共查询到20条相似文献,搜索用时 15 毫秒
1.
Nieznanski K Podlubnaya ZA Nieznanska H 《Biochemical and biophysical research communications》2006,349(1):391-399
A growing body of evidence points to an association of prion protein (PrP) with microtubular cytoskeleton. Recently, direct binding of PrP to tubulin has also been found. In this work, using standard light scattering measurements, sedimentation experiments, and electron microscopy, we show for the first time the effect of a direct interaction between these proteins on tubulin polymerization. We demonstrate that full-length recombinant PrP induces a rapid increase in the turbidity of tubulin diluted below the critical concentration for microtubule assembly. This effect requires magnesium ions and is weakened by NaCl. Moreover, the PrP-induced light scattering structures of tubulin are cold-stable. In preparations of diluted tubulin incubated with PrP, electron microscopy revealed the presence of approximately 50 nm disc-shaped structures not reported so far. These unique tubulin oligomers may form large aggregates. The effect of PrP is more pronounced under the conditions promoting microtubule formation. In these tubulin samples, PrP induces formation of the above oligomers associated with short protofilaments and sheets of protofilaments into aggregates. Noticeably, this is accompanied by a significant reduction of the number and length of microtubules. Hence, we postulate that prion protein may act as an inhibitor of microtubule assembly by inducing formation of stable tubulin oligomers. 相似文献
2.
J Dingus R A Obar J S Hyams M Goedert R B Vallee 《The Journal of biological chemistry》1991,266(28):18854-18860
Members of the heat-stable family of microtubule-associated proteins (MAPs), MAP 2, tau, and MAP 4, contain three or four tandem imperfect repeated sequences close to their carboxyl termini. These sequences lie within the microtubule-binding domains of the MAPs; they have been proposed to be responsible for microtubule binding and the ability of these MAPs to lower the critical concentration for microtubule assembly. Their spacing may reflect that of the regularly arrayed tubulin subunits on the microtubule surface. We here characterize the 32- and 34-kDa chymotryptic microtubule-binding fragments of MAP 2 identified in earlier work. We identify the primary chymotryptic cleavage site in high molecular weight MAP 2 as between Phe1525 and Lys1526, within 13 amino acids of the known MAP 2 splice junction. We have raised a monoclonal antibody to the 32- and 34-kDa fragments and find that it reacts with all members of the heat-stable MAPs class. To determine where it reacts, we sequenced immunoreactive subfragments of the 32- and 34-kDa fragments, selected several cDNA clones with the antibody, and tested for antibody reactivity against a series of synthetic MAP 2 and tau peptides. We identify the epitope sequence as HHVPGGG (His-His-Val-Pro-Gly-Gly-Gly). The antibody also recognized several other MAP 2 and tau repeats. Despite reacting with this highly conserved element, we find that the antibody does not block microtubule binding, but binds to the MAPs and co-sediments with microtubules. These results suggest that there are other regions besides the repeated elements which are essential for microtubule binding. 相似文献
3.
Alexa A Schmidt G Tompa P Ogueta S Vázquez J Kulcsár P Kovács J Dombrádi V Friedrich P 《Biochemistry》2002,41(41):12427-12435
Phosphorylation of microtubule-associated protein 2 (MAP2) has a profound effect on microtubule stability and organization. In this work a consensus protein kinase A (PKA) phosphorylation site, T(220), of juvenile MAP2c is characterized. As confirmed by mass spectrometry, this site can be phosphorylated by PKA but shows less than average reactivity among the 3.5 +/- 0.5 phosphate residues incorporated into the protein. In contrast, T(220) is uniquely sensitive to dephosphorylation: three major Ser/Thr protein phosphatases, in the order of efficiency PP2B > PP2A(c) > PP1(c), remove this phosphate group first. MAP2c specifically dephosphorylated at this site binds and stabilizes microtubules stronger than either fully phosphorylated or nonphosphorylated MAP2c. Phosphorylation of this site also affects proteolytic sensitivity of MAP2c, which might represent a further level of control in this system. Thus, the phosphorylation state of T(220) may be a primary determinant of microtubule function. 相似文献
4.
