic selectivity and the influence of elevating the external K+ concentration, additional experiments did not support the presence of C-type inactivation in Kv4 channels.  相似文献   

19.
Besides their role in the generation of action potentials, voltage-gated potassium channels are implicated in cellular processes ranging from cell division to cell death. The K+ channel regulator protein (KCNRG), identified as a putative tumor suppressor, reduces K+ currents through human K+ channels hKv1.1 and hKv1.4 expressed in Xenopus oocytes. Current attenuation requires the presence of the N-terminal T1 Domain and immunoprecipitation experiments suggest association of KCNRG with the N-terminus of the channel. Our data indicates that KCNRG is an ER-associated protein, which we propose regulates Kv1 family channel proteins by retaining a fraction of channels in endomembranes.  相似文献   

20.

Background

In recent years, the sea anemone Nematostella vectensis has emerged as a critical model organism for comparative genomics and developmental biology. Although Nematostella is a member of the anthozoan cnidarians (known for producing an abundance of diverse fluorescent proteins (FPs)), endogenous patterns of Nematostella fluorescence have not been described and putative FPs encoded by the genome have not been characterized.

Methodology/Principal Findings

We described the spatiotemporal expression of endogenous red fluorescence during Nematostella development. Spatially, there are two patterns of red fluorescence, both restricted to the oral endoderm in developing polyps. One pattern is found in long fluorescent domains associated with the eight mesenteries and the other is found in short fluorescent domains situated between tentacles. Temporally, the long domains appear simultaneously at the 12-tentacle stage. In contrast, the short domains arise progressively between the 12- and 16-tentacle stage. To determine the source of the red fluorescence, we used bioinformatic approaches to identify all possible putative Nematostella FPs and a Drosophila S2 cell culture assay to validate NvFP-7R, a novel red fluorescent protein. We report that both the mRNA expression pattern and spectral signature of purified NvFP-7R closely match that of the endogenous red fluorescence. Strikingly, the red fluorescent pattern of NvFP-7R exhibits asymmetric expression along the directive axis, indicating that the nvfp-7r locus senses the positional information of the body plan. At the tissue level, NvFP-7R exhibits an unexpected subcellular localization and a complex complementary expression pattern in apposed epithelia sheets comprising each endodermal mesentery.

Conclusions/Significance

These experiments not only identify NvFP-7R as a novel red fluorescent protein that could be employed as a research tool; they also uncover an unexpected spatio-temporal complexity of gene expression in an adult cnidarian. Perhaps most importantly, our results define Nematostella as a new model organism for understanding the biological function of fluorescent proteins in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号