首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial and temporal constraints on dispersal explain the absence of species from areas with potentially suitable conditions. Previous studies have shown that post‐glacial recolonization has shaped the current ranges of many species, yet it is not completely clear to what extent interspecific differences in range size depend on different dispersal rates. The inferred boundaries of glacial refugia are difficult to validate, and may bias spatial distribution models (SDMs) that consider post‐glacial dispersal constraints. We predicted the current distribution of 12 Caucasian forest plants and animals, factoring in the effective geographical distance from inferred glacial refugia as an additional predictor. To infer glacial refugia, we tested the transferability of the current SDMs based on the distribution of climatic variables, and projected the most transferable ones onto two climate scenarios simulated for the Last Glacial Maximum (LGM). We then calculated least‐cost distances from the inferred refugia, using elevation as a friction surface, and recalculated the current SDMs incorporating the distances as an additional variable. We compared the predictive powers of the initial with the final SDMs. The palaeoclimatic simulation that best matched the distribution of species was assumed to represent the closest fit to the true palaeoclimate. SDMs incorporating refugial distance performed significantly better for all but one studied species, and the Model for Interdisciplinary Research on Climate (MIROC) climatic simulation provided a more convincing pattern of the LGM climate than the Community Climate System Model (CCSM) simulation. Our results suggest that the projection of suitable habitat models onto past climatic conditions may yield realistic boundaries of glacial refugia, and that the current distribution of forest species in the study region is strongly associated with locations of former refugia. We inferred six major forest refugia throughout western Asia: (1) Colchis; (2) western Anatolia; (3) western Taurus; (4) the upper reaches of the Tigris River; (5) the Levant; and (6) the southern Caspian basin. The boundaries of the modelled refugia were substantially broader than the refugia boundaries inferred solely from pollen records. Thus, our method could be used to: (1) improve models of current species distributions by considering the dispersal histories of the species; and (2) validate alternative reconstructions of palaeoclimate with current distribution data. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 231–248.  相似文献   

2.
Aim Quaternary palaeopalynological records collected throughout the Iberian Peninsula and species distribution models (SDMs) were integrated to gain a better understanding of the historical biogeography of the Iberian Abies species (i.e. Abies pinsapo and Abies alba). We hypothesize that SDMs and Abies palaeorecords are closely correlated, assuming a certain stasis in climatic and topographic ecological niche dimensions. In addition, the modelling results were used to assign the fossil records to A. alba or A. pinsapo, to identify environmental variables affecting their distribution, and to evaluate the ecological segregation between the two taxa. Location The Iberian Peninsula. Methods For the estimation of past Abies distributions, a hindcasting process was used. Abies pinsapo and A. alba were modelled individually, first calibrating the model for their current distributions in relation to the present climate, and then projecting it into the past—the last glacial maximum (LGM) and the Middle Holocene periods—in relation to palaeoclimate simulations. The resulting models were compared with Iberian‐wide fossil pollen records to detect areas of overlap. Results The overlap observed between past Abies refugia—inferred from fossil pollen records—and the SDMs helped to construct the Quaternary distribution of the Iberian Abies species. SDMs yielded two well‐differentiated potential distributions: A. pinsapo throughout the Baetic mountain Range and A. alba along the Pyrenees and Cantabrian Range. These results propose that the two taxa remained isolated throughout the Quaternary, indicating a significant geographical and ecological segregation. In addition, no significant differences were detected comparing the three projections (present‐day, Mid‐Holocene and LGM), suggesting a relative climate stasis in the refuge areas during the Quaternary. Main conclusions Our results confirm that SDM projections can provide a useful complement to palaeoecological studies, offering a less subjective and spatially explicit hypothesis concerning past geographic patterns of Iberian Abies species. The integration of ecological‐niche characteristics from known occurrences of Abies species in conjunction with palaeoecological studies could constitute a suitable tool to define appropriate areas in which to focus proactive conservation strategies.  相似文献   

3.
Species distribution models (SDMs) across past, present, and future timelines provide insights into the current distribution of these species and their reaction to climate change. Specifically, if a species is threatened or not well‐known, the information may be critical to understand that species. In this study, we computed SDMs for Orientocoluber spinalis, a monotypic snake genus found in central and northeast Asia, across the past (last interglacial, last glacial maximum, and mid‐Holocene), present, and future (2070s). The goal of the study was to understand the shifts in distribution across time, and the climatic factors primarily affecting the distribution of the species. We found the suitable habitat of O. spinalis to be persistently located in cold‐dry winter and hot summer climatic areas where annual mean temperature, isothermality, and annual mean precipitation were important for suitable habitat conditions. Since the last glacial maximum, the suitable habitat of the species has consistently shifted northward. Despite the increase in suitable habitat, the rapid alterations in weather regimes because of climate change in the near future are likely to greatly threaten the southern populations of O. spinalis, especially in South Korea and China. To cope with such potential future threats, understanding the ecological requirements of the species and developing conservation plans are urgently needed.  相似文献   