Bis-ANS as a specific inhibitor for microtubule-associated protein induced assembly of tubulin. 总被引:2,自引:0,他引:2
5,5'-Bis[8-(phenylamino)-1-naphthalenesulfonate] (bis-ANS), the fluorescent probe which binds to tubulin, inhibits its assembly into microtubules [Horowitz et al. (1984) J. Biol. Chem. 259, 14647-14650]. The results described in this paper demonstrate that bis-ANS is quite distinct from other well-known microtubule inhibitors in its specificity of action. The inhibitory potentials of bis-ANS and its three structural analogues ANS, Prodan [6-propionyl-2-(dimethylamino)naphthalene], and NSA (naphthalenesulfonic acid) have been compared. It is found that they can be arranged in the following order according to their polymerization inhibitory potentials: bis-ANS approximately equal to Prodan much greater than ANS greater than NSA. Interestingly, the naphthalene nucleus is sufficient to cause inhibition of polymerization. Detailed experiments were carried out to examine the mode of assembly inhibition by aminonaphthalenes at the molecular level, using bis-ANS as a representative. It was found that there was little or no effect of bis-ANS on the assembly of tubulin when polymerization was induced by assembly promoters like taxol, DMSO, or glutamate, or on the assembly of subtilisin-digested protein (tubulin S), for all of which half-maximal inhibition could not be achieved even at 120 microM bis-ANS. On the contrary, bis-ANS acts as an inhibitor in the case of MAP- (MAP2 and tau) and poly(L-lysine)-induced assembly of tubulin, with half-maximal inhibitory concentrations ranging from 1.5 to 7.6 microM. Our results place bis-ANS as a novel inhibitor, which seems to specifically inhibit C-termini-mediated assembly. Of all assembly inhibitors known so far, none exhibits such selection.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
Rodolfo Padilla Ricardo B. Maccioni Jesús Avila 《Molecular and cellular biochemistry》1990,97(1):35-41
Previous studies have demonstrated that the microtubule - associated proteins MAP-2 and tau interact selectively with common binding domains on tubulin defined by the low-homology segments a (430–441) and (422–434). It has been also indicated that the synthetic peptide VRSKIGSTENLKHQPGGG corresponding to the first tau repetitive sequence represents a tubulin binding domain on tau. The present studies show that the calcium-binding protein calmodulin interacts with a tubulin binding site on tau defined by the second repetitive sequence VTSKCGSLGNIHHKPGGG. It was shown that both tubulin and calmodulin bind to tau peptide-Sepharose affinity column. Binding of calmodulin occurs in the presence of 1 mM Ca 2+ and it can be eluted from the column with 4 mM EGTA. These findings provide new insights into the regulation of microtubule assembly, since Ca 2+/calmodulin inhibition of tubulin polymerization into microtubules could be mediated by the direct binding of calmodulin to tau, thus preventing the interaction of this latter protein with tubulin. 相似文献
6.
Huang SC Jagadeeswaran R Liu ES Benz EJ 《The Journal of biological chemistry》2004,279(33):34595-34602
Non-erythroid protein 4.1R (4.1R) consists of a complex family of isoforms. We have shown that 4.1R isoforms localize at the mitotic spindle/spindle poles and associate in a complex with the mitotic-spindle organization proteins Nuclear Mitotic Apparatus protein (NuMA), dynein, and dynactin. We addressed the mitotic function of 4.1R by investigating its association with microtubules, the main component of the mitotic spindles, and its role in mitotic aster assembly in vitro. 4.1R appears to partially co-localize with microtubules throughout the mitotic stages of the cell cycle. In vitro sedimentation assays showed that 4.1R isoforms directly interact with microtubules. Glutathione S-transferase (GST) pull-down assays using GST-4.1R fusions and mitotic cell extracts further showed that the association of 4.1R with tubulin results from both the membrane-binding domain and C-terminal domain of 4.1R. Moreover, 4.1R, but not actin, is a mitotic microtubule-associated protein; 4.1R associates with microtubules in the microtubule pellet of the mitotic asters assembled in mammalian cell-free mitotic extract. The organization of microtubules into asters depends on 4.1R in that immunodepletion of 4.1R from the extract resulted in randomly dispersed microtubules. Furthermore, adding a 135-kDa recombinant 4.1R reconstituted the mitotic asters. Finally, we demonstrated that a mitotic 4.1R isoform appears to form a complex in vivo with tubulin and NuMA in highly synchronized mitotic HeLa extracts. Our results suggest that a 135-kDa non-erythroid 4.1R is important to cell division, because it participates in the formation of mitotic spindles and spindle poles through its interaction with mitotic microtubules. 相似文献
7.
