首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important goal of evolutionary biology is to understand the constraints that shape the dynamics and outcomes of evolution. Here, we address the extent to which the structure of the standard genetic code constrains evolution by analyzing adaptive mutations of the antibiotic resistance gene TEM-1 β-lactamase and the fitness distribution of codon substitutions in two influenza hemagglutinin inhibitor genes. We find that the architecture of the genetic code significantly constrains the adaptive exploration of sequence space. However, the constraints endow the code with two advantages: the ability to restrict access to amino acid mutations with a strong negative effect and, most remarkably, the ability to enrich for adaptive mutations. Our findings support the hypothesis that the standard genetic code was shaped by selective pressure to minimize the deleterious effects of mutation yet facilitate the evolution of proteins through imposing an adaptive mutation bias.  相似文献   

2.
The deletion of amino acids is one of the evolutionary mechanisms by which nature adapts the function of proteins. A simple method has been developed that mimics this event in vitro by introducing a deletion of exactly three nucleotides at random positions in a target gene. The method involved the engineering of the mini-Mu transposon to introduce a recognition sequence for the restriction enzyme MlyI. The new transposon, MuDel, was capable of efficient insertion into a target DNA sequence. To determine the efficacy of the method, the bla gene that encodes the TEM-1 β-lactamase was used as the target and a small library containing 22 different sequence variants was created. Of these 22 variants, 8 were identified that conferred resistance to ampicillin on Escherichia coli. Each of the TEM-1 variants possessed a distinct ampicillin minimum inhibitory concentration, ranging from 500 to >10000 μg/ml. Sequence analysis revealed that active TEM-1 variants contained deletions not just in loops but also helices, and included regions known to be involved in catalysis, antibiotic resistance and inhibitor binding. This new technology is transferable to most genes, permitting an extensive analysis of deletion mutations on protein function.  相似文献   

3.
The β-lactamase inhibitory proteins (BLIPs) are a model system for examining molecular recognition in protein-protein interactions. BLIP and BLIP-II are structurally unrelated proteins that bind and inhibit TEM-1 β-lactamase. Both BLIPs share a common binding interface on TEM-1 and make contacts with many of the same TEM-1 surface residues. BLIP-II, however, binds TEM-1 over 150-fold tighter than BLIP despite the fact that it has fewer contact residues and a smaller binding interface. The role of eleven TEM-1 amino acid residues that contact both BLIP and BLIP-II was examined by alanine mutagenesis and determination of the association (kon) and dissociation (koff) rate constants for binding each partner. The substitutions had little impact on association rates and resulted in a wide range of dissociation rates as previously observed for substitutions on the BLIP side of the interface. The substitutions also had less effect on binding affinity for BLIP than BLIP-II. This is consistent with the high affinity and small binding interface of the TEM-1-BLIP-II complex, which predicts per residue contributions should be higher for TEM-1 binding to BLIP-II versus BLIP. Two TEM-1 residues (E104 and M129) were found to be hotspots for binding BLIP while five (L102, Y105, P107, K111, and M129) are hotspots for binding BLIP-II with only M129 as a common hotspot for both. Thus, although the same TEM-1 surface binds to both BLIP and BLIP-II, the distribution of binding energy on the surface is different for the two target proteins, that is, different binding strategies are employed.  相似文献   

4.
We show that DNA molecules amplified by PCR from DNA extracted from animal bones and teeth that vary in age between 25 000 and over 50 000 years carry C→T and G→A substitutions. These substitutions can reach high proportions among the molecules amplified and are due to the occurrence of modified deoxycytidine residues in the template DNA. If the template DNA is treated with uracil N-glycosylase, these substitutions are dramatically reduced. They are thus likely to result from deamination of deoxycytidine residues. In addition, ‘jumping PCR’, i.e. the occurrence of template switching during PCR, may contribute to these substitutions. When DNA sequences are amplified from ancient DNA extracts where few template molecules initiate the PCR, precautions such as DNA sequence determination of multiple clones derived from more than one independent amplification are necessary in order to reduce the risk of determination of incorrect DNA sequences. When such precautionary measures are taken, errors induced by damage to the DNA template are unlikely to be more frequent than ~0.1% even under the unlikely scenario where each amplification starts from a single template molecule.  相似文献   