4.
The barbastelle (Barbastella barbastellus) is a rare forest bat with a wide distribution in Europe. Here, we combine results from the analysis of two mtDNA fragments with species distribution modelling to determine glacial refugia and postglacial colonization routes. We also investigated whether niche conservatism occurs in this species. Glacial refugia were identified in the three southern European peninsulas: Iberia, Italy and the Balkans. These latter two refugia played a major role in the postglacial colonization process, with their populations expanding to England and central Europe, respectively. Palaeo‐distribution models predicted that suitable climatic conditions existed in the inferred refugia during the last glacial maximum (LGM). Nevertheless, the overlap between the current and the LGM distributions was almost inexistent in Italy and in the Balkans, meaning that B. barbastellus populations were forced to shift range between glacial and interglacial periods, a process that probably caused some local extinctions. In contrast, Iberian populations showed a ‘refugia within refugium’ pattern, with two unconnected areas containing stable populations (populations that subsisted during both glacial and interglacial phases). Moreover, the match between LGM models and the refugial areas determined by molecular analysis supported the hypothesis of niche conservatism in B. barbastellus. We argue that geographic patterns of genetic structuring, altogether with the modelling results, indicate the existence of four management units for conservation: Morocco, Iberia, Italy and UK, and Balkans and central Europe. In addition, all countries sampled possessed unique gene pools, thus stressing the need for the conservation of local populations.  相似文献   

5.
Evidence is accumulating that some arcto‐boreal plant taxa persisted through the last glacial maximum (LGM) in Alaska and adjacent Canada. However, the spatial patterns of glacial persistence and associated postglacial colonization remain largely unknown. In this study, we investigated the LGM refugia of an alder (Alnus) species complex (n = 3 taxa) and assess the spatiotemporal dynamics of Alnus in this vast region. Specifically, we conducted high‐throughput DNA sequencing (ddRADseq) on Alnus foliar samples collected from a dense population network to investigate patterns of genetic structure and infer the presence of glacial lineages. Species distribution modeling (SDM) was used to investigate the probability and possible locations of glacial persistence. These analyses were integrated and then compared with fossil pollen data to identify the locations of refugial populations and spatial patterns of postglacial colonization. Our genetic analyses revealed two glacial lineages with separate geographic origins for each Alnus taxon, suggesting that the genus persisted in multiple LGM refugia. Non‐overlapping hindcast distributions based on SDMs further support the presence of multiple, spatially distinct refugia. These ddRADseq and SDM results, in conjunction with reassessment of fossil pollen records, suggest that Alnus expanded from several population nuclei that existed during the LGM and coalesced during the Holocene to form its present range. These results challenge the unidirectional model for postglacial vegetation expansion, implying that climate buffering associated with landscape heterogeneity and adaptation to millennial‐scale environmental variability played important roles in driving late‐Quaternary population dynamics.  相似文献   

6.
Biogeographic studies often underline the role of glacial dynamism during Pleistocene (1.806–0.011 Mya) in shaping the distribution of subterranean species. Accordingly, it is presumed that present‐day distribution of most specialized cold‐adapted (cryophilic) cave‐dwelling species should bear the signatures of past climatic events. To test this idea, we modelled the distribution of specialized cold‐adapted subterranean alpine harvestmen (Arachnida: Opiliones: Ischyropsalididae: Ischyropsalis). We found that the distance from the glacier margins during Last Glacial Maximum (LGM; about 22,000 years ago) was the most important predictor of their present‐day distribution. In particular, the peak in the probability of occurrence of alpine subterranean Ischyropsalis was found to be in close proximity to the LGM glacier, with a sharp drop at a distance of 30 km from the ice margin. In light of the role played by past climatic events in determining the species current range, we briefly discuss their biogeographic history and the role played by glacial refugia dynamics in determining the current distribution of these species. We argue that low dispersal harvestmen such as our model species can be used as biological indicators for tracking past glaciations and other similar biogeographic events.  相似文献   