Modulation of microtubule assembly and stability by phosphatidylinositol action on microtubule-associated protein-2 总被引:1,自引:0,他引:1
Exposure of elongating (or assembled) bovine brain microtubules to phosphatidylinositol leads to polymerization arrest (or disassembly). The efficiency of phosphatidylinositol far exceeds the action of related phospholipids including phosphatidylethanolamine, phosphatidylcholine, 1,2-diacylglycerol, phosphatidylserine, phosphatidylglycerol, or phosphatidic acid. Phosphatidylinositol increases the apparent critical concentration for assembly, and the inhibitory effect of phosphatidylinositol on polymerization is reversed at higher concentrations of microtubule-associated proteins (MAP)s. Taxol- and glycerol-treated microtubules are insensitive to the destabilizing action of phosphatidylinositol; centrifugation and subsequent gel electrophoresis of such samples revealed that both MAP-2a and MAP-2b were selectively desorbed. Likewise, the desorption of MAP-2 was visualized by indirect immunofluorescence microscopy using primary antibodies directed toward tubulin and MAP-2. The instability of microtubules exposed to phosphatidylinositol appears to be related to the MAP-2 content. 相似文献
8.
Rotenone, a widely used insecticide, has been shown to inhibit mammalian cell proliferation and to depolymerize cellular microtubules. In the present study, the effects of rotenone on the assembly of microtubules in relation to its ability to inhibit cell proliferation and mitosis were analyzed. We found that rotenone inhibited the proliferation of HeLa and MCF-7 cells with half maximal inhibitory concentrations of 0.2 +/- 0.1 microm and 0.4 +/- 0.1 microm, respectively. At its effective inhibitory concentration range, rotenone depolymerized spindle microtubules of both cell types. However, it had a much stronger effect on the interphase microtubules of MCF-7 cells compared to that of the HeLa cells. Rotenone suppressed the reassembly of microtubules in living HeLa cells, suggesting that it can suppress microtubule growth rates. Furthermore, it reduced the intercentrosomal distance in HeLa cells at its lower effective concentration range and induced multipolar-spindle formation at a relatively higher concentration range. It also increased the level of checkpoint protein BubR1 at the kinetochore region. Rotenone inhibited both the assembly and the GTP hydrolysis rate of microtubules in vitro. It also inhibited the binding of colchicine to tubulin, perturbed the secondary structure of tubulin, and reduced the intrinsic tryptophan fluorescence of tubulin and the extrinsic fluorescence of tubulin-1-anilinonaphthalene-8-sulfonic acid complex, suggesting that it binds to tubulin. A dissociation constant of 3 +/- 0.6 microm was estimated for tubulin-rotenone complex. The data presented suggest that rotenone blocks mitosis and inhibits cell proliferation by perturbing microtubule assembly dynamics. 相似文献
9.
Myelin-associated glycoprotein inhibits microtubule assembly by a Rho-kinase-dependent mechanism 总被引:2,自引:0,他引:2
Mimura F Yamagishi S Arimura N Fujitani M Kubo T Kaibuchi K Yamashita T 《The Journal of biological chemistry》2006,281(23):15970-15979
Myelin-associated glycoprotein (MAG) and Nogo are potent inhibitors of neurite outgrowth from a variety of neurons, and they have been identified as possible components of the central nervous system myelin that prevents axonal regeneration in the adult vertebrate central nervous system. The activation of RhoA and Rho-kinase is reported to be an essential part of the signaling mechanism of these proteins. Here, we report that the collapsing response mediator protein-2 (CRMP-2) is phosphorylated by a Rho-kinase-dependent mechanism downstream of MAG or Nogo-66. The overexpression of the nonphosphorylated form of CRMP-2 at threonine 555, which is the phosphorylation site for Rho-kinase, counteracts the inhibitory effect of MAG on the postnatal cerebellar neurons. Additionally, the expression of the dominant negative form of CRMP-2 or knockdown of the gene using small interference RNA (siRNA) mimics the effect of MAG in vitro. Consistent with the function of CRMP-2, which promotes microtubule assembly, microtubule levels are down-regulated in the cerebellar neurons that are stimulated with MAG in vitro. Reduction in the density of microtubules is also observed in the injured axons following the spinal cord injury, and this effect depends on the Rho-kinase activity. Our data suggest the important roles of CRMP-2 and microtubules in the inhibition of the axon regeneration by the myelin-derived inhibitors. 相似文献
10.
