首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
IS421, a new insertion sequence in Escherichia coli   总被引:2,自引:0,他引:2  
The nucleotide sequence of a new insertion sequence (IS) in Escherichia coli, IS421, was determined. It is 1340 bp long and contains inverted repeats of 22 bp at its termini. It is flanked by 13 bp direct repeats apparently generated upon insertion. There are two ORFs longer than 200 bp in IS421. One can encode a polypeptide of 371 amino acids (aa) and the other, which is on the other strand, can encode a polypeptide of 102 aa. The C-terminal part of the 371 aa polypeptide shows some homology to that of transposases encoded in some other known IS elements. The copy number of IS421 in chromosomal DNA was 4 for E. coli K-12 and B, and 5 for E. coli C, as determined by the Southern hybridization of restriction fragments.  相似文献   

3.
4.
Nucleotide sequence of the alkaline phosphatase gene of Escherichia coli   总被引:33,自引:0,他引:33  
C N Chang  W J Kuang  E Y Chen 《Gene》1986,44(1):121-125
The nucleotide sequence of the alkaline phosphatase (APase) gene (phoA) of Escherichia coli strain 294 has been determined. Pre-APase has a total of 471 amino acids (aa) including a signal sequence of 21 aa. The derived aa sequence differs from that obtained by protein sequencing by the presence of aspartic acid instead of asparagine at positions 16 and 36, and glutamic acid instead of glutamine at position 197. Two open reading frames (ORF1 and ORF2) located downstream from phoA or upstream from proC have been found. ORF1 encodes a putative presecretory protein of 106 aa with a signal sequence of 21 or 22 aa. If this protein is actually produced, it may be one of the smallest periplasmic proteins in E. coli.  相似文献   

5.
6.
The organization of genes encoding the blood group M-specific hemagglutinin (M-agglutinin) of Escherichia coli strain IH11165 was studied with a cloned 6.5-kb DNA segment. This DNA segment contains at least five genes which code for the polypeptides of 12.5, 30, 80, 18.5 and 21 kDa. The 30-, 80- and 21-kDa polypeptides are synthesized as precursors that are approximately 2 kDa larger. The 21-kDa polypeptide was identified as the M-agglutinin subunit by its reactivity with anti-M-agglutinin serum. Nucleotide sequence analysis of the corresponding gene showed that the M-agglutinin precursor had a 24-amino acid (aa) signal sequence, while the mature protein is 146 aa residues long. Although the organization of the M-agglutinin gene cluster resembles those of other E. coli adhesins, there is no significant sequence homology between the M-agglutinin subunit and the subunits of the other potentially related proteins in E. coli.  相似文献   

7.
S M Deane  F T Robb  S M Robb  D R Woods 《Gene》1989,76(2):281-288
The nucleotide sequence of the Vibrio alginolyticus alkaline serine exoprotease A (ProA) gene cloned in Escherichia coli was determined. The exoprotease A gene (proA) consisted of 1602 bp which encoded a protein of 534 amino acids (aa) with an Mr of 55,900. The region upstream from the gene was characterized by a putative promoter consensus region (-10 -35), a ribosome-binding site and ATG start codon. The proA gene encodes a typical 21-aa N-terminal signal sequence which, when fused to alkaline phosphatase by means of transposon TnphoA, was able to mediate transport of the alkaline phosphatase to the periplasm in E. coli. Deletions of up to 106 aa from the C terminus of ProA did not result in the loss of extracellular protease activity. Additional V. alginolyticus genes were not involved in the secretion into the medium of the cloned ProA in E. coli. The amino acid sequence of ProA showed low overall homology to a Serratia marcescens serine exoprotease but significant homology was detected with other subtilisin family exoproteases. The fungal proteinase K, another sodium dodecyl sulfate-resistant protease, had 44% aa homology with ProA.  相似文献   

8.
A DNA fragment, carrying the Candida utilis HIS3 gene, has been isolated from a genomic DNA library by complementation of the E. coli hisB mutant. Its nucleotide sequence was determined and it predicts a single open reading frame of 675 bp (224 aa). The deduced amino acid sequence is highly homologous to other yeast and fungi HIS3 genes.  相似文献   

