首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
CD45 is a receptor-type protein-tyrosine phosphatase (PTP) that is required for antigen-specific stimulation and proliferation in lymphocytes. This study was designed to determine the nature of specific kinases in lymphocytes that phosphorylate CD45 and to determine the effect of phosphorylation on CD45 PTP activity. A major cytoplasmic lymphocyte kinase that phosphorylated CD45 was identified as casein kinase 2 (CK2) by use of an in-gel kinase assay in combination with immunoprecipitation, immunodepletion, and specific inhibition. Mutational analysis of CK2 consensus sites showed that the target for CK2 was in an acidic insert of 19 amino acids in the D2 domain, and Ser to Ala mutations at amino acids 965, 968, 969, and 973 abrogated CK2 phosphorylation of CD45. CK2 phosphorylation increased CD45 activity 3-fold toward phosphorylated myelin basic protein, and this increase was reversible by PP2A treatment. Mutation of Ser to Glu at the CK2 sites had the same effect as phosphorylation and also tripled the Vmax of CD45. CD45 isolated in vivo was highly phosphorylated and could not be phosphorylated by CK2 without prior dephosphorylation with phosphatase PP2A. We conclude that CK2 is a major lymphocyte kinase that is responsible for in vivo phosphorylation of CD45, and phosphorylation at specific CK2 sites regulates CD45 PTP activity.  相似文献   

3.
Deoxycytidine kinase (dCK) is a critical enzyme for activation of anticancer nucleoside analogs. Its activity is controlled via Ser-74 phosphorylation. Here, we investigated which Ser/Thr phosphatase dephosphorylates Ser-74. In cells, the PP1/PP2A inhibitor okadaic acid increased both dCK activity and Ser-74 phosphorylation at concentrations reported to specifically target PP2A. In line with this, purified PP2A, but not PP1, dephosphorylated recombinant pSer-74-dCK. In cell lysates, the Ser-74-dCK phosphatase activity was found to be latent, Mn2+-activated, responsive to PP2A inhibitors, and diminished after PP2A-immunodepletion. Use of siRNAs allowed concluding definitively that PP2A constitutively dephosphorylates dCK in cells and negatively regulates its activity.  相似文献   

4.
The protein phosphatase 2C (PP2C) family represents one of the four major protein Ser/Thr phosphatase activities in mammalian cells and contains at least 13 distinct gene products. Although PP2C family members regulate a variety of cellular functions, mechanisms of regulation of their activities are largely unknown. Here, we show that PP2Czeta, a PP2C family member that is enriched in testicular germ cells, is phosphorylated by c-Jun NH 2-terminal kinase (JNK) but not by p38 in vitro. Mass spectrometry and mutational analyses demonstrated that phosphorylation occurs at Ser (92), Thr (202), and Thr (205) of PP2Czeta. Phosphorylation of these Ser and Thr residues of PP2Czeta ectopically expressed in 293 cells was enhanced by osmotic stress and was attenuated by a JNK inhibitor but not by p38 or MEK inhibitors. Phosphorylation of PP2Czeta by TAK1-activated JNK repressed its phosphatase activity in cells, and alanine mutation at Ser (92) but not at Thr (202) or Thr (205) suppressed this inhibition. Taken together, these results suggest that specific phosphorylation of PP2Czeta at Ser (92) by stress-activated JNK attenuates its phosphatase activity in cells.  相似文献   

5.
We studied the signal pathways for regulation of serine/threonine protein kinase Akt in Jurkat cells that had been treated with 4-hydroxynonenal (HNE) for caspase-dependent apoptosis induction. Treatment of cells with HNE led to a decrease in the level of Akt activity due to the dephosphorylation at Ser473, a major regulatory phosphorylation site. HNE-mediated dephosphorylation of Akt was prevented by a protein phosphatase 2A (PP2A) inhibitor, okadaic acid, and by a caspase-3 inhibitor, DEVD-CHO. HNE treatment resulted in an increase in the total level of PP2A activity, release of active tyrosine-dephosphorylated PP2A from the cytoskeleton and PP2A-Akt association, which were all dependent on caspase-3 activation. These results suggest that the level of PP2A activity is at least in part determined by its tyrosine phosphorylation, which is dually controlled by okadaic acid-sensitive phosphatases and protein-tyrosine kinases. Possibly underlying the mechanism of caspase-mediated activation of PP2A, HNE treatment resulted in downregulation of the activity of Src kinase, as a representative caspase-sensitive kinase to phosphorylate PP2A at tyrosine. In addition, activated caspase-3 partially cleaved Akt at a late stage of the apoptosis. These results indicate the existence of two distinct caspase-dependent signal pathways for downregulation of Akt that works as a mechanism of positive feedback regulation for HNE-triggered apoptotic signals.  相似文献   

