首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family. The membrane-bound proHB-EGF is known to be a precursor of the soluble form of HB-EGF (sHB-EGF), which promotes cell proliferation and survival. While the functions of sHB-EGF have been extensively studied, it is not yet fully understood if proHB-EGF is also involved in cellular signaling events. In this study, we utilized the anti-HB-EGF monoclonal antibodies Y-142 and Y-073, which have differential specificities toward proHB-EGF, in order to elucidate proHB-EGF functions in cancer cells.

Experimental Design

The biological activities of proHB-EGF were assessed in cell proliferation, caspase activation, and juxtacrine activity assays by using a 3D spheroid culture of NUGC-3 cells.

Results

Y-142 and Y-073 exhibited similar binding and neutralizing activities for sHB-EGF. However, only Y-142 bound to proHB-EGF. We could detect the function of endogenously expressed proHB-EGF in a 3D spheroid culture. Blocking proHB-EGF with Y-142 reduced spheroid formation, suppressed cell proliferation, and increased caspase activation in the 3D spheroid culture of NUGC-3 cells.

Conclusions

Our results show that proHB-EGF acts as a cell proliferation and cell survival factor in cancer cells. The results suggest that proHB-EGF may play an important role in tumor progression.  相似文献   

2.
In this study, we present multiple lines of evidence to support a critical role for heparin-bound EGF (epidermal growth factor)-like growth factor (HB-EGF) and tumor necrosis factor-alpha-converting enzyme (TACE) (ADAM17) in the transactivation of EGF receptor (EGFR), ERK phosphorylation, and cellular proliferation induced by the 5-HT(2A) receptor in renal mesangial cells. 5-hydroxy-tryptamine (5-HT) resulted in rapid activation of TACE, HB-EGF shedding, EGFR activation, ERK phosphorylation, and longer term increases in DNA content in mesangial cells. ERK phosphorylation was attenuated by 1) neutralizing EGFR antibodies and the EGFR kinase inhibitor, AG1478, 2) neutralizing HB-EGF, but not amphiregulin, antibodies, heparin, or CM197, and 3) pharmacological inhibitors of matrix-degrading metalloproteinases or TACE small interfering RNA. Exogenously administered HB-EGF stimulated ERK phosphorylation. Additionally, TACE was co-immunoprecipitated with HB-EGF. Small interfering RNA against TACE also blocked 5-HT-induced increases in ERK phosphorylation, HB-EGF shedding, and DNA content. In aggregate, this work supports a pathway map that can be depicted as follows: 5-HT --> 5-HT(2A) receptor --> TACE --> HB-EGF shedding --> EGFR --> ERK --> increased DNA content. To our knowledge, this is the first time that TACE has been implicated in 5-HT-induced EGFR transactivation or in proliferation induced by a G protein-coupled receptor in native cells in culture.  相似文献   

3.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a mitogen and chemotactic factor, binds to two receptor tyrosine kinases, erbB1 and erbB4. Now we demonstrate that HB-EGF also binds to a novel 140 kDa receptor on MDA-MB 453 cells. Purification of this receptor showed it to be identical to N-arginine dibasic convertase (NRDc), a metalloendopeptidase of the M16 family. Binding to cell surface NRDc and NRDc in solution was highly specific for HB-EGF among EGF family members. When overexpressed in cells, NRDc enhanced their migration in response to HB-EGF but not to EGF. Conversely, inhibition of endogenous NRDc expression in cells by antisense morpholino oligonucleotides inhibited HB-EGF-induced cell migration. Anti-erbB1 neutralizing antibodies completely abrogated the ability of NRDc to enhance HB-EGF-dependent migration, demonstrating that this NRDc activity was dependent on erbB1 signaling. Although NRDc is a metalloproteinase, enzymatic activity was not required for HB-EGF binding or enhancement of cell migration; neither did NRDc cleave HB-EGF. Together, these results suggest that NRDc is a novel specific receptor for HB-EGF that modulates HB-EGF-induced cell migration via erbB1.  相似文献   

