首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The lateral hypothalamic area (LHA) acts in concert with the ventral tegmental area (VTA) and other components of the mesolimbic dopamine (DA) system to control motivation, including the incentive to feed. The anorexigenic hormone leptin modulates the mesolimbic DA system, although the mechanisms underlying this control have remained incompletely understood. We show that leptin directly regulates a population of leptin receptor (LepRb)-expressing inhibitory neurons in the LHA and that leptin action via these LHA LepRb neurons decreases feeding and body weight. Furthermore, these LHA LepRb neurons innervate the VTA, and leptin action on these neurons restores VTA expression of the rate-limiting enzyme in DA production along with mesolimbic DA content in leptin-deficient animals. Thus, these findings reveal that LHA LepRb neurons link anorexic leptin action to the mesolimbic DA system.  相似文献   

3.
The nuclear factor erythroid 2-related factor 2 (Nrf2) governs the expression of antioxidant and phase II detoxifying enzymes. Nrf2 activation can prevent or reduce cellular damage associated with several types of injury in many different tissues and organs. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons and subsequent muscular atrophy. We have previously shown that Nrf2 activation in astrocytes delays neurodegeneration in ALS mouse models. To further investigate the role of Nrf2 in ALS we determined the effect of absence of Nrf2 or its restricted overexpression in neurons or type II skeletal muscle fibers on symptoms onset and survival in mutant hSOD1 expressing mice. We did not observe any detrimental effect associated with the lack of Nrf2 in two different mutant hSOD1 animal models of ALS. However, restricted Nrf2 overexpression in neurons or type II skeletal muscle fibers delayed disease onset but failed to extend survival in hSOD1G93A mice. These results highlight the concept that not only the pharmacological target but also the cell type targeted may be relevant when considering a Nrf2-mediated therapeutic approach for ALS.  相似文献   

4.
Objective: A recent study suggested that high concentrations of leptin enhance platelet aggregations. Therefore, the aim of this study was to investigate whether platelet aggregation is altered in patients with leptin gene mutations compared with obese subjects or controls. Research Methods and Procedures: Four men (one homozygous man and his three heterozygous brothers) carrying a leptin gene mutation; 20 age‐matched, healthy, unrelated men; and 18 age‐matched obese men were enrolled in the study. Adenosine diphosphate (ADP)‐, collagen‐, and epinephrine‐induced platelet aggregation were evaluated in all individuals. Results: Our results show that patients with the leptin gene mutation (both the homozygous and heterozygous patients) had significantly higher ADP‐induced (78.3 ± 3.4% vs. 57.9 ± 9.3%, p = 0.001), collagen‐induced (78.1 ± 2.9% vs. 56.7 ± 9.3%, p = 0.007), and epinephrine‐induced (76.5 ± 9.2% vs. 59.5 ± 7.70%, p = 0.003) platelet aggregation compared with controls. However, ADP‐, collagen‐, or epinephrine‐induced platelet aggregations were similar to those in obese patients. Platelet aggregation responses to a combination of pretreatment with leptin at concentrations of 20, 50, 100, or 500 ng/mL for 5 minutes and ADP at concentrations of 2 μmol/liter also were evaluated. However, we did not find significant increases in platelet aggregation even at high concentrations of leptin (100 or 500 ng/mL) in leptin‐deficient patients, obese subjects, or controls. Discussion: Our data show that similar to findings in obese humans, homozygous or heterozygous leptin deficiency is associated with increased platelet aggregation compared with controls, and that higher concentrations of leptin do not increase platelet aggregation.  相似文献   

5.
The majority of mutations that delay flowering in Arabidopsis thaliana have been identified in studies of the Landsberg erecta (Ler) ecotype. In this report we describe a gene (referred to as FLD) that, when mutated, delays flowering in the Columbia ecotype but has a minimal phenotype in the Ler genetic background. The late-flowering phenotype of fld mutants requires a non-Ler allele of another gene involved in the control of flowering time, Flowering Locus C. fld mutants retain a photoperiod response, and the flowering time of fld mutants can be reduced by cold treatment and low red/far-red light ratios.  相似文献   