6.
An important role for JNK* and p38 has recently been discovered in the differentiating effect of bone morphogenetic protein 2 (BMP-2) on osteoblastic cells. In this study, we investigated the molecular mechanism by which BMP-2 activates JNK and p38 in MC3T3-E1 osteoblastic cells. Activation of JNK and p38 induced by BMP-2 was blocked by the protein kinase C/protein kinase D (PKC/PKD) inhibitor Go6976 but not by the related compound, Go6983, a selective inhibitor of conventional PKCs. Associated with this inhibitory effect of Go6976, BMP-2 induced a selective and a dose-dependent Ser916 phosphorylation/activation of PKD, which was also blocked by Go6976. In contrast to the recently described PKC-dependent molecular mechanism involved in activation of PKD by G protein-coupled receptor agonists, BMP-2 did not induce a phosphorylation of PKD on Ser744/748. To further document an implication of PKD in activation of JNK and p38 induced by BMP-2, we constructed MC3T3-E1 cells stably expressing PKD antisense oligonucleotide (AS-PKD). In AS-PKD clones having low PKD levels, activation of JNK and p38 by BMP-2, but not of Smad1/5, was markedly impaired compared with empty vector transfected (V-PKD) cells. Analysis of osteoblastic cell differentiation in AS-PKD compared with V-PKD cells showed that mRNA and protein expressions of alkaline phosphatase and osteocalcin induced by BMP-2 were markedly reduced in AS-PKD. In conclusion, results presented in this study indicate that BMP-2 can induce activation of PKD in osteoblastic cells by a PKC-independent mechanism and that this kinase is involved in activation of JNK and p38 induced by BMP-2. Thus, this pathway, in addition to Smads, appears to be essential for the effect of BMP-2 on osteoblastic cell differentiation.  相似文献   

7.
Oxidative stress induced by cell treatments with H(2)O(2) activates protein kinase D (PKD) via a protein kinase C (PKC)-dependent signal transduction pathway (Waldron, R. T., and Rozengurt, E. (2000) J. Biol. Chem. 275, 17114-17121). Here we show that oxidative stress induces PKC-dependent activation loop Ser(744) and Ser(748) phosphorylation to mediate dose- and time-dependent activation of PKD, both endogenously expressed in Swiss 3T3 cells and stably overexpressed in Swiss 3T3-GFP.PKD cells. Although oxidative stress induced PKD activation loop phosphorylation and activation with identical kinetics, both were dose-dependently blocked by preincubation of cells with selective inhibitors of PKC (GF109203X and G?6983) or c-Src (PP2). Inhibition of Src tyrosine kinase activity eliminated oxidative stress-induced direct PKD tyrosine phosphorylation, but only partially attenuated activation loop phosphorylation and activation. Mutation of a putative tyrosine phosphorylation site on PKD, Tyr(469) to phenylalanine, had no effect on its activation by oxidative stress in transfected COS-7 cells. Similarly, a mutant with Tyr(469) replaced by aspartic acid had increased basal activity but was also further activated by oxidative stress. Thus, PKD tyrosine phosphorylation at this site neither produced full activation by itself nor was required for oxidative stress-induced activation mediated by activation loop phosphorylation. In addition to PKD activation, activation loop phosphorylation in response to oxidative stress also redistributed activated PKD to cell nuclei, as revealed by PKD indirect immunofluorescence, imaging of a PKD-green fluorescent protein fusion construct (GFP-PKD), and analysis of nuclear pellets. Cell preincubation with G?6983 strongly diminished H(2)O(2)-induced nuclear relocalization of GFP-PKD. Taken together, these results indicate that PKC-mediated PKD Ser(744) and Ser(748) phosphorylation induced by oxidative stress integrates PKD activation with redistribution to the nucleus.  相似文献   

