首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cao X  Jacobsen SE 《Current biology : CB》2002,12(13):1138-1144
Proper DNA methylation patterning requires the complementary processes of de novo methylation (the initial methylation of unmethylated DNA sequences) and maintenance methylation (the faithful replication of preexisting methylation). Arabidopsis has two types of methyltransferases with demonstrated maintenance activity: MET1, which maintains CpG methylation and is homologous to mammalian DNMT1, and CHROMOMETHYLASE 3 (CMT3), which maintains CpNpG (N = A, T, C, or G) methylation and is unique to the plant kingdom. Here we describe loss-of-function mutations in the Arabidopsis DOMAINS REARRANGED METHYLASE (DRM) genes and provide evidence that they encode de novo methyltransferases. drm1 drm2 double mutants retained preexisting CpG methylation at the endogenous FWA locus but blocked de novo CpG methylation that is normally associated with FWA transgene silencing. Furthermore, drm1 drm2 double mutants blocked de novo CpNpG and asymmetric methylation and gene silencing of the endogenous SUPERMAN (SUP) gene, which is normally triggered by an inverted SUP repeat. However, drm1 drm2 double mutants did not show reactivation of previously established SUPERMAN epigenetic silenced alleles. Thus, drm mutants prevent the establishment but not the maintenance of gene silencing at FWA and SUP, suggesting that the DRMs encode the major de novo methylation enzymes affecting these genes.  相似文献   

3.
Summary The extent to which CpG dinucleotides were depleted in a large set of angiosperm genes was, on average, very similar to the extent of CpG depletion in total angiosperm genomic DNA and far less than the extent of CpG depletion in vertebrate genes. Gene sequences from Arabidopsis thaliana, a dicotyledonous species with relatively low levels of total 5-methylcytosine, were just as CpG depleted as the angiosperm genes in general. Furthermore, levels of TpG and CpA, the potential deamination mutation products of methylated CpG, were elevated in A. thaliana genes, supporting a high rate of deamination mutation as the cause of the CpG deficiency. Using a method that takes into account the dinucleotide frequencies within each sequence of interest, we calculated the expected frequencies of CpNpG trinucleotides, which are also highly methylated in angiosperm genomes. CpNpG trinucleotides were not extensively enriched or depleted in the angiosperm genes. Two hypotheses could account for our results. Differential depletion of CpG and CpNpG within angiosperm genes and differential depletion of CpG in angiosperm and vertebrate genes could arise from different efficiencies of mismatch repair or from different levels of cytosine methylation in the cell lineages that contribute to germ cells.Offprint requests to: M. Gardiner-Garden  相似文献   

4.
Vu TH  Li T  Nguyen D  Nguyen BT  Yao XM  Hu JF  Hoffman AR 《Genomics》2000,64(2):132-143
  相似文献   

5.
Summary CpNpG and CpG methylation was surveyed in a range of vascular and nonvascular plants to determine firstly when CpNpG methylation evolved and secondly whether the two methylation systems found in higher plants were likely to be under common or separate control. Although both systems exist in a wide range of vascular plant taxa, the nonvascular plant taxa appear to contain only CpNpG methylation and this in only very limited amounts. The data suggest that both systems may have evolved at the same time and that speciation involved loss of one or the other methylation system or the evolution of differentiation stage-specific control systems.  相似文献   

6.
Activity of the cat gene driven by the cauliflower mosaic virus 35S promoter has been assayed by transfecting petunia protoplasts with the pUC8CaMVCAT plasmid. In vitro methylation of this plasmid with M.HpaII (methylates C in CCGG sites) and M.HhaI (methylates GCGC sites) did not affect bacterial chloramphenicol acetyltransferase (CAT) activity. It should be noted, however, that no HpaII or HhaI sites are present in the promoter sequence. In contrast, in vitro methylation of the plasmid with the spiroplasma methylase M.SssI, which methylates all CpG sites, resulted in complete inhibition of CAT activity. The promoter sequence contains 16 CpG sites and 13 CpNpG sites that are known to be methylation sites in plant DNA. In the light of this fact, and considering the results of the experiments presented here, we conclude that methylation at all CpG sites leaving CpNpG sites unmethylated is sufficient to block gene activity in a plant cell. Methylation of CpNpG sites in plant cells may, therefore, play a role other than gene silencing.  相似文献   