7.
Species distribution patterns are widely studied through species distribution models (SDMs), focusing mostly on climatic variables. Joint species distribution models (JSDMs) allow inferring if other factors (biotic interactions, shared phylogenetic history or other unmeasured variables) can also have an influence on species distribution. We identified current distributional areas and optimal suitability areas of three species of the solitary snail‐shell bee Rhodanthidium (Hymenoptera: Megachilidae), and their host gastropod species in the Iberian Peninsula. We undertook SDMs using Maxent software, based on presence points and climatic variables. We also undertook JSDMs for the bees and the snails to infer if co‐occurrence could be a result of biotic interactions. We found that the three bee species: (1) use at least five different species of Mediterranean snails; (2) use empty shells not only for nesting but also for sheltering when there is adverse weather and during the night; (3) have their most suitable areas in the eastern and southern Iberian Peninsula, mostly on limestone areas; and (4) have their optimal range under Mediterranean climatic values for the studied variables. There is positive co‐occurrence of Rhodanthidium with the gastropod species, especially with the snail Sphincterochila candidissima. The contribution of the environmental component to the co‐occurrence is less than that of the residual component in those cases, suggesting that: (i) the use of biotic resources (between Rhodanthidium and the gastropod species); (ii) shared phylogenetic history (between R. septemdentatum and R. sticticum); or (iii) unmeasured variables are largely responsible for co‐occurrence.  相似文献   

8.
Understanding the impact of past climatic events on species may facilitate predictions of how species will respond to future climate change. To this end, we sampled populations of the common pond snail Radix balthica over the entire species range (northwestern Europe). Using a recently developed analytical framework that employs ecological niche modelling to obtain hypotheses that are subsequently tested with statistical phylogeography, we inferred the range dynamics of R. balthica over time. A Maxent modelling for present-day conditions was performed to infer the climate envelope for the species, and the modelled niche was used to hindcast climatically suitable range at the last glacial maximum (LGM) c . 21 000 years ago. Ecological niche modelling predicted two suitable areas at the LGM within the present species range. Phylogeographic model selection on a COI mitochondrial DNA data set confirmed that R. balthica most likely spread from these two disjunct refuges after the LGM. The match observed between the potential range of the species at the LGM given its present climatic requirements and the phylogeographically inferred refugial areas was a clear argument in favour of niche conservatism in R. balthica , thus allowing to predict the future range. The subsequent projection of the potential range under a global change scenario predicts a moderate pole-ward shift of the northern range limits, but a dramatic loss of areas currently occupied in France, western Great Britain and southern Germany.  相似文献   

9.
The biota of the Baja California peninsula (BCP) assembled in response to a complex history of Neogene tectonics and Quaternary climates. We constructed species distribution models (SDMs) for 13 scorpion species from the BCP to compare current suitable habitat with that at the latest glacial maximum about 21 000 years ago. Using these SDMs, we modelled climatic suitability in relation to latitude along the BCP. Our SDMs suggested that most BCP scorpion distributions have remained remarkably conserved across the latest glacial to interglacial climatic transformation. Three areas of climatic suitability coincide remarkably well with genetic discontinuities in other co‐distributed taxa along the BCP, indicating that long‐term persistence of zones of abrupt climatic transition offer a viable alternative, or synergistic enhancement, to hypotheses of trans‐peninsular seaways as drivers of peninsular divergences. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 450–461.  相似文献   

10.
Larix laricina (eastern larch, tamarack) is a transcontinental North American conifer with a prominent disjunction in the Yukon isolating the Alaskan distribution from the rest of its range. We investigate whether in situ persistence during the last glacial maximum (LGM) or long‐distance postglacial migration from south of the ice sheets resulted in the modern‐day Alaskan distribution. We analyzed variation in three chloroplast DNA regions of 840 trees from a total of 69 populations (24 new sampling sites situated on both sides of the Yukon range disjunction pooled with 45 populations from a published source) and conducted ensemble species distribution modeling (SDM) throughout Canada and United States to hindcast the potential range of L. laricina during the LGM. We uncovered the genetic signature of a long‐term isolation of larch populations in Alaska, identifying three endemic chlorotypes and low levels of genetic diversity. Range‐wide analysis across North America revealed the presence of a distinct Alaskan lineage. Postglacial gene flow across the Yukon divide was unidirectional, from Alaska toward previously glaciated Canadian regions, and with no evidence of immigration into Alaska. Hindcast SDM indicates one of the broadest areas of past climate suitability for L. laricina existed in central Alaska, suggesting possible in situ persistence of larch in Alaska during the LGM. Our results provide the first unambiguous evidence for the long‐term isolation of L. laricina in Alaska that extends beyond the last glacial period and into the present interglacial period. The lack of gene flow into Alaska along with the overall probability of larch occurrence in Alaska being currently lower than during the LGM suggests that modern‐day Alaskan larch populations are isolated climate relicts of broader glacial distributions, and so are particularly vulnerable to current warming trends.  相似文献   