The kinetics of assembly were studied for bovine and pig microtubule protein in vitro over a range of conditions of pH, temperature, nucleotide and protein concentration. The kinetics are in general biphasic with two major processes of similar amplitude but separated in rate by one order of magnitude. Rates and amplitudes are complex functions of solution conditions. The rates of the fast phase and the slow phase attain limiting values as a function of increasing protein concentration, and are more stringently limited at pH 6.5 than pH 6.95. Such behaviour indicates that mechanisms other than the condensation polymerization of tubulin dimer become rate-limiting at higher protein concentration. The constancy of the wavelength-dependence of light-scattering and ultrastructural criteria indicate that microtubules of normal morphology are formed in both phases of the assembly process. Electrophoretic analysis of assembling microtubule protein shows that MAP- (microtubule-associated-protein-)rich microtubules are formed during the fast phase. The rate of dissociation of oligomeric species on dilution of microtubule protein closely parallels the fast-phase rate in magnitude and temperature-dependence. We propose that the rate of this process constitutes an upper limit to the rate of the fast phase of assembly. The kinetics of redistribution of MAPs from MAP-rich microtubules may be a factor limiting the slow-phase rate. A working model is derived for the self-assembly of microtubule protein incorporating the dissociation and redistribution mechanisms that impose upper limits to the rates of assembly attainable by bimolecular addition reactions. Key roles are assigned to MAP-containing fragments in both phases of microtubule elongation. Variations in kinetic behaviour with solution conditions are inferred to derive from the nature and properties of fragments formed from oligomeric species after the rapid temperature jump. The model accounts for the limiting rate behaviour and indicates experimental criteria to be applied in evaluating the relative contributions of alternative pathways. 相似文献
11.
A specific, high-affinity binding site for the hepta-beta-glucoside elicitor exists in soybean membranes. 总被引:15,自引:2,他引:15 下载免费PDF全文
The presence of a specific binding site for a hepta-beta-glucoside elicitor of phytoalexin accumulation has been demonstrated in soybean microsomal membranes. A tyramine conjugate of the elicitor-active hepta-beta-glucoside was prepared and radiolabeled with 125I. The labeled hepta-beta-glucoside-tyramine conjugate was used as a ligand in binding assays with a total membrane fraction prepared from soybean roots. Binding of the radiolabeled hepta-beta-glucoside elicitor was saturable, reversible, and with an affinity (apparent Kd = 7.5 x 10(-10) M) comparable with the concentration of hepta-beta-glucoside required for biological activity. A single class of hepta-beta-glucoside binding sites was found. The binding site was inactivated by proteolysis and by heat treatment, suggesting that the binding site is a protein or glycoprotein. Competitive inhibition of binding of the radiolabeled hepta-beta-glucoside elicitor by a number of structurally related oligoglucosides demonstrated a direct correlation between the binding affinities and the elicitor activities of these oligoglucosides. Thus, the hepta-beta-glucoside-binding protein fulfills criteria expected of a bona fide receptor for the elicitor-active oligosaccharin. 相似文献
12.
Phosphatidylinositol 4,5-bisphosphate competitively inhibits phorbol ester binding to protein kinase C 总被引:3,自引:0,他引:3
Calcium phospholipid dependent protein kinase C (PKC) is activated by diacylglycerol (DG) and by phorbol esters and is recognized to be the phorbol ester receptor of cells; DG displaces phorbol ester competitively from PKC. A phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), can also activate PKC in the presence of phosphatidylserine (PS) and Ca2+ with a KPIP2 of 0.04 mol %. Preliminary experiments have suggested a common binding site for PIP2 and DG on PKC. Here, we investigate the effect of PIP2 on phorbol ester binding to PKC in a mixed micellar assay. In the presence of 20 mol % PS, PIP2 inhibited specific binding of [3H]phorbol 12,13-dibutyrate (PDBu) in a dose-dependent fashion up to 85% at 1 mol %. Inhibition of binding was more pronounced with PIP2 than with DG. Scatchard analysis indicated that the decrease in binding of PDBu in the presence of PIP2 is the result of an altered affinity for the phorbol ester rather than of a change in maximal binding. The plot of apparent dissociation constants (Kd') against PIP2 concentration was linear over a range of 0.01-1 mol % with a Ki of 0.043 mol % and confirmed the competitive nature of inhibition between PDBu and PIP2. Competition between PIP2 and phorbol ester could be demonstrated in a liposomal assay system also. These results indicate that PIP2, DG, and phorbol ester all compete for the same activator-receiving region on the regulatory moiety of protein kinase C, and they lend support to the suggestion that PIP2 is a primary activator of the enzyme. 相似文献
13.