8.
The molecular mechanism by which apolipoprotein E (apoE) suppresses inflammatory cytokine and NO production is unknown. Using an affinity purification approach, we found that peptide mimetics of apoE, derived from its receptor binding domain residues 130-150, bound to the SET protein, which is a potent physiological inhibitor of protein phosphatase 2A (PP2A). Both holo-apoE protein and apoE-mimetic peptides bound to the C-terminal region of SET, which is then associated with an increase in PP2A-mediated phosphatase activity. As physiological substrates for PP2A, the LPS-induced phosphorylation status of signaling MAPK and Akt kinase is reduced following treatment with apoE-mimetic peptides. On the basis of our previous report, in which apoE-mimetic peptides reduced I-κB kinase and NF-κB activation, we also demonstrate a mechanism for reduced production of inducible NO synthase protein and its NO product. These data provide evidence for a novel molecular mechanism by which apoE and apoE-mimetic peptides antagonize SET, thereby enhancing endogenous PP2A phosphatase activity, which reduces levels of phosphorylated kinases, signaling, and inflammatory response.  相似文献   

9.
Rotenone has been shown to induce many parkinsonian features and has been widely used in chemical models of Parkinson’s disease (PD). Its use is closely associated with α-synuclein (α-syn) phosphorylation both in vivo and in vitro. However, the mechanisms whereby rotenone regulates α-syn phosphorylation remain unknown. Protein phosphatase 2A (PP2A) has been shown to play an important role in α-syn dephosphorylation. We therefore investigated if rotenone caused α-syn phosphorylation by down-regulation of PP2A activity in mice. Rotenone increased the phosphorylation of α-syn at Ser129, consistent with the inhibition of PP2A activity by increased phosphorylation of tyrosine 307 at the catalytic subunit of PP2A (pTyr307 PP2Ac). We further explored the interactions among rotenone, PP2A, and α-syn in SK-N-SH cells and primary rat cortical neurons. Rotenone inhibited PP2A activity via phosphorylation of PP2Ac at Tyr307. The reduction in PP2A activity and rotenone cytotoxicity were reversed by treatment with the PP2A agonist, C2 ceramide, and the Src kinase inhibitor, SKI606. Immunoprecipitation experiments showed that rotenone induced an increase in calmodulin–Src complex in SK-N-SH cells, thus activating Src kinase, which in turn phosphorylated PP2A at Tyr307 and inhibited its activity. C2 ceramide and SKI606 significantly reversed the rotenone-induced phosphorylation and aggregation of α-syn by increasing PP2A activity. These results demonstrate that rotenone-reduced PP2A activity via Src kinase is involved in the phosphorylation of α-syn. These findings clarify the novel mechanisms whereby rotenone can induce PD.  相似文献   

10.
Regulation of protein kinase cascades by protein phosphatase 2A.   总被引:23,自引:0,他引:23  
Many protein kinases themselves are regulated by reversible phosphorylation. Upon cell stimulation, specific kinases are transiently phosphorylated and activated. Several of these protein kinases are substrates for protein phosphatase 2A (PP2A), and PP2A appears to be the major kinase phosphatase in eukaryotic cells that downregulates activated protein kinases. This idea is substantiated by the observation that some viral proteins and naturally occurring toxins target PP2A and modulate its activity. There is increasing evidence that PP2A activity is regulated by extracellular signals and during the cell cycle. Thus, PP2A is likely to play an important role in determining the activation kinetics of protein kinase cascades.  相似文献   