11.
Quantifying species distributions using species distribution models (SDMs) has emerged as a central method in modern biogeography. These empirical models link species occurrence data with spatial environmental information. Since their emergence in the 1990s, thousands of scientific papers have used SDMs to study organisms across the entire tree of life, with birds commanding considerable attention. Here, we review the current state of avian SDMs and point to challenges and future opportunities for specific applications, ranging from conservation biology, invasive species and predicting seabird distributions, to more general topics such as modeling avian diversity, niche evolution and seasonal distributions at a biogeographic scale. While SDMs have been criticized for being phenomenological in nature, and for their inability to explicitly account for a variety of processes affecting populations, we conclude that they remain a powerful tool to learn about past, current, and future species distributions – at least when their limitations and assumptions are recognized and addressed. We close our review by providing an outlook on prospects and synergies with other disciplines in which avian SDMs can play an important role.  相似文献   

12.
During Pleistocene glacial‐interglacial cycles, the geographic range is often assumed to have shifted as a species tracks its climatic niche. Alternatively, the geographic range would not necessarily shift if a species can adapt in situ to a changing environment. The potential for a species to persist in place might increase with the diversity of habitat types that a species exploits. We evaluate evidence for either range shift or range stability between the last glacial maximum (LGM) and present time in the chisel‐toothed kangaroo rat (Dipodomys microps), an endemic of the Great Basin and Mojave deserts. We modeled how the species’ range would have changed if the climatic niche of the species remained conserved between the LGM and present time. The climatic models imply that if D. microps inhabited the same climatic niche during the LGM as it does today, the species would have persisted primarily within the warm Mojave Desert and expanded northwards into the cold Great Basin only after the LGM. Contrary to the climatic models, the mitochondrial DNA assessment revealed signals of population persistence within the current distribution of the species throughout at least the latest glacial‐interglacial cycle. We concluded that D. microps did not track its climatic niche during late Pleistocene oscillations, but rather met the challenge of a changing environment by shifting its niche and retaining large portions of its distribution. We speculate that this kind of response to fluctuating climate was possible because of ‘niche drifting’, an alteration of the species’ realized niche due to plasticity in various biological characters. Our study provides an example of an approach to reconstruct species’ responses to past climatic changes that can be used to evaluate whether and to what extent taxa have capacity to shift their niches in response to the changing environment – information becoming increasingly important to predicting biotic responses to future environmental changes.  相似文献   

13.
Various hypotheses have been proposed about the Quaternary evolutionary history of plant species on the Qinghai–Tibet Plateau (QTP), yet only a handful of studies have considered both population genetics and ecological niche context. In this study, we proposed and compared climate refugia hypotheses based on the phylogeographic pattern of Anisodus tanguticus (three plastid DNA fragments and nuclear internal transcribed spacer regions from 32 populations) and present and past species distribution models (SDMs). We detected six plastid haplotypes in two well‐differentiated lineages. Although all haplotypes could be found in its western (sampling) area, only haplotypes from one lineage occurred in its eastern area. Meanwhile, most genetic variations existed between populations (FST = 0.822). The SDMs during the last glacial maximum and last interglacial periods showed range fragmentation in the western area and significant range contraction in the eastern area, respectively, in comparison with current potential distribution. This species may have undergone intraspecific divergence during the early Quaternary, which may have been caused by survival in different refugia during the earliest known glacial in the QTP, rather than geological isolation due to orogenesis events. Subsequently, climate oscillations during the Quaternary resulted in a dynamic distribution range for this species as well as the distribution pattern of its plastid haplotypes and nuclear genotypes. The interglacial periods may have had a greater effect on A. tanguticus than the glacial periods. Most importantly, neither genetic data nor SDM alone can fully reveal the climate refugia history of this species. We also discuss the conservation implications for this important Tibetan folk medicine plant in light of these findings and SDMs under future climate models. Together, our results underline the necessity to combine phylogeographic and SDM approaches in future investigations of the Quaternary evolutionary history of species in topographically complex areas, such as the QTP.  相似文献   