6.
We have characterized a newly generated mouse model of obesity, a mouse strain deficient in all five previously described leptin receptor isoforms. These transgenic mice, named the db 333/db 333 mice, were identified from an ENU mutagenesis screen and carry a point mutation in the seventh exon of the db gene encoding the leptin receptor, resulting in a premature stop codon (Y333Stop) and gene product that lacks STAT signaling domains. db 333/db 333 mice have a morbidly obese phenotype, with body weights diverging from wild type as early as 4 weeks of age (P < 0.05). To determine the contribution of the short isoforms of the leptin receptor in this metabolic phenotype, we performed an extensive metabolic characterization of the db 333/db 333 mouse in relation to the well-characterized db/db mouse lacking only the long form of the leptin receptor. db 333/db 333 mice have similar endocrine and metabolic parameters as previously described in other leptin receptor transgenic mice including db/db mice that lack only the long isoform of the leptin receptor. However, db 333/db 333 mice show a subtle trend toward higher body weight and insulin levels, lower oxygen, carbon dioxide production, respiratory exchange ratio (RER), and temperature than db/db mice suggesting the short isoforms may play an additional role in energy homeostasis.  相似文献   

7.
George L. Wolff 《Genetics》1978,88(3):529-539
The results of extensive breeding experiments indicate that the phenotypic differentiation of embryos carrying the viable yellow, A vy, or mottled, am, mutations is influenced to a major extent by the agouti locus genotype and the strain genome of the dam. The Avy/a and am/a genotypes are each expressed in a spectrum of coat color phenotypes. These can be grouped into two classes, mottled and pseudoagouti.—In a reciprocal cross of C57BL/6JNIcrWf and AM/Wf-am/am mice, 29.5% of the offspring of C57BL/6 dams were of the pseudoagouti phenotype, whereas no pseudoagouti offspring were produced by AM strain dams.—Mottled yellow Avy/a mice become obese and tumor formation is enhanced in these mice in comparison with the lean pseudoagouti Avy/a siblings.—In two different reciprocal crosses using four different inbred strains, the proportion of pseudoagouti Avy/a offspring differed according to the strain of the dam. Regardless of strain, mottled yellow A vy/a dams produced significantly fewer pseudoagouti A vy/a offspring than did black a/a dams.—The data suggest that metabolic differentiation of Avy/a zygotes into phenotypic classes with different susceptibilities to obesity and tumor formation is influenced to a considerable degree by the metabolic characteristics of the oviductal and uterine environment of the dam.  相似文献   

8.
Alzheimer's disease (AD) is the leading cause of dementia in the elderly. Because the pathological changes underlying this disease can begin decades prior to the onset of cognitive impairment, identifying the earliest events in the AD pathological cascade has critical implications for both the diagnosis and treatment of this disease. We previously reported that compared to autopsy confirmed healthy control brain, expression of LR11 (or SorLA) is markedly reduced in AD brain as well as in a subset of people with mild cognitive impairment (MCI), a prodromal clinical stage of AD. Recent studies of the LR11 gene SORL1 have suggested that the association between SORL1 single nucleotide polymorphisms (SNPs) and AD risk may not be universal. Therefore, we sought to confirm our earlier findings in a population chosen solely based on clinical criteria, as in most genetic studies. Quantitative immunohistochemistry was used to measure LR11 expression in 43 cases from the Religious Orders Study that were chosen based on a final pre-mortem clinical diagnosis of MCI, mild/moderate AD or no cognitive impairment (NCI). LR11 expression was highly variable in all three diagnostic groups, with no significant group differences. Low LR11 cases were identified using the lowest tertile of LR11 expression observed across all cases as a threshold. Contrary to previous reports, low LR11 expression was found in only 29% of AD cases. A similar proportion of both the MCI and NCI cases also displayed low LR11 expression. AD-associated lesions were present in the majority of cases regardless of diagnostic group, although we found no association between LR11 levels and pathological variables. These findings suggest that the relationship between LR11 expression and the development of AD may be more complicated than originally believed.  相似文献   