11.
12.
The extracellular signal-regulated kinase (ERK) 1 and 2 proteins are mitogen-activated protein kinase (MAPK) members that regulate cell proliferation and differentiation. ERK proteins are activated exclusively by MAPK kinase 1 and 2 phosphorylation of threonine and tyrosine residues located within the conserved TXY MAPK activation motif. Although dual phosphorylation of Thr and Tyr residues confers full activation of ERK, in vitro studies suggest that a single phosphorylation on either Thr or Tyr may yield partial ERK activity. Previously, we have demonstrated that phosphorylation of the tyrosine residue (Tyr(P) ERK) may be involved in regulating the Golgi complex structure during the G2 and M phases of the cell cycle (Cha, H., and Shapiro, P. (2001) J. Cell Biol. 153, 1355-1368). In the present study, we examined mechanisms for generating Tyr(P) ERK by determining cell cycle-dependent changes in localized phosphatase activity. Using fractionated nuclei-free cell lysates, we find increased serine/threonine phosphatase activity associated with Golgi-enriched membranes in cells synchronized in the late G2/early M phase as compared with G1 phase cells. The addition of phosphatase inhibitors in combination with immunodepletion assays identified this activity to be related to protein phosphatase 2A (PP2A). The increased activity was accounted for by elevated PP2A association with mitotic Golgi membranes as well as increased catalytic activity after normalization of PP2A protein levels in the phosphatase assays. These data indicate that localized changes in PP2A activity may be involved in regulating proteins involved in Golgi disassembly as cells enter mitosis.  相似文献   

13.
TIMAP (TGF-beta1 inhibited, membrane-associated protein) is a prenylated, endothelial cell-predominant protein phosphatase 1 (PP1c) regulatory subunit that localizes to the plasma membrane of filopodia. Here, we determined whether phosphorylation regulates TIMAP-associated PP1c function. Phosphorylation of TIMAP was observed in cells metabolically labeled with [32P]orthophosphate and was reduced by inhibitors of protein kinase A (PKA) and glycogen synthase kinase-3 (GSK-3). In cell-free assays, immunopurified TIMAP was phosphorylated by PKA and, after PKA priming, by GSK-3beta. Site-specific Ser to Ala substitution identified amino acid residues Ser333/Ser337 as the likely PKA/GSK-3beta phosphorylation site. Substitution of Ala for Val and Phe in the KVSF motif of TIMAP (TIMAPV64A/F66A) abolished PP1c binding and TIMAP-associated PP1c activity. TIMAPV64A/F66A was hyper-phosphorylated in cells, indicating that TIMAP-associated PP1c auto-dephosphorylates TIMAP. Constitutively active GSK-3beta stimulated phosphorylation of TIMAPV64A/F66A, but not wild-type TIMAP, suggesting that the PKA/GSK-3beta site may be subject to dephosphorylation by TIMAP-associated PP1c. Substitution of Asp or Glu for Ser at amino acid residues 333 and 337 to mimic phosphorylation reduced the PP1c association with TIMAP. Conversely, GSK-3 inhibitors augmented PP1c association with TIMAP-PP1c in cells. The 333/337 phosphomimic mutations also increased TIMAP-associated PP1c activity in vitro and against the non-integrin laminin receptor 1 in cells. Finally, TIMAP mutants with reduced PP1c activity strongly stimulated endothelial cell filopodia formation, an effect mimicked by the GSK-3 inhibitor LiCl. We conclude that TIMAP is a target for PKA-primed GSK-3beta-mediated phosphorylation. This phosphorylation controls TIMAP association and activity of PP1c, in turn regulating extension of filopodia in endothelial cells.  相似文献   

14.
The importance of activation loop phosphorylation in the regulation of protein kinase D (PKD/protein kinase C (PKC) mu) activity has become controversial. In order to clarify the mechanism(s) of PKD activation, we developed a novel phosphospecific antibody recognizing phosphorylated Ser(748) in PKD (pS748). Western blot analysis with the pS748 antibody, carried out with a variety of PKD forms and in a variety of cell types including full-length PKD transfected in COS-7 and HEK 293 cells, a green fluorescent protein-PKD fusion protein transfected in either Swiss 3T3 fibroblasts or Madin-Darby canine kidney epithelial cells, and endogenous PKD expressed in A20 lymphocytes and Rat-1 fibroblasts, indicated that Ser(748) phosphorylation was absent from unstimulated cells. In contrast, dramatic increases in Ser(748) phosphorylation were induced by phorbol esters, bombesin, or cross-linking of B lymphocyte antigen receptors or by cotransfection with active PKCepsilon or PKCeta. Western analysis using a second phosphospecific antibody, which primarily recognizes PKD phosphorylated at Ser(744), revealed that Ser(744) phosphorylation accompanies Ser(748) phosphorylation during PKD activation in vivo. Ser(744)/Ser(748) phosphorylation requires PKC but not PKD activity, indicative of transphosphorylation. Our results provide new experimental evidence indicating that activation loop phosphorylation at Ser(744) and Ser(748) occurs during PKD activation in vivo and support the notion of a PKC-PKD phosphorylation cascade.  相似文献   