5.
Translesion DNA synthesis (TLS) is a fundamental damage bypass pathway that utilises specialised polymerases with relaxed template specificity to achieve replication through damaged DNA. Misinsertions by low fidelity TLS polymerases may introduce additional mutations on undamaged DNA near the original lesion site, which we termed collateral mutations. In this study, we used whole genome sequencing datasets of chicken DT40 and several human cell lines to obtain evidence for collateral mutagenesis in higher eukaryotes. We found that cisplatin and UVC radiation frequently induce close mutation pairs within 25 base pairs that consist of an adduct-associated primary and a downstream collateral mutation, and genetically linked their formation to TLS activity involving PCNA ubiquitylation and polymerase κ. PCNA ubiquitylation was also indispensable for close mutation pairs observed amongst spontaneously arising base substitutions in cell lines with disrupted homologous recombination. Collateral mutation pairs were also found in melanoma genomes with evidence of UV exposure. We showed that collateral mutations frequently copy the upstream base, and extracted a base substitution signature that describes collateral mutagenesis in the presented dataset regardless of the primary mutagenic process. Using this mutation signature, we showed that collateral mutagenesis creates approximately 10–20% of non-paired substitutions as well, underscoring the importance of the process.  相似文献   

6.
Trinucleotide exchange (TriNEx) is a method for generating novel molecular diversity during directed evolution by random substitution of one contiguous trinucleotide sequence for another. Single trinucleotide sequences were deleted at random positions in a target gene using the engineered transposon MuDel that were subsequently replaced with a randomized trinucleotide sequence donated by the DNA cassette termed SubSeq(NNN). The bla gene encoding TEM-1 beta-lactamase was used as a model to demonstrate the effectiveness of TriNEx. Sequence analysis revealed that the mutations were distributed throughout bla, with variants containing single, double and triple nucleotide changes. Many of the resulting amino acid substitutions had significant effects on the in vivo activity of TEM-1, including up to a 64-fold increased activity toward ceftazidime and up to an 8-fold increased resistance to the inhibitor clavulanate. Many of the observed amino acid substitutions were only accessible by exchanging at least two nucleotides per codon, including charge-switch (R164D) and aromatic substitution (W165Y) mutations. TriNEx can therefore generate a diverse range of protein variants with altered properties by combining the power of site-directed saturation mutagenesis with the capacity of whole-gene mutagenesis to randomly introduce mutations throughout a gene.  相似文献   

7.
The spread of β-lactamases that hydrolyze penicillins, cephalosporins and carbapenems among Gram-negative bacteria has limited options for treating bacterial infections. Initially, Klebsiella pneumoniae carbapenemase-2 (KPC-2) emerged as a widespread carbapenem hydrolyzing β-lactamase that also hydrolyzes penicillins and cephalosporins but not cephamycins and ceftazidime. In recent years, single and double amino acid substitution variants of KPC-2 have emerged among clinical isolates that show increased resistance to ceftazidime. Because it confers multi-drug resistance, KPC β-lactamase is a threat to public health. In this study, the evolution of KPC-2 function was determined in nine clinically isolated variants by examining the effects of the substitutions on enzyme kinetic parameters, protein stability and antibiotic resistance profile. The results indicate that the amino acid substitutions associated with KPC-2 natural variants lead to increased catalytic efficiency for ceftazidime hydrolysis and a consequent increase in ceftazidime resistance. Single substitutions lead to modest increases in catalytic activity while the double mutants exhibit significantly increased ceftazidime hydrolysis and resistance levels. The P104R, V240G and H274Y substitutions in single and double mutant combinations lead to the largest increases in ceftazidime hydrolysis and resistance. Molecular modeling suggests that the P104R and H274Y mutations could facilitate ceftazidime hydrolysis through increased hydrogen bonding interactions with the substrate while the V240G substitution may enhance backbone flexibility so that larger substrates might be accommodated in the active site. Additionally, we observed a strong correlation between gain of catalytic function for ceftazidime hydrolysis and loss of enzyme stability, which is in agreement with the ‘stability-function tradeoff’ phenomenon. The high Tm of KPC-2 (66.5°C) provides an evolutionary advantage as compared to other class A enzymes such as TEM (51.5°C) and CTX-M (51°C) in that it can acquire multiple destabilizing substitutions without losing the ability to fold into a functional enzyme.  相似文献   