9.
Subretinal delivery of polyethylene glycol-substituted lysine peptide (CK30PEG)-compacted DNA nanoparticles results in efficient gene expression in retinal cells. This work evaluates the ocular safety of compacted DNA nanoparticles. CK30PEG-compacted nanoparticles containing an EGFP expression plasmid were subretinally injected in adult mice (1 µl at 0.3, 1.0 and 3.0 µg/µl). Retinas were examined for signs of inflammation at 1, 2, 4 and 7 days post-injection. Neither infiltration of polymorphonuclear neutrophils or lymphocytes was detected in retinas. In addition, elevation of macrophage marker F4/80 or myeloid marker myeloperoxidase was not detected in the injected eyes. The chemokine KC mRNA increased 3–4 fold in eyes injected with either nanoparticles or saline at 1 day post-injection, but returned to control levels at 2 days post-injection. No elevation of KC protein was observed in these mice. The monocyte chemotactic protein-1, increased 3–4 fold at 1 day post-injection for both nanoparticle and saline injected eyes, but also returned to control levels at 2 days. No elevations of tumor necrosis factor alpha mRNA or protein were detected. These investigations show no signs of local inflammatory responses associated with subretinal injection of compacted DNA nanoparticles, indicating that the retina may be a suitable target for clinical nanoparticle-based interventions.  相似文献   

10.
11.
Abstract: The oligodendrocyte-myelin glycoprotein (OMgp) is a 110-kDa glycosylphosphatidylinositol-linked protein that was initially identified as a myelin-specific protein but whose precise function remains unknown. In this study, immunohistochemistry, western blots, in situ hybridization, and northern blots were used to determine the distribution of OMgp in the mouse brain. OMgp is present in a concentration detectable on western blots in the brains of newborn mice, and its concentration gradually increases until day 24 of life. OMgp mRNA is also present in amounts detectable on northern blots in the brains of newborn mice, and its concentration gradually increases until day 21 of life, after which the concentration diminishes a little. Most of the OMgp in the mouse brain appears to be expressed in diverse groups of neurons, but it is particularly prominent in large projection neurons such as the pyramidal cells of the hippocampus, the Purkinje cells of the cerebellum, motoneurons in the brainstem, and anterior horn cells of the spinal cord. However, OMgp is not confined to these cells and is expressed in cells in the white matter as well. The OMgp gene is placed within an intron of the neurofibromatosis type I gene and on the opposite strand. This organization raises the possibility that there may be a relationship between the functions of the products of the two genes. In support of this possibility, we show that within the mouse CNS OMgp and neurofibromin are expressed in the same cell types.  相似文献   

12.
The CAG trinucleotide repeat mutation in the Huntington's disease gene (HTT) exhibits age-dependent tissue-specific expansion that correlates with disease onset in patients, implicating somatic expansion as a disease modifier and potential therapeutic target. Somatic HTT CAG expansion is critically dependent on proteins in the mismatch repair (MMR) pathway. To gain further insight into mechanisms of somatic expansion and the relationship of somatic expansion to the disease process in selectively vulnerable MSNs we have crossed HTT CAG knock-in mice (HdhQ111) with mice carrying a conditional (floxed) Msh2 allele and D9-Cre transgenic mice, in which Cre recombinase is expressed specifically in MSNs within the striatum. Deletion of Msh2 in MSNs eliminated Msh2 protein in those neurons. We demonstrate that MSN-specific deletion of Msh2 was sufficient to eliminate the vast majority of striatal HTT CAG expansions in HdhQ111 mice. Furthermore, MSN-specific deletion of Msh2 modified two mutant huntingtin phenotypes: the early nuclear localization of diffusely immunostaining mutant huntingtin was slowed; and the later development of intranuclear huntingtin inclusions was dramatically inhibited. Therefore, Msh2 acts within MSNs as a genetic enhancer both of somatic HTT CAG expansions and of HTT CAG-dependent phenotypes in mice. These data suggest that the selective vulnerability of MSNs may be at least in part contributed by the propensity for somatic expansion in these neurons, and imply that intervening in the expansion process is likely to have therapeutic benefit.  相似文献   