14.
Hua Li Xian Zeng Zi-Qiang Liu Qiu-Tao Meng Ming Yuan Tong-Lin Mao 《Plant molecular biology》2009,69(3):313-324
Nine genes that encode proteins of the MAP65 family have been identified in the Arabidopsis thaliana genome. In this study, we reported that AtMAP65-2, a member of the AtMAP65 family, could strongly stabilize microtubules
(MTs). Bacterially-expressed AtMAP65-2 fusion proteins induced the formation of large MT bundles in vitro. Although AtMAP65-2
showed little effect on MT assembly or nucleation, AtMAP65-2 greatly stabilized MTs that were subjected to low-temperature
treatment in vitro. Analyses of truncated versions of AtMAP65-2 indicated that the region that encompassed amino acids 495–578,
which formed a flexible extended loop, played a crucial role in the stabilization of MTs. Analysis of suspension-cultured
Arabidopsis cells that expressed the AtMAP65-2-GFP fusion protein showed that AtMAP65-2 co-localized with MTs throughout the cell cycle.
Cortical MTs that were decorated with AtMAP65-2-GFP were more resistant to the MT-disrupting drug propyzamide and to ice treatment
in vivo. The results of this study demonstrate that AtMAP65-2 strongly stabilizes MTs and is involved in the regulation of
MT organization and dynamics.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
H. Li and X. Zeng have contributed equally to this paper and are considered as joint first authors. 相似文献
15.
The antifungal agent benomyl [methyl-1-(butylcarbamoyl)-2-benzimidazolecarbamate] is used throughout the world against a wide range of agricultural fungal diseases. In this paper, we investigated the interaction of benomyl with mammalian brain tubulin and microtubules. Using the hydrophobic fluorescent probe 1-anilinonaphthalene-8-sulfonic acid, benomyl was found to bind to brain tubulin with a dissociation constant of 11.9 +/- 1.2 microM. Further, benomyl bound to at a novel site, distinct from the well-characterized colchicine and vinblastine binding sites. Benomyl altered the far-UV circular dichroism spectrum of tubulin and reduced the accessibility of its cysteine residues to modification by 5,5'-dithiobis-2-nitrobenzoic acid, indicating that benomyl binding to tubulin induces a conformational change in the tubulin. Benomyl inhibited the polymerization of brain tubulin into microtubules, with 50% inhibition occurring at a concentration of 70-75 microM. Furthermore, it strongly suppressed the dynamic instability behavior of individual brain microtubules in vitro as determined by video microscopy. It reduced the growing and shortening rates of the microtubules but did not alter the catastrophe or rescue frequencies. The unexpected potency of benomyl against mammalian microtubule polymerization and dynamics prompted us to investigate the effects of benomyl on HeLa cell proliferation and mitosis. Benomyl inhibited proliferation of the cells with an IC(50) of 5 microM, and it blocked mitotic spindle function by perturbing microtubule and chromosome organization. The greater than expected actions of benomyl on mammalian microtubules and mitosis together with its relatively low toxicity suggest that it might be useful as an adjuvant in cancer chemotherapy. 相似文献
16.
Fauquant C Redeker V Landrieu I Wieruszeski JM Verdegem D Laprévote O Lippens G Gigant B Knossow M 《The Journal of biological chemistry》2011,286(38):33358-33368
17.
The specific binding of the microtubule-associated protein 2 (MAP2) to the outer membrane of rat brain mitochondria. 总被引:3,自引:2,他引:3 下载免费PDF全文
Purified mitochondria from rat brain contain microtubule-associated proteins (MAPs) bound to the outer membrane. Studies of binding in vitro performed with microtubules and with purified microtubule proteins showed that mitochondria preferentially interact with the high-molecular-mass MAPs (and not with Tau protein). Incubation of intact mitochondria with Taxol-stabilized microtubules resulted in the selective trapping of both MAPs 1 and 2 on mitochondria, indicating that an interaction between the two organelles occurred through a site on the arm-like projection of MAPs. Two MAP-binding sites were located on intact mitochondria. The lower-affinity MAP2-binding site (Kd = 2 x 10(-7) M) was preserved and enriched in the outer-membrane fraction, whereas the higher-affinity site (Kd = 1 x 10(-9) M) was destroyed after removing the outer membrane with digitonin. Detergent fractionation of mitochondrial outer membranes saturated with MAP2 bound in vitro showed that MAPs are associated with membrane fragments which contain the pore-forming protein (porin). MAP2 also partially prevents the solubilization of porin from outer membrane, indicating a MAP-induced change in the membrane environment of porin. These observations demonstrate the presence of specific MAP-binding sites on the outer membrane, suggesting an association between porin and the membrane domain involved in the cross-linkage between microtubules and mitochondria. 相似文献
18.