14.
Species distribution models (SDMs), especially those basing on climatic parameters, have frequently been used to project future species ranges and to develop conservation strategies. As suggested by several authors, we considered both different dispersal abilities and different evolutionarily significant units (ESUs, as determined in an earlier genetic survey). For our study species, the flightless ground beetle Carabus irregularis, SDMs for two ESUs from the western and the Carpathian area of the distribution range showed immense, and deviating future range contractions reflecting divergent ecological requirements. As minimal dispersal SDMs resulted in a stronger decline of future ranges than the maximal dispersal models, low dispersal ability tended to strengthen the already high vulnerability of the cold-adapted mountain species to global warming. Areas shown in our maximal dispersal models as offering climatically suitable habitats for C. irregularis in the future should be considered as potential areas of action in future conservation planning (e.g. assisted migration or assisted colonisation). Thus, both dispersal scenarios and different (if applicable) ESUs should be considered when developing SDMs as useful tools for species conservation strategies adapted to species’ performance and differentiation patterns.  相似文献   

15.
To develop a long-term volunteer-based system for monitoring the impacts of climate change on plant distributions, potential indicator plants and monitoring sites were assessed considering habitat prediction uncertainty. We used species distribution models (SDMs) to project potential habitats for 19 popular edible wild plants in Japan. Prediction uncertainties of SDMs were assessed using three high-performance modeling algorithms and 19 simulated future climate data. SDMs were developed using presence/absence records, four climatic variables, and five non-climatic variables. The results showed that prediction uncertainties for future climate simulations were greater than those from the three different modeling algorithms. Among the 19 edible wild plant species, six had highly accurate SDMs and greater changes in occurrence probabilities between current and future climate conditions. The potential habitats of these six plants under future climate simulations tended to shift northward and upward, with predicted losses in potential southern habitats. These results suggest that these six plants are candidate indicators for long-term biological monitoring of the impacts of climate change. If temperature continuously increases as predicted, natural populations of these plants will decline in Kyushu, Chugoku and Shikoku districts, and in low altitudes of Chubu and Tohoku districts. These results also indicate the importance of occurrence probability and prediction uncertainty of SDMs for selecting target species and site locations for monitoring programs. Sasa kurilensis, a very popular and widespread dominant scrub bamboo in the cool-temperate regions of Japan, was found to be the most effective plant for monitoring.  相似文献   

16.
Understanding how biodiversity will respond to future climate change is a major conservation and societal challenge. Climate change is predicted to force many species to shift their ranges in pursuit of suitable conditions. This study aims to use landscape genetics, the study of the effects of environmental heterogeneity on the spatial distribution of genetic variation, as a predictive tool to assess how species will shift their ranges to track climatic changes and inform conservation measures that will facilitate movement. The approach is based on three steps: 1) using species distribution models (SDMs) to predict suitable ranges under future climate change, 2) using the landscape genetics framework to identify landscape variables that impede or facilitate movement, and 3) extrapolating the effect of landscape connectivity on range shifts in response to future climate change. I show how this approach can be implemented using the publicly available genetic dataset of the grey long-eared bat, Plecotus austriacus, in the Iberian Peninsula. Forest cover gradient was the main landscape variable affecting genetic connectivity between colonies. Forest availability is likely to limit future range shifts in response to climate change, primarily over the central plateau, but important range shift pathways have been identified along the eastern and western coasts. I provide outputs that can be directly used by conservation managers and review the viability of the approach. Using landscape genetics as a predictive tool in combination with SDMs enables the identification of potential pathways, whose loss can affect the ability of species to shift their range into future climatically suitable areas, and the appropriate conservation management measures to increase landscape connectivity and facilitate movement.  相似文献   