4.
Interleukin-8 (IL-8) has been reported to promote tumor cell growth in colon cancer cells after binding to its receptors, which are members of the G-protein coupled receptor (GPCR) family. Recent studies demonstrated that stimulation of GPCR can induce shedding of epidermal growth factor (EGF) ligands via activation of a disintegrin and metalloprotease (ADAM), with subsequent transactivation of the EGF receptor (EGFR). In this study, we investigated mechanisms of cell proliferation and migration stimulated by IL-8 in a human colon carcinoma cell line (Caco2). IL-8 increased DNA synthesis of Caco2 in a dose dependent manner and this was inhibited by ADAM, EGFR kinase, and MEK inhibitors. IL-8 transiently induced EGFR tyrosine phosphorylation after 5-90 min and this was completely inhibited by ADAM inhibitor. Neutralizing antibody against HB-EGF as a key ligand for EGFR also blocked transactivation of EGFR and cell proliferation by IL-8. Since IL-8-induced cell migration was further suppressed by the ADAM inhibitor and the HB-EGF neutralizing antibody, our data indicate that IL-8 induces cell proliferation and migration by an ADAM-dependent pathway, and that HB-EGF plays an important role as the major ligand for this pathway.  相似文献   

5.
UV radiation induces various cellular responses by regulating the activity of many UV-responsive enzymes, including MAPKs. The betagamma subunit of the heterotrimeric GTP-binding protein (Gbetagamma) was found to mediate UV-induced p38 activation via epidermal growth factor receptor (EGFR). However, it is not known how Gbetagamma mediates the UVB-induced activation of EGFR, and thus we undertook this study to elucidate the mechanism. Treatment of HaCaT-immortalized human keratinocytes with conditioned medium obtained from UVB-irradiated cells induced the phosphorylations of EGFR, p38, and ERK but not that of JNK. Blockade of heparin-binding EGF-like growth factor (HB-EGF) by neutralizing antibody or CRM197 toxin inhibited the UVB-induced activations of EGFR, p38, and ERK in normal human epidermal keratinocytes and in HaCaT cells. Treatment with HB-EGF also activated EGFR, p38, and ERK. UVB radiation stimulated the processing of pro-HB-EGF and increased the secretion of soluble HB-EGF in medium, which was quantified by immunoblotting and protein staining. In addition, treatment with CRM179 toxin blocked UV-induced apoptosis, but HB-EGF augmented this apoptosis. Moreover, UVB-induced apoptosis was reduced by inhibiting EGFR or p38. The overexpression of Gbeta(1)gamma(2) increased EGFR-activating activity and soluble HB-EGF content in conditioned medium, but the sequestration of Gbetagamma by the carboxyl terminus of G protein-coupled receptor kinase 2 (GRK2ct) produced the opposite effect. The activation of Src increased UVB-induced, Gbetagamma-mediated HB-EGF secretion, but the inhibition of Src blocked that. Overexpression of Gbetagamma increased UVB-induced apoptosis, and the overexpression of GRK2ct decreased this apoptosis. We conclude that Gbetagamma mediates UVB-induced human keratinocyte apoptosis by augmenting the ectodomain shedding of HB-EGF, which sequentially activates EGFR and p38.  相似文献   

6.
Biological functions of tissue kallikrein (TK, KLK1) are mainly mediated by kinin generation and subsequent kinin B2 receptor activation. In this study, we investigated the potential role of TK and its signaling pathways in cultured human keratinocyte migration and in a rat skin wound healing model. Herein, we show that TK promoted cell migration and proliferation in a concentration- and time-dependent manner. Inactive TK or kinin had no significant effect on cell migration. Interestingly, cell migration induced by active TK was not blocked by icatibant or L-NAME, indicating an event independent of kinin B2 receptor and nitric oxide formation. TK's stimulatory effect on cell migration was inhibited by small interfering RNA for proteinase-activated receptor 1 (PAR1), and by PAR1 inhibitor. TK-induced migration was associated with increased phosphorylation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK), which was blocked by inhibition of protein kinase C (PKC), Src, EGFR and ERK. TK-induced cell migration and EGFR phosphorylation were blocked by metalloproteinase (MMP) inhibitor, heparin, and antibodies against EGFR external domain, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin (AR). Local application of TK promoted skin wound healing in rats, whereas icatibant and EGFR inhibitor blocked TK's effect. Skin wound healing was further delayed by aprotinin and neutralizing TK antibody. This study demonstrates a novel role of TK in skin wound healing and uncovers new signaling pathways mediated by TK in promoting keratinocyte migration through activation of the PAR1-PKC-Src-MMP pathway and HB-EGF/AR shedding-dependent EGFR transactivation.  相似文献   