7.
A C Codn  Y S Lee    V E Russo 《Nucleic acids research》1997,25(12):2409-2416
It has previously been reported that multiple copies of the hph gene integrated into the genome of Neurospora crassa are methylated at Hpa II sites (CCGG) during the vegetative life cycle of the fungus, while hph genes integrated as single copies are not methylated. Furthermore, methylation is correlated with silencing of the gene. We report here the methylation state of cytosine residues of the major part of the promoter region of the hph gene integrated into the genome of the multiple copy strain HTA5.7 during the vegetative stage of the life cycle. Cytosine methylation is sequence dependent, but the sequence specificity is complex and is different from the sequence specificity known for mammals and plants (CpG and CpNpG). The pattern of DNA methylation reported here is very different from that measured after meiosis in Neurospora or in Ascobulus . After the sexual cycle in those two fungi all the cytosines of multiple stretches of DNA are heavily methylated. This indicates that the still unknown methyltransferase in Neurospora has a different specificity in the sexual and the vegetative stages of the life cycle or that there are different methyltransferases. The pattern of methylation reported here is also different from the pattern of cytosine methylation of transgenes of Petunia , the only pattern published until now in plants that has DNA methylation at cytosines which are not in the canonical sequences CpG and CpNpG.  相似文献   

8.
Cytosine methylation at symmetrical CpG and CpNpG sequences plays a key role in the epigenetic control of plant growth and development; yet, the way by which the methylation signal is interpreted into a functional state has not been elucidated. In animals, the methylation signal is recognized by methyl-CpG-binding domain (MBD) proteins that specifically bind methylated CpG dinucleotides. In Arabidopsis thaliana, 12 putative MBD proteins were identified and classified into seven subclasses. Here, we characterized six MBD proteins representing four subclasses (II, III, IV, and VI) of the Arabidopsis MBD family. We found that AtMBD7 (subclass VI), a unique protein containing a double MBD motif, as well as AtMBD5 and AtMBD6 (subclass IV), bind specifically symmetrically methylated CpG sites. The MBD motif derived from AtMBD6, but not from AtMBD2, was sufficient for binding methylated CpG dinucleotides. AtMBD6 precipitated histone deacetylase (HDAC) activity from the leaf nuclear extract. The examined AtMBD proteins neither bound methylated CpNpG sequences nor did they display DNA demethylase activity. Our results suggest that AtMBD5, AtMBD6, and AtMBD7 are likely to function in Arabidopsis plants as mediators of the CpG methylation, linking DNA methylation-induced gene silencing with histone deacetylation.  相似文献   

9.
10.
A cytosine DNA methyltransferase containing a chromodomain, Zea methyltransferase2 (Zmet2), was cloned from maize. The sequence of ZMET2 is similar to that of the Arabidopsis chromomethylases CMT1 and CMT3, with C-terminal motifs characteristic of eukaryotic and prokaryotic DNA methyltransferases. We used a reverse genetics approach to determine the function of the Zmet2 gene. Plants homozygous for a Mutator transposable element insertion into motif IX had a 13% reduction in methylated cytosines. DNA gel blot analysis of these plants with methylation-sensitive restriction enzymes and bisulfite sequencing of a 180-bp knob sequence showed reduced methylation only at CpNpG sites. No reductions in methylation were observed at CpG or asymmetric sites in heterozygous or homozygous mutant plants. Our research shows that chromomethylase Zmet2 is required for in vivo methylation of CpNpG sequences.  相似文献   

11.
The nucleotide composition and the contents of CpG and CpNpG in internal transcribed spacers 1 and 2 (ITS1 and ITS2) and the 5.8S rRNA gene of the nuclear genome were studied in two phylogenetic lineages of monocotyledonous angiosperms. The evolutionary advance of taxa by morphological characters proved to positively correlate with an increase in the contents of C, CpG, and CpNpG, contrasting the views that genome evolution in vertebrate and higher plants tends to decrease or, at least, preserve the amount of CpG and CpNpG, potentially subject to methylation, in nuclear DNA. Cryptaffinity taxa, which are intermediates between morphologically distinct taxonomic groups, displayed higher contents of CpG and CpNpG as compared with neighboring taxa. Changes in the contents of these elements in the regions of cryptaffinity taxa are intricate, suggesting a reciprocating character for their accumulation. Cryptaffinity taxa and their close phylogenetic relatives from the ancestral and descendant groups were assumed to reflect the key macroevolutionary changes and to correspond to saltatory periods separating the periods of gradual evolution.  相似文献   