8.
9.
Due to the lack of detailed reports of Klebsiella pneumoniae carbapenemase (KPC)-producing enterobacteria in Ontario, Canada, we perform a molecular characterization of KPC-producing Enterobacteriaceae submitted to the provincial reference laboratory from 2008 to 2011. Susceptibility profiles were accessed by E-test. Molecular types of isolates were determined by pulse-field gel electrophoresis (PFGE) and multilocus sequence typing. Screening of ß-lactamase genes was performed by multiplex PCR and alleles were identified by DNA sequencing. The genetic platform of bla KPC gene was analyzed by PCR. Plasmid replicons were typed using PCR-based typing approach. KPC-plasmids were also evaluated by S1 nuclease-PFGE and Southern blot. Thirty unique clinical isolates (26 Klebsiella pneumoniae, 2 Enterobacter cloacae, 1 Citrobacter freundii and 1 Raoultella ornithinolytica) were identified as bla KPC positive: 4 in 2008, 3 in 2009, 10 in 2010 and 13 in 2011. The majority exhibited resistance to carbapenems, cephalosporins and fluoroquinolones and two isolates were also resistant to colistin. The isolates harbored bla KPC-2 (n = 23) or bla KPC-3 (n = 7). bla TEM-1 (n = 27) was commonly detected and occasionally bla OXA-1 (n = 3) and bla CTX-M-15 (n = 1). As expected, all K. pneumoniae isolates carried bla SHV-11. bla KPC genes were identified on Tn4401a (n = 20) or b (n = 10) isoforms, on plasmids of different sizes belonging to the incompatibility groups IncFIIA (n = 19), IncN (n = 3), IncI2 (n = 3), IncFrep (n = 2) and IncA/C (n = 1). The occurrence of KPC ß-lactamase in Ontario was mainly associated with the spread of the K. pneumoniae clone ST258.  相似文献   

10.
Enzyme engineering has been facilitated by recombination of close homologues, followed by functional screening. In one such effort, chimeras of two class-A β-lactamases – TEM-1 and PSE-4 – were created according to structure-guided protein recombination and selected for their capacity to promote bacterial proliferation in the presence of ampicillin (Voigt et al., Nat. Struct. Biol. 2002 9:553). To provide a more detailed assessment of the effects of protein recombination on the structure and function of the resulting chimeric enzymes, we characterized a series of functional TEM-1/PSE-4 chimeras possessing between 17 and 92 substitutions relative to TEM-1 β-lactamase. Circular dichroism and thermal scanning fluorimetry revealed that the chimeras were generally well folded. Despite harbouring important sequence variation relative to either of the two ‘parental’ β-lactamases, the chimeric β-lactamases displayed substrate recognition spectra and reactivity similar to their most closely-related parent. To gain further insight into the changes induced by chimerization, the chimera with 17 substitutions was investigated by NMR spin relaxation. While high order was conserved on the ps-ns timescale, a hallmark of class A β-lactamases, evidence of additional slow motions on the µs-ms timescale was extracted from model-free calculations. This is consistent with the greater number of resonances that could not be assigned in this chimera relative to the parental β-lactamases, and is consistent with this well-folded and functional chimeric β-lactamase displaying increased slow time-scale motions.  相似文献   

11.
《Journal of molecular biology》2019,431(10):1981-1992
Interactions between mutations play a central role in shaping the fitness landscape, but a clear picture of intragenic epistasis has yet to emerge. To further reveal the prevalence and patterns of intragenic epistasis, we present a survey of epistatic interactions between sequential mutations in TEM-1 β-lactamase. We measured the fitness effect of ~ 12,000 pairs of consecutive amino acid substitutions and used our previous study of the fitness effects of single amino acid substitutions to calculate epistasis for over 8000 mutation pairs. Since sequential mutations are prone to physically interact, we postulated that our study would be surveying specific epistasis instead of nonspecific epistasis. We found widespread negative epistasis, especially in beta-strands, and a high frequency of negative sign epistasis among individually beneficial mutations. Negative epistasis (52%) occurred 7.6 times as frequently as positive epistasis (6.8%). Buried residues experienced more negative epistasis that surface-exposed residues. However, TEM-1 exhibited a couple of hotspots for positive epistasis, most notably L221/ R222 at which many combinations of mutations positively interacted. This study is the first to systematically examine pairwise epistasis throughout an entire protein performing its native function in its native host.  相似文献   