7.
8.
Imatinib mesylate is a tyrosine kinase inhibitor of the ABL, platelet-derived growth factor receptor (PDGFR), and c-kit kinases. Inhibition of BCR-ABL and c-kit accounts for its clinical activity in leukemia and sarcoma, respectively. In this report, we describe other cellular targets for imatinib. Treatment of head and neck squamous carcinoma cells with clinically relevant concentrations of imatinib-induced changes in cell morphology and growth similar to changes associated with epidermal growth factor receptor (EGFR) activation. Imatinib-induced changes were blocked with the EGFR antagonist cetuximab, which suggested direct involvement of EGFR in this process. Western blot analysis of cells incubated with imatinib demonstrated activation of EGFR and downstream signaling that was reduced by inhibition of mitogen-activated protein/extracellular signal-regulated kinase kinase 1 (MEK1) and EGFR, but not Her2/ErbB2. An in vitro kinase assay showed that imatinib did not directly affect EGFR kinase activity, suggesting involvement of EGFR-activating molecules. Inhibitors and neutralizing antibodies against heparin-binding epidermal growth factor-like growth factor (HB-EGF), and to a lesser extent transforming growth factor-alpha, reduced imatinib-mediated mitogen activated protein kinase (MAPK) activation. Imatinib stimulated the rapid release of soluble HB-EGF and the subsequent induction of membrane-bound HB-EGF, which correlated with biphasic MAPK activation. Together, these results suggested that imatinib affects EGFR activation and signaling pathways through rapid release and increased expression of endogenous EGFR-activating ligands. Although, imatinib primarily inhibits tyrosine kinases, it also stimulates the activity of EGFR tyrosine kinase in head and neck squamous tumors. This finding demonstrates the need for careful use of this drug in cancer patients.  相似文献   

9.
10.
Aberrant expression levels of epidermal growth factor receptor (EGFR) and its cognate ligands have been recognized as one of the causes of cancer progression. To investigate the validity of EGFR ligands as targets for cancer therapy, we examined the expression of EGFR ligands and in vitro anti-tumor effects of small interference RNA (siRNA) for EGFR ligands in various cancer cells. HB-EGF expression was dominantly elevated in ovarian, gastric, and breast cancer, melanoma and glioblastoma cells, whereas amphiregulin was primarily expressed in pancreatic, colon, and prostate cancer, renal cell carcinoma and cholangiocarcinoma cells. Transfection of siRNAs for HB-EGF or amphiregulin into these cells significantly increased the numbers of apoptotic cells with attenuation of EGFR and ERK activation. In lung cancer cells, any EGFR ligand was not recognized as a validated target for cancer therapy. These results suggest that HB-EGF and amphiregulin are promising targets for cancer therapy.  相似文献   

11.
We studied the effect of two members of the epidermal growth factor (EGF) family--amphiregulin and heparin-binding EGF-like growth factor (HB-EGF)-on cell proliferation, growth factor and growth factor receptor expression, and cell differentiation in two human colon cell lines of varying liver-colonizing potential. The effect of amphiregulin and HB-EGF was assessed both in cells grown on plastic, as well as on cells grown on hepatocyte-derived extracellular matrix (ECM). We found that both colon cell lines were sensitive to HB-EGF stimulation of cell proliferation. Amphiregulin inhibited cell proliferation in KM12 cells and stimulated the strongly metastatic cell line KM12SM to a slight extent. When the cells were cultured on hepatocyte-derived ECM, amphiregulin inhibited the weakly metastatic KM12 and stimulated the growth of KM12SM. HB-EGF synergistically acted with hepatocyte-derived ECM to enhance cell proliferation in both colon cell lines. Expression of ligands of the EGF family, such as transforming growth factor-alpha (TGF-alpha) and amphiregulin, was decreased in both cell lines when cultured on ECM. Hepatocyte-derived ECM decreased expression of cripto in KM12 and increased it in KM12SM cells. Neither cripto nor TGF-alpha mRNA levels was affected by growing the cells in the presence of amphiregulin. However, amphiregulin increased expression of its own mRNA in the weakly metastatic KM12 and decreased it in the strongly metastatic KM12SM when the cells were cultured on plastic. Amphiregulin and HB-EGF stimulated expression of erb-B2 in both cell lines cultured on plastic. Surprisingly, when the cells were grown on hepatocyte-derived ECM, amphiregulin inhibited erb-B2 expression in both cell lines. We observed no effect of amphiregulin on cell differentiation as assessed by alkaline phosphatase expression. Our studies demonstrate one mechanism that could play a role in site-specific metastasis. We found an inhibitory response to an autocrine growth factor in the context of hepatocyte-derived ECM in a weakly metastatic cell and a stimulatory effect of the same growth factor when strongly metastatic cells were cultured on the same ECM.  相似文献   