15.
The optimal cellular responses to DNA damage are modulated by kinase and phosphatase. The ataxia telangiectasia mutated (ATM) is a Ser/Thr kinase which is the core of the DNA damage signaling apparatus. The Ser/Thr protein phosphatase type 1 (PP1) inhibitor, tautomycetin (TC) and an antibody to the phospho-(S/T)Q sites of the ATM substrate were used to identify the common substrates for PP1 and ATM in regulating the pathway for DNA damage response. Ribosomal protein S6 (RPS6) was first identified as a substrate for PP1 and ATM. The phosphorylation at Ser247 of RPS6 was then significantly decreased by PP1-mediated dephosphorylation immediately after UV irradiation. These results suggest that PP1 specifically dephosphorylated RPS6 at phospho-Ser247 in vivo. In response to DNA damage, ATM activity was finally required for the phosphorylation of RPS6 at Ser247. We propose from these results a novel mechanism for modulating the RPS6 function by PP1 and ATM which regulates cell growth and survival in response to DNA-damage stimuli.  相似文献   

16.
The role of eukaryotic initiation factor 2 (eIF-2) phosphorylation in translational control has been demonstrated in vivo by overexpressing variant forms of eIF-2 alpha that are not phosphorylated. COS-1 cells transiently transfected with expression vectors for human eIF-2 alpha contain 10-20-fold more eIF-2 alpha subunit than the endogenous COS cell eIF-2 trimeric complex. Expression of the variant form of eIF-2 alpha, Ser51Asp, where Asp replaces Ser51, causes inhibition of protein synthesis, whereas the Ser48Asp variant does not. When either Ser48 or Ser51 is replaced by Ala, the variants stimulate dihydrofolate reductase synthesis when the eIF-2 alpha kinase, DAI, is activated. In order to elucidate these mechanisms, we have separated eIF-2 trimeric complexes from free overexpressed eIF-2 alpha subunits by fast protein liquid chromatography Superose chromatography. Pulse-labeled cells transfected with wild-type or variant DNAs produced eIF-2 preparations with greater than 10-fold higher specific radioactivity in the alpha-subunit compared to the gamma-subunit, thus demonstrating that the human eIF-2 alpha produced from the plasmids readily exchanges into COS cell eIF-2 complexes. Both wild-type and Ser48Ala variant forms of the free 2 alpha-subunit, further purified by MonoQ chromatography, are poor substrates for the heme-regulated eIF-2 alpha kinase, HRI, but are good substrates for double-stranded RNA-activated inhibitor in vitro; the Ser51Ala variant subunit is not phosphorylated by either kinase. None of the purified free eIF-2 alpha subunits inhibits phosphorylation of eIF-2 in vitro, even at up to 8-fold molar excess. Examination of the extent of eIF-2 alpha phosphorylation in the COS cell eIF-2 complexes by two-dimensional polyacrylamide gel electrophoresis shows that the stimulation of dihydrofolate reductase synthesis by the Ser51Ala variant is most readily explained by failure of eIF-2 to be phosphorylated. Stimulation by the Ser48Ala variant appears to occur by mitigation of the effect of phosphorylation at Ser51 since the double variant, Ser48Ala-Ser51Asp, inhibits protein synthesis less than the single variant Ser51Asp. The evidence argues strongly against there being a second site of phosphorylation involved in translational repression.  相似文献   

