首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In Huntington's disease (HD), the mutant huntingtin protein is ubiquitously expressed. The disease was considered to be limited to the basal ganglia, but recent studies have suggested a more widespread pathology involving hypothalamic dysfunction. Here we tested the hypothesis that expression of mutant huntingtin in the hypothalamus causes metabolic abnormalities. First, we showed that bacterial artificial chromosome-mediated transgenic HD (BACHD) mice developed impaired glucose metabolism and pronounced insulin and leptin resistance. Selective hypothalamic expression of a short fragment of mutant huntingtin using adeno-associated viral vectors was sufficient to recapitulate these metabolic disturbances. Finally, selective hypothalamic inactivation of the mutant gene prevented the development of the metabolic phenotype in BACHD mice. Our findings establish a causal link between mutant huntingtin expression in the hypothalamus and metabolic dysfunction, and indicate that metabolic parameters are powerful readouts to assess therapies aimed at correcting dysfunction in HD by silencing huntingtin expression in the brain.  相似文献   

3.
Huntington disease (HD) is an inherited neurodegenerative disease characterized by motor, cognitive, psychiatric and metabolic symptoms. Animal models of HD show phenotypes that can be divided into similar categories, with the metabolic phenotype of certain models being characterized by obesity. Although interesting in terms of modeling metabolic symptoms of HD, the obesity phenotype can be problematic as it might confound the results of certain behavioral tests. This concerns the assessment of cognitive function in particular, as tests for such phenotypes are often based on food depriving the animals and having them perform tasks for food rewards. The BACHD rat is a recently established animal model of HD, and in order to ensure that behavioral characterization of these rats is done in a reliable way, a basic understanding of their physiology is needed. Here, we show that BACHD rats are obese and suffer from discrete developmental deficits. When assessing the motivation to lever push for a food reward, BACHD rats were found to be less motivated than wild type rats, although this phenotype was dependent on the food deprivation strategy. Specifically, the phenotype was present when rats of both genotypes were deprived to 85% of their respective free-feeding body weight, but not when deprivation levels were adjusted in order to match the rats'' apparent hunger levels. The study emphasizes the importance of considering metabolic abnormalities as a confounding factor when performing behavioral characterization of HD animal models.  相似文献   

4.
Chorea and psychiatric symptoms are hallmarks of Huntington disease (HD), a neurodegenerative disorder, genetically characterized by the presence of expanded CAG repeats (>35) in the HUNTINGTIN (HTT) gene. HD patients present psychiatric symptoms prior to the onset of motor symptoms and we recently found a similar emergence of non motor and motor deficits in BACHD rats carrying the human full length mutated HTT (97 CAG-CAA repeats). We evaluated cognitive performance in reversal learning and associative memory tests in different age cohorts of BACHD rats. Male wild type (WT) and transgenic (TG) rats between 2 and 12 months of age were tested. Learning and strategy shifting were assessed in a cross-maze test. Associative memory was evaluated in different fear conditioning paradigms (context, delay and trace). The possible confound of a fear conditioning phenotype by altered sensitivity to a ‘painful’ stimulus was assessed in a flinch-jump test. In the cross maze, 6 months old TG rats showed a mild impairment in reversal learning. In the fear conditioning tasks, 4, 6 and 12 months old TG rats showed a marked reduction in contextual fear conditioning. In addition, TG rats showed impaired delay conditioning (9 months) and trace fear conditioning (3 months). This phenotype was unlikely to be affected by a change in ‘pain’ sensitivity as WT and TG rats showed no difference in their threshold response in the flinch-jump test. Our results suggest that BACHD rats have a profound associative memory deficit and, possibly, a deficit in reversal learning as assessed in a cross maze task. The time course for the emergence of these symptoms (i.e., before the occurrence of motor symptoms) in this rat model for HD appears similar to the time course in patients. These data suggest that BACHD rats may be a useful model for preclinical drug discovery.  相似文献   