12.
CRM197, a mutated diphtheria toxin (DT), has long been recognized to be a non-toxic protein. Based on its non-toxic feature, this protein has been utilized for various purposes, including as an inhibitor of heparin-binding EGF-like growth factor (HB-EGF) and as an immunological adjuvant for vaccination. Here we show evidence that CRM197 has a weak toxicity. This toxicity was observed in cells over-expressing the DT receptor/proHB-EGF, but not in parental cells, indicating that the toxicity was mediated through DT receptor. CRM197 did not show any toxicity toward DT-resistant cells, which have a mutation in elongation factor 2, and a cell-free assay revealed the existence of weak EF-2-ADP ribosylation activity in fragment A of CRM197. Thus, the present study indicates a requirement for specific care in the use of CRM197 at a high dosage, although the toxicity of CRM197 is about 10(6) times less than that of wild-type DT. We found that a monoclonal antibody to DT inhibited CRM197 toxicity, but did not affect the inhibitory activity of CRM197 toward HB-EGF-induced mitogenic activity. CRM197 strongly inhibits tumour growth in nude mice. The anti-DT monoclonal antibody administered with CRM197 reduced the anti- tumourigenic effect of CRM197, indicating that the toxicity of CRM197 potentiates its anti- tumourigenic effect.  相似文献   

13.
Overexpression of the epidermal growth factor receptor (EGFR, ErbB1, HER1) is frequent in head and neck squamous cell carcinomas (HNSCCs) and correlates with disease progression. Inhibition of EGFR with the kinase inhibitor AG1478 abolished receptor phosphorylation and reduced cell proliferation. However, treatment of HNSCC cells with cetuximab (Erbitux), a monoclonal antibody designed to block the EGFR ligand binding site, led to paradox EGFR activation due to hyperphosphorylation of tyrosine 1173, however, with a concomitant reduction in Erk1/2 phosphorylation levels. No pronounced influence on cell proliferation levels could be observed after treatment with this antibody. Since cetuximab appears able to activate EGFR in HNSCC cell lines, it is necessary to rethink the exact mechanisms by which cetuximab that recently was approved for the treatment of advanced head and neck cancer, inhibits tumor growth.  相似文献   

14.
Gastrin-releasing peptide (GRP) is a mitogen for lung epithelial cells and initiates signaling through a G-protein-coupled receptor, gastrin-releasing peptide receptor (GRPR). Because GRPR transactivates the epidermal growth factor receptor (EGFR), we investigated induction by GRP of Akt, an EGFR-activated signaling pathway, and examined effects of GRP on viability of non-small cell lung carcinoma (NSCLC) cells exposed to the EGFR tyrosine kinase inhibitor gefitinib. GRP induced Akt activation primarily through c-Src-mediated transactivation of EGFR. Transfection of dominant-negative c-Src abolished GRP-induced EGFR and Akt activation. GRP induced release of amphiregulin, and pre-incubation with human amphiregulin neutralizing antibody eliminated GRP-induced Akt phosphorylation. Pretreatment with phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 completely blocked GRP-initiated Akt phosphorylation. These results suggest that GRP stimulates Akt activation primarily via c-Src activation, followed by extracellular release of the EGFR ligand amphiregulin, leading to the activation of EGFR and PI3K. Pretreatment of NSCLC cells with GRP resulted in an increase in the IC(50) of gefitinib of up to 9-fold; this protective effect was mimicked by the pretreatment of cells with amphiregulin and reversed by Akt or PI3K inhibition. GRP appears to rescue NSCLC cells exposed to gefitinib through release of amphiregulin and activation of the Akt pathway, suggesting GRPR and/or EGFR autocrine pathways in NSCLC cells may modulate therapeutic response to EGFR inhibitors.  相似文献   