17.
Aim  To assess the importance of climate and human pressure as factors limiting the past, present and future distribution of Prunus lusitanica L. (the Portuguese laurel), a relict of Europe's ancient subtropical laurel-forest flora.
Location  The Iberian Peninsula.
Methods  A census was taken of the current populations of P. lusitanica in the Iberian Peninsula and the threats they face. The potential distribution of the species was modelled under current climatic conditions and under simulations of the climate for the Last Glacial Maximum (LGM), the mid-Holocene and the year 2080.
Results  The present total population of 31,000 individuals is largely distributed as small, fragmented subpopulations, often threatened by agriculture or forestry. The species' current range is much smaller than its potentially suitable range. During the LGM, P. lusitanica would have been constrained to a limited number of sites along the Atlantic coast. In the mid-Holocene, its potential range was much wider than during the LGM and similar to that of the present day. Under the 2080 climate scenario its potential range is reduced by almost 40% compared to that of the present. This reduction includes the loss of territories currently home to three-quarters of its Iberian population.
Main conclusions  Drastic climatic changes and the existence of refugia are usually invoked to explain the rarity and fragmented distribution – yet persistence – of a subtropical flora in southern Europe. The availability of climatically suitable habitats is, however, not necessarily the main factor limiting its distribution. Human impact would appear to have been – and continues to be – of fundamental importance in the current population sizes and potential range of P. lusitanica in the Iberian Peninsula.  相似文献   

18.
The southern European peninsulas (Iberian, Italian and Balkan) are traditionally recognized as glacial refugia from where many species colonized central and northern Europe after the Last Glacial Maximum (LGM). However, evidence that some species had more northerly refugia is accumulating from phylogeographic, palaeontological and palynological studies, and more recently from species distribution modelling (SDM), but further studies are needed to test the idea of northern refugia in Europe. Here, we take a rarely implemented multidisciplinary approach to assess if the pygmy shrew Sorex minutus, a widespread Eurasian mammal species, had northern refugia during the LGM, and if these influenced its postglacial geographic distribution. First, we evaluated the phylogeographic and population expansion patterns using mtDNA sequence data from 123 pygmy shrews. Then, we used SDM to predict present and past (LGM) potential distributions using two different training data sets, two different algorithms (Maxent and GARP) and climate reconstructions for the LGM with two different general circulation models. An LGM distribution in the southern peninsulas was predicted by the SDM approaches, in line with the occurrence of lineages of S. minutus in these areas. The phylogeographic analyses also indicated a widespread and strictly northern‐central European lineage, not derived from southern peninsulas, and with a postglacial population expansion signature. This was consistent with the SDM predictions of suitable LGM conditions for S. minutus occurring across central and eastern Europe, from unglaciated parts of the British Isles to much of the eastern European Plain. Hence, S. minutus likely persisted in parts of central and eastern Europe during the LGM, from where it colonized other northern areas during the late‐glacial and postglacial periods. Our results provide new insights into the glacial and postglacial colonization history of the European mammal fauna, notably supporting glacial refugia further north than traditionally recognized.  相似文献   

19.
Climate change during the past five decades has impacted significantly on natural ecosystems, and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs) have been used widely to project changes in species’ bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical, and habitat variables for all 87 lagomorph species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current models and only those deemed ‘modellable’ within our framework were projected under future climate scenarios (58 species). Phylogenetically-controlled regressions were used to test whether species traits correlated with predicted responses to climate change. Climate change is likely to impact more than two-thirds of lagomorph species, with leporids (rabbits, hares, and jackrabbits) likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov’s Pika (Ochotona koslowi). Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management. We strongly advocate studies minimising data gaps in our knowledge of the Order, specifically collecting more specimens for biodiversity archives and targeting data deficient geographic regions.  相似文献   

20.
Aim To identify potential source and sink locations for climate‐driven species range shifts in Europe since the Last Glacial Maximum (LGM). Location Europe. Methods We developed a new approach combining past‐climate simulations with the concept of analogous climate space. Our index gives a continuous measure of the potential of a location to have acted as a source or a sink for species that have shifted their ranges since the LGM. High glacial source potential is indicated by LGM climatic conditions that are widespread now; high post‐glacial sink potential is indicated by current climatic conditions that were widespread at the LGM. The degree of isolation of source and sink areas was calculated as the median distance to areas with analogous climate conditions. Results We identified areas of high glacial source potential in the previously recognized refugial areas in the southern European peninsulas, but also in large areas in central‐western Europe. The most climatically isolated source areas were located in northern Spain, in north‐western Europe and in eastern Turkey. From here species would have had to cover substantial distances to find current climate conditions analogous to LGM conditions of these areas. Areas with high post‐glacial sink potential were mainly located in Fennoscandia and in central and south‐eastern Europe. Some of the most isolated sink areas were located in the Spanish highlands and around the Baltic Sea. Main conclusions Our species‐independent approach successfully identified previously recognized glacial refugial areas with high source potential for species range shifts in southern Europe and in addition highlighted other potential source areas in central Europe. This study offers new insights into how the distribution of past and current climatic conditions may have influenced past species range shifts and current large‐scale biodiversity patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号