5.
The cascade of events that lead to cognitive decline, motor deficits, and psychiatric symptoms in patients with Huntington disease (HD) is triggered by a polyglutamine expansion in the N-terminal region of the huntingtin (HTT) protein. A significant mechanism in HD is the generation of mutant HTT fragments, which are generally more toxic than the full-length HTT. The protein fragments observed in human HD tissue and mouse models of HD are formed by proteolysis or aberrant splicing of HTT. To systematically investigate the relative contribution of the various HTT protein proteolysis events observed in vivo, we generated transgenic mouse models of HD representing five distinct proteolysis fragments ending at amino acids 171, 463, 536, 552, and 586 with a polyglutamine length of 148. All lines contain a single integration at the ROSA26 locus, with expression of the fragments driven by the chicken β-actin promoter at nearly identical levels. The transgenic mice N171-Q148 and N552-Q148 display significantly accelerated phenotypes and a shortened life span when compared with N463-Q148, N536-Q148, and N586-Q148 transgenic mice. We hypothesized that the accelerated phenotype was due to altered HTT protein interactions/complexes that accumulate with age. We found evidence for altered HTT complexes in caspase-2 fragment transgenic mice (N552-Q148) and a stronger interaction with the endogenous HTT protein. These findings correlate with an altered HTT molecular complex and distinct proteins in the HTT interactome set identified by mass spectrometry. In particular, we identified HSP90AA1 (HSP86) as a potential modulator of the distinct neurotoxicity of the caspase-2 fragment mice (N552-Q148) when compared with the caspase-6 transgenic mice (N586-Q148).  相似文献   

6.
While Huntington’s disease (HD) is classified as a neurological disorder, HD patients exhibit a high incidence of cardiovascular events leading to heart failure and death. In this study, we sought to better understand the cardiovascular phenotype of HD using the BACHD mouse model. The age-related decline in cardiovascular function was assessed by echocardiograms, electrocardiograms, histological and microarray analysis. We found that structural and functional differences between WT and BACHD hearts start at 3 months of age and continue throughout life. The aged BACHD mice develop cardiac fibrosis and ultimately apoptosis. The BACHD mice exhibited adaptive physiological changes to chronic isoproterenol treatment; however, the medication exacerbated fibrotic lesions in the heart. Gene expression analysis indicated a strong tilt toward apoptosis in the young mutant heart as well as changes in genes involved in cellular metabolism and proliferation. With age, the number of genes with altered expression increased with the large changes occurring in the cardiovascular disease, cellular metabolism, and cellular transport clusters. The BACHD model of HD exhibits a number of changes in cardiovascular function that start early in the disease progress and may provide an explanation for the higher cardiovascular risk in HD.  相似文献   

7.
8.
The expansion of a CAG trinucleotide repeat in the huntingtin gene, which produces huntingtin protein with an expanded polyglutamine tract, is the cause of Huntington''s disease (HD). Recent studies have reported that RNAi suppression of polyglutamine-expanded huntingtin (mutant HTT) in HD animal models can ameliorate disease phenotypes. A key requirement for such preclinical studies, as well as eventual clinical trials, aimed to reduce mutant HTT exposure is a robust method to measure HTT protein levels in select tissues. We have developed several sensitive and selective assays that measure either total human HTT or polyglutamine-expanded human HTT proteins on the electrochemiluminescence Meso Scale Discovery detection platform with an increased dynamic range over other methods. In addition, we have developed an assay to detect endogenous mouse and rat HTT proteins in pre-clinical models of HD to monitor effects on the wild type protein of both allele selective and non-selective interventions. We demonstrate the application of these assays to measure HTT protein in several HD in vitro cellular and in vivo animal model systems as well as in HD patient biosamples. Furthermore, we used purified recombinant HTT proteins as standards to quantitate the absolute amount of HTT protein in such biosamples.  相似文献   