13.
Objective: To examine gender differences and hormonal regulation of resistin, adiponectin, and leptin. Research Methods and Procedures: Plasma levels were measured, and mRNA expression in perigonadal fat was quantified by RNase protection assays. Results: Plasma resistin declined with age despite an increase in adiposity in both genders. In male mice, plasma leptin increased, whereas adiponectin levels were constant. In females, both adiponectin and leptin levels increased with age. Resistin mRNA levels were significantly higher in female than male mice at all ages, whereas leptin and adiponectin mRNA levels were similar in fat from 6‐week‐old male and female mice, and sexual dimorphism was apparent only in the older mice, with higher levels apparent in females. Castration did not abolish gender differences in plasma levels or resistin, adiponectin, or leptin mRNAs. Castration of male mice did not significantly change adipokine mRNA levels or plasma levels of resistin or leptin; however, adiponectin was significantly increased. Dihydrotestosterone treatment had no effect on adipokine mRNA expression or resistin and adiponectin levels but increased leptin levels. In contrast, ovariectomy significantly increased resistin mRNA abundance and decreased leptin and adiponectin mRNAs. Plasma leptin levels were also increased by ovariectomy, whereas resistin and adiponectin levels were unchanged. Estrogen replacement significantly reduced resistin mRNA and increased leptin and adiponectin mRNA levels but had no effect on plasma adipokine levels. Discussion: The gender differences in adipokine mRNA expression and plasma levels were not ablated by castration and seem to be dependent on other factors in addition to gonadal steroids.  相似文献   

14.
The autosomal semidominant mutant gene di(diabetes insipidus) is manifested in homozygotes in the form of diabetes insipidus with water consumption from 25 to 100% of body weight per day. The heterozygotesdi/+ drink water at a rate higher than 5% but lower than 25%. The level of water consumption in rats with +/+ genotype does not exceed 5% of body weight per day. Segregation analysis of F1 animals yielded by various crosses showed that genotyping of di/di homozygotes is absolutely reliable at 30% and higher level of the water consumption per day.  相似文献   

15.

Background

In several neurodegenerative disorders, toxic effects of glial cells on neurons are implicated. However the generality of the non-cell autonomous pathologies derived from glial cells has not been established, and the specificity among different neurodegenerative disorders remains unknown.

Methodology/Principal Findings

We newly generated Drosophila models expressing human mutant huntingtin (hHtt103Q) or ataxin-1 (hAtx1-82Q) in the glial cell lineage at different stages of differentiation, and analyzed their morphological and behavioral phenotypes. To express hHtt103Q and hAtx1-82Q, we used 2 different Gal4 drivers, gcm-Gal4 and repo-Gal4. Gcm-Gal4 is known to be a neuroglioblast/glioblast-specific driver whose effect is limited to development. Repo-Gal4 is known to be a pan-glial driver and the expression starts at glioblasts and continues after terminal differentiation. Gcm-Gal4-induced hHtt103Q was more toxic than repo-Gal4-induced hHtt103Q from the aspects of development, locomotive activity and survival of flies. When hAtx1-82Q was expressed by gcm- or repo-Gal4 driver, no fly became adult. Interestingly, the head and brain sizes were markedly reduced in a part of pupae expressing hAtx1-82Q under the control of gcm-Gal4, and these pupae showed extreme destruction of the brain structure. The other pupae expressing hAtx1-82Q also showed brain shrinkage and abnormal connections of neurons. These results suggested that expression of polyQ proteins in neuroglioblasts provided a remarkable effect on the developmental and adult brains, and that glial cell lineage expression of hAtx1-82Q was more toxic than that of hHtt103Q in our assays.