9.
10.
Independently obtained mutations (apt) of resistance to DAP (2,6-diaminopurine) and MP (6-methylpurine), that affect adenine phosphoribosyltransferase (APRT) in Escherichia coli, are different in their effect on the conversion of several substrates of APRT, such as DAP, MP, MAP (6-methylaminopurine) and adenine, to their nucleotide derivatives. Most of mutants were resistant to DAP and MP, unable to utilize MAP (as purine source) and differed in their ability to uptake adenine from the medium. Among the mutants capable to utilize adenine the following types are found: (1) resistant to DAP and MP, but capable of utilizing MAP, and (2) resistant to DAP, capable of utilizing MAP, but sensitive to MP. The gene apt encoding APRT is located between genes proC and purE; the frequency of cotransduction between proC and several apt mutations is found to be 1.7--2% and purE-apt--to be 5--10.8%. Mutations apt block up the ability of purine-dependent (pur) bacteria lacking purine nucleoside phosphorylase (pup) to use purine ribonucleosides as purine sources. The degree of that blocking depends on the ability of apt mutants to convert adenine to AMP via APRT. These observations confirm our previous data, that the ability of pur pup mutants to use purine ribonucleosides depends on the activity of APRT.  相似文献   

11.
12.
Genomic DNA encompassing polC, the structural gene specifying Bacillus subtilis DNA polymerase III (PolIII), was sequenced and found to contain a 4311-bp open reading frame (ORF) encoding a 162.4-kDa polypeptide of 1437 amino acids (aa). The ORF was engineered into an Escherichia coli expression plasmid under the control of the coliphage lambda repressor. Derepression of E. coli transformants carrying the recombinant vector resulted in the high-level synthesis of a recombinant DNA polymerase indistinguishable from native PolIII. N-terminal aa sequence analysis of the recombinant polymerase unequivocally identified the 4311-bp ORF as that of polC. Comparative aa sequence analysis indicated significant homology of the B. subtilis enzyme with the catalytic alpha subunit of the E. coli PolIII and, with the exception of an exonuclease domain, little homology with other DNA polymerases. The respective sequences of the mutant polC alleles, dnaF and ts-6, were identified, and the expression of specifically truncated forms of polC was exploited to assess the dependence of polymerase activity on the structure of the enzyme's C terminus.  相似文献   

13.
The phytopathogenic bacterium Erwinia chrysanthemi produces a group of pectolytic enzymes able to depolymerise the pectic compounds in plant cell walls. The resulting tissue maceration is known as soft rot disease. The degraded pectin products are transported by 2-keto-3-deoxygluconate permease into the bacterial cell, where they serve as carbon and energy sources. This H+ coupled transport system is encoded by the kdgT gene; we report the nucleotide sequence of kdgT. It is encoded by an open reading frame (ORF) of 1194 bp, which is preceded by an Escherichia coli-type promoter region. The ORF encodes a protein with 398 amino acid (aa) residues and a predicted Mr of 48,550. As would be expected for a membrane protein, it is very hydrophobic, containing 63% nonpolar aa. However, the kdgT gene has no apparent evolutionary relationship to other genes encoding sugar transport proteins, such as lacY, melB or the E. coli citrate transport gene. Southern hybridization experiments indicate a strong homology between the Er. chrysanthemi and E. coli kdgT genes; there is also a second region on the E. coli chromosome with homology to kdgT. The kdgT gene is located near the ade-377 marker on the Er. chrysanthemi chromosome (equivalent to the region between 20 and 30 min in E. coli), whereas the E. coli kdgT gene is located at 88 min. Thus, these two enterobacteria show some significant differences in their genomic organization.  相似文献   

14.
The nucleotide sequence of the cellulase gene celC, encoding endoglucanase C of Clostridium thermocellum, has been determined. The coding region of 1032 bp was identified by comparison with the N-terminal amino acid (aa) sequence of endoglucanase C purified from Escherichia coli. The ATG start codon is preceded by an AGGAGG sequence typical of ribosome-binding sites in Gram-positive bacteria. The derived amino acid sequence corresponds to a protein of Mr 40,439. Amino acid analysis and apparent Mr of endoglucanase C are consistent with the amino acid sequence as derived from the DNA sequencing data. A proposed N-terminal 21-aa residue leader (signal) sequence differs from other prokaryotic signal peptides and is non-functional in E. coli. Most of the protein bears no resemblance to the endoglucanases A, B, and D of the same organism. However, a short region of homology between endoglucanases A and C was identified, which is similar to the established active sites of lysozymes and to related sequences of fungal cellulases.  相似文献   