15.
Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G1 arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G1 arrest. This G1 arrest was associated with up-regulation of p27kip1, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G1 arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 ΔEGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.  相似文献   

16.
《MABS-AUSTIN》2013,5(6):732-739
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family. The accumulated evidence on the tumor-progressing roles of HB-EGF has suggested that HB-EGF-targeted cancer therapy is expected to be promising. However, the generation of neutralizing anti-HB-EGF monoclonal antibodies (mAbs) has proved difficult. To overcome this difficulty, we performed a hybridoma approach using mice from different genetic backgrounds, as well as different types of HB-EGF immunogens. To increase the number of hybridoma clones to screen, we used an electrofusion system to generate hybridomas and a fluorometric microvolume assay technology to screen anti-HB-EGF mAbs. We succeeded in obtaining neutralizing anti-HB-EGF mAbs, primarily from BALB/c and CD1 mice, and these were classified into 7 epitope bins based on their competitive binding to the soluble form of HB-EGF (sHB-EGF). The mAbs showed several epitope bin-dependent characteristics, including neutralizing and binding activity to human sHB-EGF, cross-reactivity to mouse/rat sHB-EGF and binding activity to the precursor form of HB-EGF. The neutralizing activity was also validated in colony formation assays. Interestingly, we found that the populations of mAb bins and the production rates of the neutralizing mAbs were strikingly different by mouse strain and by immunogen type. We succeeded in generating a variety of neutralizing anti-HB-EGF mAbs, including potent sHB-EGF neutralizers that may have potential as therapeutic agents for treating HB-EGF-dependent cancers. Our results also suggest that immunization approaches using different mouse strains and immunogen types affect the biological activity of individual neutralizing antibodies.  相似文献   

17.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family. The accumulated evidence on the tumor-progressing roles of HB-EGF has suggested that HB-EGF-targeted cancer therapy is expected to be promising. However, the generation of neutralizing anti-HB-EGF monoclonal antibodies (mAbs) has proved difficult. To overcome this difficulty, we performed a hybridoma approach using mice from different genetic backgrounds, as well as different types of HB-EGF immunogens. To increase the number of hybridoma clones to screen, we used an electrofusion system to generate hybridomas and a fluorometric microvolume assay technology to screen anti-HB-EGF mAbs. We succeeded in obtaining neutralizing anti-HB-EGF mAbs, primarily from BALB/c and CD1 mice, and these were classified into 7 epitope bins based on their competitive binding to the soluble form of HB-EGF (sHB-EGF). The mAbs showed several epitope bin-dependent characteristics, including neutralizing and binding activity to human sHB-EGF, cross-reactivity to mouse/rat sHB-EGF and binding activity to the precursor form of HB-EGF. The neutralizing activity was also validated in colony formation assays. Interestingly, we found that the populations of mAb bins and the production rates of the neutralizing mAbs were strikingly different by mouse strain and by immunogen type. We succeeded in generating a variety of neutralizing anti-HB-EGF mAbs, including potent sHB-EGF neutralizers that may have potential as therapeutic agents for treating HB-EGF-dependent cancers. Our results also suggest that immunization approaches using different mouse strains and immunogen types affect the biological activity of individual neutralizing antibodies.  相似文献   