9.
Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin protein. Neuropathology in the basal ganglia and in the cerebral cortex has been linked to the motor and cognitive symptoms whereas recent work has suggested that the hypothalamus might be involved in the metabolic dysfunction. Several mouse models of HD that display metabolic dysfunction have hypothalamic pathology, and expression of mutant huntingtin in the hypothalamus has been causally linked to the development of metabolic dysfunction in mice. Although the pathogenic mechanisms by which mutant huntingtin exerts its toxic functions in the HD brain are not fully known, several studies have implicated a role for the lysososomal degradation pathway of autophagy. Interestingly, changes in autophagy in the hypothalamus have been associated with the development of metabolic dysfunction in wild-type mice. We hypothesized that expression of mutant huntingtin might lead to changes in the autophagy pathway in the hypothalamus in mice with metabolic dysfunction. We therefore investigated whether there were changes in basal levels of autophagy in a mouse model expressing a fragment of 853 amino acids of mutant huntingtin selectively in the hypothalamus using a recombinant adeno-associate viral vector approach as well as in the transgenic BACHD mice. We performed qRT-PCR and Western blot to investigate the mRNA and protein expression levels of selected autophagy markers. Our results show that basal levels of autophagy are maintained in the hypothalamus despite the presence of metabolic dysfunction in both mouse models. Furthermore, although there were no major changes in autophagy in the striatum and cortex of BACHD mice, we detected modest, but significant differences in levels of some markers in mice at 12 months of age. Taken together, our results indicate that overexpression of mutant huntingtin in mice do not significantly perturb basal levels of autophagy.  相似文献   

10.
Huntington disease (HD) is an inherited neurodegenerative disease caused by a CAG expansion in the HTT gene. Using yeast two-hybrid methods, we identified a large set of proteins that interact with huntingtin (HTT)-interacting proteins. This network, composed of HTT-interacting proteins (HIPs) and proteins interacting with these primary nodes, contains 3235 interactions among 2141 highly interconnected proteins. Analysis of functional annotations of these proteins indicates that primary and secondary HIPs are enriched in pathways implicated in HD, including mammalian target of rapamycin, Rho GTPase signaling, and oxidative stress response. To validate roles for HIPs in mutant HTT toxicity, we show that the Rho GTPase signaling components, BAIAP2, EZR, PIK3R1, PAK2, and RAC1, are modifiers of mutant HTT toxicity. We also demonstrate that Htt co-localizes with BAIAP2 in filopodia and that mutant HTT interferes with filopodial dynamics. These data indicate that HTT is involved directly in membrane dynamics, cell attachment, and motility. Furthermore, they implicate dysregulation in these pathways as pathological mechanisms in HD.  相似文献   

11.
12.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin gene. Major pathological hallmarks of HD include inclusions of mutant huntingtin (mHTT) protein, loss of neurons predominantly in the caudate nucleus, and atrophy of multiple brain regions. However, the early sequence of histological events that manifest in region- and cell-specific manner has not been well characterized. Here we use a high-content histological approach to precisely monitor changes in HTT expression and characterize deposition dynamics of mHTT protein inclusion bodies in the recently characterized zQ175 knock-in mouse line. We carried out an automated multi-parameter quantitative analysis of individual cortical and striatal cells in tissue slices from mice aged 2–12 months and confirmed biochemical reports of an age-associated increase in mHTT inclusions in this model. We also found distinct regional and subregional dynamics for inclusion number, size and distribution with subcellular resolution. We used viral-mediated suppression of total HTT in the striatum of zQ175 mice as an example of a therapeutically-relevant but heterogeneously transducing strategy to demonstrate successful application of this platform to quantitatively assess target engagement and outcome on a cellular basis.  相似文献   

13.
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin (HTT) gene. Brain-type creatine kinase (CKB) is an enzyme involved in energy homeostasis via the phosphocreatine–creatine kinase system. Although downregulation of CKB was previously reported in brains of HD mouse models and patients, such regulation and its functional consequence in HD are not fully understood. In the present study, we demonstrated that levels of CKB found in both the soma and processes were markedly reduced in primary neurons and brains of HD mice. We show for the first time that mutant HTT (mHTT) suppressed the activity of the promoter of the CKB gene, which contributes to the lowered CKB expression in HD. Exogenous expression of wild-type CKB, but not a dominant negative CKB mutant, rescued the ATP depletion, aggregate formation, impaired proteasome activity, and shortened neurites induced by mHTT. These findings suggest that negative regulation of CKB by mHTT is a key event in the pathogenesis of HD and contributes to the neuronal dysfunction associated with HD. In addition, besides dietary supplementation with the CKB substrate, strategies aimed at increasing CKB expression might lead to the development of therapeutic treatments for HD.  相似文献   