12.
The β-lactamase from Klebsiella pneumoniae E70 behaved in a similar fashion to the TEM-2 plasmid mediated enzyme on reaction with clavulanic acid. Both enzymes produced two types of enzyme–clavulanate complex, a transiently stable species (t½=4min at pH7.3 and 37°C) and irreversibly inhibited enzyme. In the initial rapid reaction (2.5min) the enzymes partitioned between the transient and irreversible complexes in the ratios 3:1 for TEM-2 β-lactamase and 1:1 for Klebsiella β-lactamase. Biphasic inactivation was observed for both enzymes and the slower second phase was rate limited by the decay of the transiently stable complex. This decay released free enzyme for further reaction with fresh clavulanic acid, the products again partitioning between transiently stable and irreversibly inhibited enzyme. This cycle continued until all the enzyme had been irreversibly inhibited. A 115 molar excess of inhibitor was required to achieve complete inactivation of TEM-2 β-lactamase. Hydrolysis of clavulanic acid with product release appeared to occur with the inhibition reaction, which explained this degree of clavulanic acid turnover. The stoichiometry of the interaction with Klebsiella β-lactamase was not examined. The penicillinase from Proteus mirabilis C889 was rapidly inhibited by low concentrations of clavulanic acid. The major product was a moderately stable complex (t½=40min at pH7.3 and 37°C); the proportion of the enzyme that was irreversibly inactivated was small. The cephalosporinase from Enterobacter cloacae P99 had low affinity for the inhibitor and only reacted with high concentrations of clavulanic acid (k=4.0m−1·s−1) to produce a relatively stable complex (t½=180min at pH7.3 and 37°C). No irreversible inactivation of this enzyme was detected. The rates of decay of the clavulanate–enzyme complexes produced in reactions with Proteus and Enterobacter enzymes were markedly increased at acid pH.  相似文献   

13.
Combinatorial codon-based amino acid substitutions   总被引:1,自引:0,他引:1       下载免费PDF全文
Twenty Fmoc-protected trinucleotide phosphoramidites representing a complete set of codons for the natural amino acids were chemically synthesized for the first time. A pool of these reagents was incorporated into oligonucleotides at substoichiometric levels to generate two libraries of variants that randomly carry either few or many codon replacements on a region encoding nine amino acids of the bacterial enzyme TEM-1 β-lactamase. Assembly of the libraries was performed in a completely automated mode through a simple modification of ordinary protocols. This technology eliminates codon redundancy, stop codons and enables complete exploration of sequence space for single, double and triple mutations throughout a protein region spanning several residues. Sequence analysis of many non-selected clones revealed a good incorporation of the trinucleotides, producing combinations of mutations quite different from those obtained using conventional degenerate oligonucleotides. Ceftazidime-selection experiments yielded several never before reported variants containing novel amino acid combinations in the β-lactamase omega loop region.  相似文献   

14.
Error-prone rolling circle amplification (RCA) is a promising alternative to error-prone PCR for random mutagenesis. The main disadvantage of error-prone RCA is the low transformation efficiency of the DNA concatemer produced in the amplification reaction. We improved the method by introducing loxP recombination site of bacteriophage P1 Cre recombinase into the target plasmid and reducing the concatemer by Cre recombinase to plasmid-sized units, increasing the number of transformants 50-fold in non-error-prone and 13-fold in error-prone conditions. The efficiency improvement was verified by obtaining 115 ± 57 ceftazidime resistant colonies per recombined RCA reaction from randomly mutated TEM-1 β-lactamase gene library whereas only 9 ± 11 colonies were gained without recombination. Supplementation of the error-prone RCA with Cre/loxP recombination is a simple and useful tool to increase the transformable library size.  相似文献   