Conclusion/Significance

All these studies suggested that the non-cell autonomous effect of glial cells might be a common pathology shared by multiple neurodegenerative disorders. In addition, the fly models would be available for analyzing molecular pathologies and developing novel therapeutics against the non-cell autonomous polyQ pathology. In conclusion, our novel fly models have extended the non-cell autonomous pathology hypothesis as well as the developmental effect hypothesis to multiple polyQ diseases. The two pathologies might be generally shared in neurodegeneration.  相似文献   

16.
17.
The adipocyte-derived hormone leptin acts in the brain to reduce body weight and fat mass. Recent studies suggest that parvocellular oxytocin (OXT) neurons of the hypothalamic paraventricular nucleus (PVN) can mediate body weight reduction through inhibition of food intake and increased energy expenditure. However, the role of OXT neurons of the PVN as a primary target of leptin has not been investigated. Here, we studied the potential role of OXT neurons of the PVN in leptin-mediated effects on body weight regulation in fasted rats. We demonstrated that intracerebroventricular (ICV) leptin activates STAT3 phosphorylation in OXT neurons of the PVN, showed that this occurs in a subpopulation of OXT neurons that innervate the nucleus of the solitary tract (NTS), and provided further evidence suggesting a role of OXT to mediate leptin’s actions on body weight. In addition, our results indicated that OXT neurons are responsive to ICV leptin and mediate leptin effects on body weight in diet induced obese (DIO) rats, which are resistant to the anorectic effects of the hormone. Thus, we conclude that leptin targets a specific subpopulation of parvocellular OXT neurons of the PVN, and that this action may be important for leptin’s ability to reduce body weight in both control and obese rats.  相似文献   

18.
Mechanical treatment of newborn mouse back skin by removal of the horny layer does not stimulate DNA synthesis and mitotic activity. These results are discussed in connection with recent experiments with newborn and adult mouse epidermis, and reveal further evidences for the ontogenetic development of an endogenous growth control (chalones).  相似文献   

19.
Resistance to inhibitors of cholinesterase 8 (RIC8) is a guanine nucleotide exchange factor required for the intracellular regulation of G protein signalling. RIC8 activates different Gα subunits via non-canonical pathway, thereby amplifying and prolonging the G protein mediated signal. In order to circumvent the embryonic lethality associated with the absence of RIC8A and to study its role in the nervous system, we constructed Ric8a conditional knockout mice using Cre/loxP technology. Introduction of a synapsin I promoter driven Cre transgenic mouse strain (SynCre) into the floxed Ric8a (Ric8aF/F) background ablated RIC8A function in most differentiated neuron populations. Mutant SynCre+/-Ric8lacZ/F mice were born at expected Mendelian ratio, but they died in early postnatal age (P4-P6). The mutants exhibited major developmental defects, like growth retardation and muscular weakness, impaired coordination and balance, muscular spasms and abnormal heart beat. Histological analysis revealed that the deficiency of RIC8A in neurons caused skeletal muscle atrophy and heart muscle hypoplasia, in addition, the sinoatrial node was misplaced and its size reduced. However, we did not observe gross morphological changes in brains of SynCre+/-Ric8alacZ/F mutants. Our results demonstrate that in mice the activity of RIC8A in neurons is essential for survival and its deficiency causes a severe neuromuscular phenotype.  相似文献   

20.
Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2tg mice) and/or transgenically expressing catalase within the mitochondrial matrix (mcattg mice) have increased scavenging of O2˙ˉ and H2O2, respectively. Furthermore, muscle insulin action is partially preserved in high fat (HF)-fed mcattg mice. The goal of the current study was to test the hypothesis that increased O2˙ˉ scavenging alone or in combination with increased H2O2 scavenging (mtAO mice) enhances in vivo muscle insulin action in the HF-fed mouse. Insulin action was examined in conscious, unrestrained and unstressed wild type (WT), sod2tg, mcattg and mtAO mice using hyperinsulinemic-euglycemic clamps (insulin clamps) combined with radioactive glucose tracers following sixteen weeks of normal chow or HF (60% calories from fat) feeding. Glucose infusion rates, whole body glucose disappearance, and muscle glucose uptake during the insulin clamp were similar in chow- and HF-fed WT and sod2tg mice. Consistent with our previous work, HF-fed mcattg mice had improved muscle insulin action, however, an additive effect was not seen in mtAO mice. Insulin-stimulated Akt phosphorylation in muscle from clamped mice was consistent with glucose flux measurements. These results demonstrate that increased O2˙ˉ scavenging does not improve muscle insulin action in the HF-fed mouse alone or when coupled to increased H2O2 scavenging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号