14.
Mutant huntingtin (HTT) protein causes Huntington disease (HD), an incurable neurological disorder. Silencing mutant HTT using nucleic acids would eliminate the root cause of HD. Developing nucleic acid drugs is challenging, and an ideal clinical approach to gene silencing would combine the simplicity of single-stranded antisense oligonucleotides with the efficiency of RNAi. Here, we describe RNAi by single-stranded siRNAs (ss-siRNAs). ss-siRNAs are potent (>100-fold more than unmodified RNA) and allele-selective (>30-fold) inhibitors of mutant HTT expression in cells derived from HD patients. Strategic placement of mismatched bases mimics micro-RNA recognition and optimizes discrimination between mutant and wild-type alleles. ss-siRNAs require Argonaute protein and function through the RNAi pathway. Intraventricular infusion of ss-siRNA produced selective silencing of the mutant HTT allele throughout the brain in a mouse HD model. These data demonstrate that chemically modified ss-siRNAs function through the RNAi pathway and provide allele-selective compounds for clinical development.  相似文献   

15.
Huntington’s disease (HD) is a devastating dominantly inherited neurodegenerative disorder caused by an abnormal polyglutamine expansion in the N-terminal part of the huntingtin (HTT) protein. HTT is a large scaffold protein that interacts with more than a hundred proteins and is probably involved in several cellular functions. The mutation is dominant, and is thought to confer new and toxic functions to the protein. However, there is emerging evidence that the mutation also alters HTT’s normal functions. Therefore, HD models need to recapitulate this duality if they are to be relevant. Drosophila melanogaster is a useful in vivo model, widely used to study HD through the overexpression of full-length or N-terminal fragments of mutant human HTT. However, it is unclear whether Drosophila huntingtin (DmHTT) shares functions similar to the mammalian HTT. Here, we used various complementary approaches to analyze the function of DmHTT in fast axonal transport. We show that DmHTT interacts with the molecular motor dynein, associates with vesicles and co-sediments with microtubules. DmHTT co-localizes with Brain-derived neurotrophic factor (BDNF)-containing vesicles in rat cortical neurons and partially replaces mammalian HTT in a fast axonal transport assay. DmHTT-KO flies show a reduced fast axonal transport of synaptotagmin vesicles in motoneurons in vivo. These results suggest that the function of HTT in axonal transport is conserved between flies and mammals. Our study therefore validates Drosophila melanogaster as a model to study HTT function, and its dysfunction associated with HD.  相似文献   

16.
《Journal of molecular biology》2019,431(9):1869-1877
Huntington's disease (HD) is caused by an expanded CAG repeat in the huntingtin (HTT) gene, translating into an elongated polyglutamine stretch. In addition to the neurotoxic mutant HTT protein, the mutant CAG repeat RNA can exert toxic functions by trapping RNA-binding proteins. While few examples of proteins that aberrantly bind to mutant HTT RNA and execute abnormal function in conjunction with the CAG repeat RNA have been described, an unbiased approach to identify the interactome of mutant HTT RNA is missing. Here, we describe the analysis of proteins that preferentially bind mutant HTT RNA using a mass spectrometry approach. We show that (I) the majority of proteins captured by mutant HTT RNA belong to the spliceosome pathway, (II) expression of mutant CAG repeat RNA induces mis-splicing in a HD cell model, (III) overexpression of one of the splice factors trapped by mutant HTT ameliorates the HD phenotype in a fly model and (VI) deregulated splicing occurs in human HD brain. Our data suggest that deregulated splicing is a prominent mechanism of RNA-induced toxicity in HD.  相似文献   