12.
Because of their peculiar chromatin features and phylogenetic position, dinoflagellates are potentially uniquely informative with respect to possible roles and evolution of DNA methylation systems. Here we report that DNA from Amphidinium carterae Hulburt and Symbiodinium microadriaticum Freudenthal was not significantly digested by a range of CpG methylation-sensitive endonucleases. Corresponding methylation-insensitive isoschizomers cleaved all DNA preparations. Treatment with the methylation inhibitors 5-azacytidine and ethionine resulted in major increases in digestibility of dinoflagellate DNA by CpG methylation-sensitive enzymes. The 5-azacytidine effect was not confined to heterochromatin. Our studies indicate that at least in some dinoflagellates, a high proportion of CpG motifs and a significant number of CpNpG motifs are normally methylated, implying methyltransferase substrate specificities similar to those of higher plants.  相似文献   

13.
14.
Methylation patterns from cold-inducible and embryo-specific Arabidopsis thaliana gene promoter regions were investigated. Pairs of restriction enzymes sensitive and insensitive to methylation in the same recognition sequence were used to digest genomic DNA, and the methylation status was visualized by Southern hybridization. The pair BstN I/ EcoR II should detect CpNpG methylation due to the sensitivity of EcoR II to 5-methylcytosine in the second position in the recognition sequence (5-CC(A/T)GG-3). The pair Msp I/Hpa II will detect both CpNpG methylation and CpG methylation, since Msp I does not digest the recognition sequence (5-CCGG-3) when the first C residue is methylated, while Hpa II restriction is inhibited by methylation of either of the two C residues. EcoR II digestion studies suggested CpNpG methylation in all genes tested and demethylation after cold stress in all genes (including two control embryo-specific Lea genes not induced by low temperature). Control experiments indicated an unexpected pattern of methylation and low temperature demethylation in chloroplast genes. Additional control experiments, using the methylation sensitive enzyme, ScrF I (recognizing the sequence 5-CCNGG-3), disproved the presence of 5-methylcytosine in common sites not digested by EcoR II. (CpNpG-methylation was revealed in one ScrF I site in one gene and in Msp I/Hpa II sites in two genes. CpG methylation was not found in any gene tested.) Our study indicates that results obtained using EcoR II for DNA methylation studies should be interpreted with caution. The peculiarities of the EcoR II enzyme are further discussed.  相似文献   

15.
16.
The tomato nuclear genome was determined to have a G+C content of 37% which is among the lowest reported for any plant species. Non-coding regions have a G+C content even lower (32% average) whereas coding regions are considerably richer in G+C (46%).5-methyl cytosine was the only modified base detected and on average 23% of the cytosine residues are methylated. Immature tissues and protoplasts have significantly lower levels of cytosine methylation (average 20%) than mature tissues (average 25%). Mature pollen has an intermediate level of methylation (22%). Seeds gave the highest value (27%), suggesting de novo methylation after pollination and during seed development.Based on isoschizomer studies we estimate 55% of the CpG target sites (detected by Msp I/Hpa II) and 85% of the CpNpG target sites (detected by Bst NI/Eco RI)are methylated. Unmethylated target sites (both CpG and CpNpG) are not randomly distributed throughout the genome, but frequently occur in clusters. These clusters resemble CpG islands recently reported in maize and tobacco.The low G+C content and high levels of cytosine methylation in tomato may be due to previous transitions of 5mCT. This is supported by the fact that G+C levels are lowest in non-coding portions of the genome in which selection is relaxed and thus transitions are more likely to be tolerated. This hypothesis is also supported by the general deficiency of methylation target sites in the tomato genome, especially in non-coding regions.Using methylation isoschizomers and RFLP analysis we have also determined that polymorphism between plants, for cytosine methylation at allelic sites, is common in tomato. Comparing DNA from two tomato species, 20% of the polymorphisms detected by Bst NI/Eco RII could be attributed to differential methylation at the CpNpG target sites. With Msp I/Hpa II, 50% of the polymorphisms were attributable to methylation (CpG and CpNpG sites). Moreover, these polymorphisms were demonstrated to be inherited in a mendelian fashion and to co-segregate with the methylation target site and thus do not represent variation for transacting factors that might be involved in methylation of DNA. The potential role of heritable methylation polymorphism in evolution of gene regulation and in RFLP studies is discussed.  相似文献   