15.
In vitro scanning mutagenesis strategies are valuable tools to identify critical residues in proteins and to generate proteins with modified properties. We describe the fast and simple All-Codon Scanning (ACS) strategy that creates a defined gene library wherein each individual codon within a specific target region is changed into all possible codons with only a single codon change per mutagenesis product. ACS is based on a multiplexed overlapping mutagenesis primer design that saturates only the targeted gene region with single codon changes. We have used ACS to produce single amino-acid changes in small and large regions of the human tumor suppressor protein p53 to identify single amino-acid substitutions that can restore activity to inactive p53 found in human cancers. Single-tube reactions were used to saturate defined 30-nt regions with all possible codon changes. The same technique was used in 20 parallel reactions to scan the 600-bp fragment encoding the entire p53 core domain. Identification of several novel p53 cancer rescue mutations demonstrated the utility of the ACS approach. ACS is a fast, simple and versatile method, which is useful for protein structure–function analyses and protein design or evolution problems.  相似文献   

16.
Riboviruses (RNA viruses without DNA replication intermediates) are the most abundant pathogens infecting animals and plants. Only a few riboviral infections can be controlled with antiviral drugs, mainly because of the rapid appearance of resistance mutations. Little reliable information is available concerning i) kinds and relative frequencies of mutations (the mutational spectrum), ii) mode of genome replication and mutation accumulation, and iii) rates of spontaneous mutation. To illuminate these issues, we developed a model in vivo system based on phage Qß infecting its natural host, Escherichia coli. The Qß RT gene encoding the Read-Through protein was used as a mutation reporter. To reduce uncertainties in mutation frequencies due to selection, the experimental Qß populations were established after a single cycle of infection and selection against RT mutants during phage growth was ameliorated by plasmid-based RT complementation in trans. The dynamics of Qß genome replication were confirmed to reflect the linear process of iterative copying (the stamping-machine mode). A total of 32 RT mutants were detected among 7,517 Qß isolates. Sequencing analysis of 45 RT mutations revealed a spectrum dominated by 39 transitions, plus 4 transversions and 2 indels. A clear template•primer mismatch bias was observed: A•C>C•A>U•G>G•U> transversion mismatches. The average mutation rate per base replication was ≈9.1×10−6 for base substitutions and ≈2.3×10−7 for indels. The estimated mutation rate per genome replication, μg, was ≈0.04 (or, per phage generation, ≈0.08), although secondary RT mutations arose during the growth of some RT mutants at a rate about 7-fold higher, signaling the possible impact of transitory bouts of hypermutation. These results are contrasted with those previously reported for other riboviruses to depict the current state of the art in riboviral mutagenesis.  相似文献   

17.
We report the development of a novel fluorescent drug sensor from the bacterial drug target TEM-1 β-lactamase through the combined strategy of Val216→Cys216 mutation and fluorophore labelling for in vitro drug screening. The Val216 residue in TEM-1 is replaced with a cysteine residue, and the environment-sensitive fluorophore fluorescein-5-maleimide is specifically attached to the Cys216 residue in the V216C mutant for sensing drug binding at the active site. The labelled V216C mutant has wild-type catalytic activity and gives stronger fluorescence when β-lactam antibiotics bind to the active site. The labelled V216C mutant can differentiate between potent and impotent β-lactam antibiotics and can distinguish active-site binders from non-binders (including aggregates formed by small molecules in aqueous solution) by giving characteristic time-course fluorescence profiles. Mass spectrometric, molecular modelling and trypsin digestion results indicate that drug binding at the active site is likely to cause the fluorescein label to stay away from the active site and experience weaker fluorescence quenching by the residues around the active site, thus making the labelled V216C mutant to give stronger fluorescence in the drug-bound state. Given the ancestor''s role of TEM-1 in the TEM family, the fluorescent TEM-1 drug sensor represents a good model to demonstrate the general combined strategy of Val216→Cys216 mutation and fluorophore labelling for fabricating tailor-made fluorescent drug sensors from other clinically significant TEM-type β-lactamase variants for in vitro drug screening.  相似文献   