Characterization of a high-affinity binding site for a DNA-binding protein from sea urchin embryo mitochondria. 下载免费PDF全文
Based on electrophoretic mobility shift assays, DNase I footprinting and modification interference analyses we have identified a sequence-specific DNA-binding protein in blastula stage mitochondria of the sea urchin Strongylocentrotus purpuratus, which interacts with a binding site around the major pause site for DNA replication. This region straddles the boundary of the genes for ATP synthase subunit 6 and cytochrome c oxidase subunit III, and contains also a prominent origin of lagging-strand synthesis. The protein is thermostable, and its natural high-affinity binding site comprises the sequence 5'-AGCCT(N7)AGCAT-3'. Binding studies have demonstrated that two copies of the imperfect repeat, as well as the 7 bp spacing between them, are essential for tight binding. Based on the location of its binding site, we tentatively designate the protein mitochondrial pause-region binding protein (mtPBP) 1. 相似文献
19.
The microtubule binding domain of microtubule-associated protein MAP1B contains a repeated sequence motif unrelated to that of MAP2 and tau 总被引:18,自引:9,他引:9 下载免费PDF全文
《The Journal of cell biology》1989,109(6):3367-3376
We report the complete sequence of the microtubule-associated protein MAP1B, deduced from a series of overlapping genomic and cDNA clones. The encoded protein has a predicted molecular mass of 255,534 D and contains two unusual sequences. The first is a highly basic region that includes multiple copies of a short motif of the form KKEE or KKEVI that are repeated, but not at exact intervals. The second is a set of 12 imperfect repeats, each of 15 amino acids and each spaced by two amino acids. Subcloned fragments spanning these two distinctive regions were expressed as labeled polypeptides by translation in a cell-free system in vitro. These polypeptides were tested for their ability to copurify with unlabeled brain microtubules through successive cycles of polymerization and depolymerization. The peptide corresponding to the region containing the KKEE and KKEVI motifs cycled with brain microtubules, whereas the peptide corresponding to the set of 12 imperfect repeats did not. To define the microtubule binding domain in vivo, full-length and deletion constructs encoding MAP1B were assembled and introduced into cultured cells by transfection. The expression of transfected polypeptides was monitored by indirect immunofluorescence using anti-MAP1B-specific antisera. These experiments showed that the basic region containing the KKEE and KKEVI motifs is responsible for the interaction between MAP1B and microtubules in vivo. This region bears no sequence relationship to the microtubule binding domains of kinesin, MAP2, or tau. 相似文献
20.
Although microtubule (MT) dynamic instability is thought to depend on the guanine nucleotide (GTP vs GDP) bound to the beta-tubulin of the terminal subunit(s), the MT minus end exhibits dynamic instability even though the terminal beta-tubulin is always crowned by GTP-alpha-tubulin. As an approach toward understanding how dynamic instability occurs at the minus end, we investigated the effects of N-ethylmaleimide-modified tubulin (NTb) on elongation and rapid shortening of individual MTs. NTb preferentially inhibits minus end assembly when combined with unmodified tubulin (PCTb), but the mechanism of inhibition is unknown. Here, video-enhanced differential interference contrast microscopy was used to observe the effects of NTb on MTs assembled from PCTb onto axoneme fragments. MTs were exposed to mixtures of PCTb (25 microM) and NTb (labeled on approximately 1 Cys per monomer) in which the NTb/PCTb ratio varied from 0.025 to 1. The NTb/PCTb mixture had a slight inhibitory effect on the plus end elongation rate, but significantly inhibited or completely arrested minus end elongation. For the majority of mixtures that were assayed (0.1-1 NTb/PCTb ratio), minus end MT length remained constant until the NTb/PCTb mixture was replaced. Replacement with PCTb allowed elongation to proceed, whereas replacement with buffer or NTb caused minus ends to shorten. Taken together, the results indicate that NTb associates with both plus and minus ends and that NTb acts to reversibly cap minus ends only when PCTb is also present. Low-resolution mapping of labeled Cys residues, along with previous experiments with other Cys-reactive compounds, suggests that modification of beta-tubulin Cys(239) may be associated with the capping action of NTb. 相似文献