17.
DNA methylation (5-methylcytosine) in mammalian genomes predominantly occurs at CpG dinucleotides, is maintained by DNA methyltransferase1 (Dnmt1), and is essential for embryo viability. The plant genome also has 5-methylcytosine at CpG dinucleotides, which is maintained by METHYLTRANSFERASE1 (MET1), a homolog of Dnmt1. In addition, plants have DNA methylation at CpNpG and CpNpN sites, maintained, in part, by the CHROMOMETHYLASE3 (CMT3) DNA methyltransferase. Here, we show that Arabidopsis thaliana embryos with loss-of-function mutations in MET1 and CMT3 develop improperly, display altered planes and numbers of cell division, and have reduced viability. Genes that specify embryo cell identity are misexpressed, and auxin hormone gradients are not properly formed in abnormal met1 embryos. Thus, DNA methylation is critical for the regulation of plant embryogenesis and for seed viability.  相似文献   

18.
Cheung LW  Lee YF  Ng TW  Ching WK  Khoo US  Ng MK  Wong AS 《FEBS letters》2007,581(24):4668-4674
The range of BRCA1/BRCA2 gene mutations is diverse and the mechanism accounting for this heterogeneity is obscure. To gain insight into the endogenous mutational mechanisms involved, we evaluated the association of specific sequences (i.e. CpG/CpNpG motifs, homonucleotides, short repeats) and mutations within the genes. We classified 1337 published mutations in BRCA1 (1765 BRCA2 mutations) for each specific sequence, and employed computer simulation combined with mathematical calculations to estimate the true underlying tendency of mutation occurrence. Interestingly, we found no mutational bias to homonucleotides and repeats in deletions/insertions and substitutions but striking bias to CpG/CpNpG in substitutions in both genes. This suggests that methylation-dependent DNA alterations would be a major mechanism for mutagenesis.  相似文献   

19.
Epigenetic Natural Variation in Arabidopsis thaliana   总被引:5,自引:0,他引:5       下载免费PDF全文
Cytosine methylation of repetitive sequences is widespread in plant genomes, occurring in both symmetric (CpG and CpNpG) as well as asymmetric sequence contexts. We used the methylation-dependent restriction enzyme McrBC to profile methylated DNA using tiling microarrays of Arabidopsis Chromosome 4 in two distinct ecotypes, Columbia and Landsberg erecta. We also used comparative genome hybridization to profile copy number polymorphisms. Repeated sequences and transposable elements (TEs), especially long terminal repeat retrotransposons, are densely methylated, but one third of genes also have low but detectable methylation in their transcribed regions. While TEs are almost always methylated, genic methylation is highly polymorphic, with half of all methylated genes being methylated in only one of the two ecotypes. A survey of loci in 96 Arabidopsis accessions revealed a similar degree of methylation polymorphism. Within-gene methylation is heritable, but is lost at a high frequency in segregating F2 families. Promoter methylation is rare, and gene expression is not generally affected by differences in DNA methylation. Small interfering RNA are preferentially associated with methylated TEs, but not with methylated genes, indicating that most genic methylation is not guided by small interfering RNA. This may account for the instability of gene methylation, if occasional failure of maintenance methylation cannot be restored by other means.  相似文献   

20.
Cytosine methylation of repetitive sequences is widespread in plant genomes, occurring in both symmetric (CpG and CpNpG) as well as asymmetric sequence contexts. We used the methylation-dependent restriction enzyme McrBC to profile methylated DNA using tiling microarrays of Arabidopsis Chromosome 4 in two distinct ecotypes, Columbia and Landsberg erecta. We also used comparative genome hybridization to profile copy number polymorphisms. Repeated sequences and transposable elements (TEs), especially long terminal repeat retrotransposons, are densely methylated, but one third of genes also have low but detectable methylation in their transcribed regions. While TEs are almost always methylated, genic methylation is highly polymorphic, with half of all methylated genes being methylated in only one of the two ecotypes. A survey of loci in 96 Arabidopsis accessions revealed a similar degree of methylation polymorphism. Within-gene methylation is heritable, but is lost at a high frequency in segregating F2 families. Promoter methylation is rare, and gene expression is not generally affected by differences in DNA methylation. Small interfering RNA are preferentially associated with methylated TEs, but not with methylated genes, indicating that most genic methylation is not guided by small interfering RNA. This may account for the instability of gene methylation, if occasional failure of maintenance methylation cannot be restored by other means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号