17.
A novel phosphoprotein inhibitor of protein type-1 phosphatase holoenzymes   总被引:8,自引:0,他引:8  
Eto M  Karginov A  Brautigan DL 《Biochemistry》1999,38(51):16952-16957
Control of protein phosphatases is now understood to depend on binding to a variety of regulatory or targeting subunits to form holoenzymes with restricted localization and substrate specificity. In addition, the catalytic subunits of both type-1 and type-2 phosphatases bind specific inhibitor proteins. Here, we report discovery of a new inhibitor protein called PHI-1 that is specific for type-1 protein phosphatase (PP1). Recombinant tagged PHI-1 was phosphorylated by protein kinase C at two sites, one a Ser and one a Thr; phosphorylation enhanced inhibitory potency 50-fold. Mutation of Thr57 to Ala gave a protein phosphorylated only on Ser, without change in inhibitory activity, indicating that phosphorylation of Thr57 was required for full activity. Immunoblotting showed that PHI-1 was expressed in most animal tissues and several cell lines, and a second larger protein called PHI-2 was present in different muscles, especially cardiac muscle. Unlike any other known inhibitor, PHI-1 inhibited the myosin- and glycogen-associated holoenzyme versions of PP1 as well as the monomeric catalytic subunit of PP1. Discovery of PHI-1 and PHI-2 opens new possibilities for regulation of PP1 via phosphorylation-dependent signaling pathways.  相似文献   

18.
By using mass spectrometry, we have identified Ser 402 as a new phosphorylation site within the catalytic domain of human slingshot 1 (SSH1). Phosphorylation at this site inhibits substrate binding and, thus, phosphatase activity in vitro, resulting in enrichment of phosphorylated cofilin in monolayer cell culture. We further demonstrate that protein kinase D (PKD) is upstream from Ser 402 phosphorylation. Accordingly, expression of active PKD in Drosophila phenotypically mimics the loss of SSH activity by inducing accumulation of phosphorylated cofilin and filamentous actin. We thus identify a universal mechanism by which PKD controls SSH1 phosphatase activity.  相似文献   

19.
AMP kinase is a heterotrimeric serine/threonine protein kinase that regulates a number of metabolic processes, including lipid biosynthesis and metabolism. AMP kinase activity is regulated by phosphorylation, and the kinases involved have been uncovered. The particular phosphatases counteracting these kinases remain elusive. Here we discovered that the protein phosphatase 2A heterotrimer, PP2APpp2r2d, regulates the phosphorylation state of AMP kinase by dephosphorylating Thr-172, a residue that activates kinase activity when phosphorylated. Co-immunoprecipitation and co-localization studies indicated that PP2APpp2r2d directly interacted with AMP kinase. PP2APpp2r2d dephosphorylated Thr-172 in rat aortic and human vascular smooth muscle cells. A positive correlation existed between decreased phosphorylation, decreased acetyl-CoA carboxylase Acc1 phosphorylation, and sterol response element-binding protein 1c-dependent gene expression. PP2APpp2r2d protein expression was up-regulated in the aortas of mice fed a high fat diet, and the increased expression correlated with increased blood lipid levels. Finally, we found that the aortas of mice fed a high fat diet had decreased AMP kinase Thr-172 phosphorylation, and contained an Ampk-PP2APpp2r2d complex. Thus, PP2APpp2r2d may antagonize the aortic AMP kinase activity necessary for maintaining normal aortic lipid metabolism. Inhibiting PP2APpp2r2d or activating AMP kinase represents a potential pharmacological treatment for many lipid-related diseases.  相似文献   

20.
We have previously reported that cyclic strain results in rapid phosphorylation of p38 mitogen activated protein kinase (MAPKs). The aim of this study was to examine the role of protein phosphatase type 2A (PP2A) in regulating p38 MAPK activation in bovine aortic endothelial cells exposed to cyclic strain. In this study, we demonstrate that the catalytic subunit of PP2A is tyrosine phosphorylated by cyclic strain, resulting in inhibition of phosphatase activity. Okadaic acid, an inhibitor of PP2A at lower concentrations increased phosphorylation of p-38. Phospho-p38 MAPK physically associated with the catalytic subunit, PP2Ac. Phospho-p38 MAPK was dephosphorylated by purified PP2Ac in cell lysates, but if pretreated with okadaic acid, phospho-p38 MAPK was maintained. Taken together, our result suggests that PP2A plays a regulatory role in p38 MAPK activation in endothelial cells exposed to cyclic strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号