18.
HB-EGF promotes epithelial cell migration in eyelid development   总被引:3,自引:0,他引:3  
Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that binds to and activates the EGF receptor (EGFR) and ERBB4. Here, we show that HB-EGF-EGFR signaling is involved in eyelid development. HB-EGF expression is restricted to the tip of the leading edge of the migrating epithelium during eyelid closure in late gestation mouse embryos. Both HB-EGF null (HB(del/del)) and secretion-deficient (HB(uc/uc)) mutant embryos exhibited delayed eyelid closure, owing to slower leading edge extension and reduced actin bundle formation in migrating epithelial cells. No changes in cell proliferation were observed in these embryos. In addition, activation of EGFR and ERK was decreased in HB(del/del) eyelids. Crosses between HB(del/del) mice and waved 2 mice, a hypomorphic EGFR mutant strain, indicate that HB-EGF and EGFR interact genetically in eyelid closure. Together with our data showing that embryos treated with an EGFR-specific kinase inhibitor phenocopy HB(del/del) embryos, these data indicate that EGFR mediates HB-EGF-dependent eyelid closure. Finally, analysis of eyelid closure in TGFalpha-null mice and in HB-EGF and TGFalpha double null mice revealed that HB-EGF and TGFalpha contribute equally to and function synergistically in this process. These results indicate that soluble HB-EGF secreted from the tip of the leading edge activates the EGFR and ERK pathway, and that synergy with TGFalpha is required for leading edge extension in epithelial sheet migration during eyelid closure.  相似文献   

19.
TNF-α plays a crucial role in psoriasis; therefore, TNF inhibition has become a gold standard for the treatment of psoriasis. TNF-α is processed from a membrane-bound form by TNF-α converting enzyme (TACE) to soluble form, which exerts a number of biological activities. EGF receptor (EGFR) ligands, including heparin-binding EGF-like growth factor (HB-EGF), amphiregulin and transforming growth factor (TGF)-α are also TACE substrates and are psoriasis-associated growth factors. Vascular endothelial growth factor (VEGF), one of the downstream molecules of EGFR and TNF signaling, plays a key role in angiogenesis for developing psoriasis. In the present study, to assess the possible role of TACE in the pathogenesis of psoriasis, we investigated the involvement of TACE in TPA-induced psoriasis-like lesions in K5.Stat3C mice, which represent a mouse model of psoriasis. In this mouse model, TNF-α, amphiregulin, HB-EGF and TGF-α were significantly up-regulated in the skin lesions, similar to human psoriasis. Treatment of K5.Stat3C mice with TNF-α or EGFR inhibitors attenuated the skin lesions, suggesting the roles of TACE substrates in psoriasis. Furthermore, the skin lesions of K5.Stat3C mice showed down-regulation of tissue inhibitor of metalloproteinase-3, an endogenous inhibitor of TACE, and an increase in soluble TNF-α. A TACE inhibitor abrogated EGFR ligand-dependent keratinocyte proliferation and VEGF production in vitro, suggesting that TACE was involved in both epidermal hyperplasia and angiogenesis during psoriasis development. These results strongly suggest that TACE contributes to the development of psoriatic lesions through releasing two kinds of psoriasis mediators, TNF-α and EGFR ligands. Therefore, TACE could be a potential therapeutic target for the treatment of psoriasis.  相似文献   

20.
In the present study, the role of a member of the epidermal growth factor (EGF) family, heparin-binding EGF-like growth factor (HB-EGF), in organ development was investigated by using developing mouse submandibular gland (SMG), in which the EGF receptor signaling and heparan sulfate chains have been implicated. HB-EGF mRNA was detected in developing SMG by RT-PCR analysis and was expressed mainly in epithelium and weakly in mesenchyme of the embryonic SMG. Epithelial morphogenesis was inhibited by a synthetic peptide corresponding to the heparin-binding domain of HB-EGF and by anti-HB-EGF neutralizing antibody. An in vitro assay using an EGF receptor ligand-dependent cell line, EP170.7 cells, allowed us to detect the growth factor activity in SMG-conditioned media, which was significantly reduced by anti-HB-EGF antibody. Furthermore, treatment of SMG rudiments with the hydroxamate-based metalloproteinase inhibitor OSU8-1, which inhibits processing of EGFR ligands including HB-EGF, markedly diminished the growth factor activity in conditioned media and resulted in almost complete inhibition of SMG morphogenesis. The inhibitory effects on morphogenesis were reversed, though partially, by adding the soluble form of HB-EGF. Our results provide the first evidence that HB-EGF is a crucial regulator of epithelial morphogenesis during organ development, highlighting the importance of its processing by metalloproteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号