17.
The Huntington’s disease (HD) protein, huntingtin (HTT), is a large protein consisting of 3144 amino acids and has conserved N-terminal sequences that are followed by a polyglutamine (polyQ) repeat. Loss of Htt is known to cause embryonic lethality in mice, whereas polyQ expansion leads to adult neuronal degeneration. Whether N-terminal HTT is essential for neuronal development or contributes only to late-onset neurodegeneration remains unknown. We established HTT knock-in mice (N160Q-KI) expressing the first 208 amino acids of HTT with 160Q, and they show age-dependent HTT aggregates in the brain and neurological phenotypes. Importantly, the N-terminal mutant HTT also preferentially accumulates in the striatum, the brain region most affected in HD, indicating the importance of N-terminal HTT in selective neuropathology. That said, homozygous N160Q-KI mice are also embryonic lethal, suggesting that N-terminal HTT alone is unable to support embryonic development. Using Htt knockout neurons, we found that loss of Htt selectively affects the survival of developing neuronal cells, but not astrocytes, in culture. This neuronal degeneration could be rescued by a truncated HTT lacking the first 237 amino acids, but not by N-terminal HTT (1–208 amino acids). Also, the rescue effect depends on the region in HTT known to be involved in intracellular trafficking. Thus, the N-terminal HTT region may not be essential for the survival of developing neurons, but when carrying a large polyQ repeat, can cause selective neuropathology. These findings imply a possible therapeutic benefit of removing the N-terminal region of HTT containing the polyQ repeat to treat the neurodegeneration in HD.  相似文献   

18.

Rationale

Huntington disease (HD) is frequently first diagnosed by the appearance of motor symptoms; the diagnosis is subsequently confirmed by the presence of expanded CAG repeats (> 35) in the HUNTINGTIN (HTT) gene. A BACHD rat model for HD carrying the human full length mutated HTT with 97 CAG-CAA repeats has been established recently. Behavioral phenotyping of BACHD rats will help to determine the validity of this model and its potential use in preclinical drug discovery studies.

Objectives

The present study seeks to characterize the progressive emergence of motor, sensorimotor and cognitive deficits in BACHD rats.

Materials and Methods

Wild type and transgenic rats were tested from 1 till 12 months of age. Motor tests were selected to measure spontaneous locomotor activity (open field) and gait coordination. Sensorimotor gating was assessed in acoustic startle response paradigms and recognition memory was evaluated in an object recognition test.

Results

Transgenic rats showed hyperactivity at 1 month and hypoactivity starting at 4 months of age. Motor coordination imbalance in a Rotarod test was present at 2 months and gait abnormalities were seen in a Catwalk test at 12 months. Subtle sensorimotor changes were observed, whereas object recognition was unimpaired in BACHD rats up to 12 months of age.

Conclusion

The current BACHD rat model recapitulates certain symptoms from HD patients, especially the marked motor deficits. A subtle neuropsychological phenotype was found and further studies are needed to fully address the sensorimotor phenotype and the potential use of BACHD rats for drug discovery purposes.  相似文献   

19.
20.
Huntington's disease (HD) is an autosomal dominant disease caused by an expansion of CAG repeats in the gene encoding for huntingtin. Brain metabolic dysfunction and altered Akt signaling pathways have been associated with disease progression. Nevertheless, conflicting results persist regarding the role of insulin-like growth factor-1 (IGF-1)/Akt pathway in HD. While high plasma levels of IGF-1 correlated with cognitive decline in HD patients, other data showed protective effects of IGF-1 in HD striatal neurons and R6/2 mice. Thus, in the present study, we investigated motor phenotype, peripheral and central metabolic profile, and striatal and cortical signaling pathways in YAC128 mice subjected to intranasal administration of recombinant human IGF-1 (rhIGF-1) for 2 weeks, in order to promote IGF-1 delivery to the brain. We show that IGF-1 supplementation enhances IGF-1 cortical levels and improves motor activity and both peripheral and central metabolic abnormalities in YAC128 mice. Moreover, decreased Akt activation in HD mice brain was ameliorated following IGF-1 administration. Upregulation of Akt following rhIGF-1 treatment occurred concomitantly with increased phosphorylation of mutant huntingtin on Ser421. These data suggest that intranasal administration of rhIGF-1 ameliorates HD-associated glucose metabolic brain abnormalities and mice phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号