18.
Temperature-sensitive (TS) plasmids were generated through chemical mutagenesis of a derivative of the streptomycin resistance parent plasmid pD70, isolated from Mannheimia hemolytica serotype 1. Three TS plasmids which failed to replicate at or above 42°C in M. hemolytica but which were fully functional below 31°C were selected for further analysis. Two of the TS plasmids were shown by sequencing to possess unique single-base-pair mutations. The third TS plasmid contained a unique base pair substitution and a second mutation that had been previously identified. These mutations were clustered within a 200-bp region of the presumed plasmid origin of replication. Site-directed single-nucleotide substitutions were introduced into the wild-type pD70 origin of replication to confirm that mutations identified by sequencing had conferred thermoregulated replication. Deletion analysis on the wild-type pD70 plasmid replicon revealed that approximately 720 bp are necessary for plasmid maintenance. Replication of the TS plasmids was thermoregulated in Pasteurella multocida and Haemophilus somnus as well. To consistently transform H. somnus with TS plasmid, in vitro DNA methylation with commercially available HhaI methyltransferase was necessary to protect against the organism's restriction enzyme HsoI (recognition sequence 5′-GCGC-3′) characterized herein.  相似文献   

19.

Background

The question of how organisms adapt is among the most fundamental in evolutionary biology. Two recent studies investigated the evolution of Escherichia coli in response to challenge with the antibiotic cefotaxime. Studying five mutations in the β-lactamase gene that together confer significant antibiotic resistance, the authors showed a complex fitness landscape that greatly constrained the identity and order of intermediates leading from the initial wildtype genotype to the final resistant genotype. Out of 18 billion possible orders of single mutations leading from non-resistant to fully-resistant form, they found that only 27 (1.5×10−7%) pathways were characterized by consistently increasing resistance, thus only a tiny fraction of possible paths are accessible by positive selection. I further explore these data in several ways.

Principal Findings

Allowing neutral changes (those that do not affect resistance) increases the number of accessible pathways considerably, from 27 to 629. Allowing multiple simultaneous mutations also greatly increases the number of accessible pathways. Allowing a single case of double mutation to occur along a pathway increases the number of pathways from 27 to 259, and allowing arbitrarily many pairs of simultaneous changes increases the number of possible pathways by more than 100 fold, to 4800. I introduce the metric ‘repeatability,’ the probability that two random trials will proceed via the exact same pathway. In general, I find that while the total number of accessible pathways is dramatically affected by allowing neutral or double mutations, the overall evolutionary repeatability is generally much less affected.

Conclusions

These results probe the conceivable pathways available to evolution. Even when many of the assumptions of the analysis of Weinreich et al. (2006) are relaxed, I find that evolution to more highly cefotaxime resistant β-lactamase proteins is still highly repeatable.  相似文献   

20.
Mutations are a major driving force of evolution and genetic disease. In eukaryotes, mutations are produced in the chromatin environment, but the impact of chromatin on mutagenesis is poorly understood. Previous studies have determined that in yeast Saccharomyces cerevisiae, Rtt109-dependent acetylation of histone H3 on K56 is an abundant modification that is introduced in chromatin in S phase and removed by Hst3 and Hst4 in G2/M. We show here that the chromatin deacetylation on histone H3 K56 by Hst3 and Hst4 is required for the suppression of spontaneous gross chromosomal rearrangements, base substitutions, 1-bp insertions/deletions, and complex mutations. The rate of base substitutions in hst3Δ hst4Δ is similar to that in isogenic mismatch repair-deficient msh2Δ mutant. We also provide evidence that H3 K56 acetylation by Rtt109 is important for safeguarding DNA from small insertions/deletions and complex mutations. Furthermore, we reveal that both the deacetylation and acetylation on histone H3 K56 are involved in mutation avoidance mechanisms that cooperate with mismatch repair and the proofreading activities of replicative DNA polymerases in suppressing spontaneous mutagenesis. Our results suggest that cyclic acetylation and deacetylation of chromatin contribute to replication fidelity and play important roles in the protection of nuclear DNA from diverse spontaneous mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号