15.
16.
M E Fling  J Kopf  C A Richards 《Gene》1988,63(2):165-174
The nucleotide sequence of a DNA fragment that contained the Saccharomyces cerevisiae gene DFR coding for dihydrofolate reductase (DHFR) was determined. The DHFR was encoded by a 633-bp open reading frame, which specified an Mr24264 protein. The polypeptide was significantly related to the DHFRs of chicken liver and Escherichia coli. The yeast enzyme shared 60 amino acid (aa) residues with the avian enzyme and 51 aa residues with the bacterial enzyme. DHFR was overproduced about 40-fold in S. cerevisiae when the cloned gene was present in the vector YEp24. As isolated from the Saccharomyces library, the DFR gene was not expressed in E. coli. When the gene was present on a 1.8-kb BamHI-SalI fragment subcloned into the E. coli vector, pUC18, weak expression in E. coli was observed.  相似文献   

17.
The cytochrome o complex is one of two ubiquinol oxidases in the aerobic respiratory system of Escherichia coli. This enzyme catalyzes the two-electron oxidation of ubiquinol-8 which is located in the cytoplasmic membrane, and the four-electron reduction of molecular oxygen to water. The purified oxidase contains at least four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and has been shown to couple electron flux to the generation of a proton motive force across the membrane. In this paper, the DNA sequence of the cyo operon, containing the structural genes for the oxidase, is reported. This operon is shown to encode five open reading frames, cyoABCDE. The gene products of three of these, cyoA, cyoB, and cyoC, are clearly related to subunits II, I, and III, respectively, of the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. This family of cytochrome c oxidases contain heme a and copper as prosthetic groups, whereas the E. coli enzyme contains heme b (protoheme IX) and copper. The most striking sequence similarities relate the large subunits (I) of both the E. coli quinol oxidase and the cytochrome c oxidases. It is likely that the sequence similarities reflect a common molecular architecture of the two heme binding sites and of a copper binding site in these enzymes. In addition, the cyoE open reading frame is closely related to a gene denoted ORF1 from Paracoccus dentrificans which is located in between the genes encoding subunits II and III of the cytochrome c oxidase of this organism. The function of the ORF1 gene product is not known. These sequence relationships define a superfamily of membrane-bound respiratory oxidases which share structural features but which have different functions. The E. coli cytochrome o complex oxidizes ubiquinol but has no ability to catalyze the oxidation of reduced cytochrome c. Nevertheless, it is clear that the E. coli oxidase and the aa3-type cytochrome c oxidases must have very similar structures, at least in the vicinity of the catalytic centers, and they are very likely to have similar mechanisms for bioenergetic coupling (proton pumping).  相似文献   

18.
G P O'Neill  R A Warren  D G Kilburn  R C Miller 《Gene》1986,44(2-3):331-336
A leader sequence of 41 amino acids (aa) has been proposed as the signal sequence for the exoglucanase (Exg) from Cellulomonas fimi. The ability of this 41-aa peptide to function as a leader sequence has been shown here by gene fusion experiments in Escherichia coli. A hybrid leader sequence containing C-terminal 37 aa of the leader peptide and N-terminal 6 aa of beta-galactosidase (beta Gal) directed export of the Exg into the periplasm of E. coli. In contrast, hybrid beta Gal-Exg proteins in which the leader sequence is not present are retained in the cytoplasm.  相似文献   

19.
Signal peptides are essential N-terminal extensions in export proteins, and have a positively charged N-terminus, a hydrophobic central core, and a C-terminal cleavage region. They interact in a consecutive manner with different accessory proteins during the secretion process. Potential patterns or periodicity in the amino acid (aa) sequence were searched, using multivariate techniques, for a large number of signal peptides from mollicutes (mycoplasmas), other Gram-positive bacteria, and Escherichia coli. Mollicutes signal peptides were significantly different from the E. coli and Gram-positive ones by their N-terminal charge, peptide length, and especially, unique periodicities of side chain hydrophobicity and volumes. Their lipoprotein signal peptides were longer than for any other bacteria. Significant differences were also recorded between the other bacterial peptide groups. Specific aa patterns were more related within the signal peptides from several groups of secreted bacillus enzymes, than for all signal peptides from one bacillus species. In E. coli, signal peptides from proteins routed for the various destinations revealed significant and compartment-specific sequence patterns not evident by other methods. This was substantiated from a large number of signal peptide secretion mutants for the E. coli periplasmic space. It is proposed that the differences in aa patterns and side-chain properties are related to the secondary structure sidedness and topology of the signal peptides, and important for specific interactions during the secretion process.  相似文献   

20.
J A Kiel  J M Boels  G Beldman  G Venema 《Gene》1990,89(1):77-84
The nucleotide sequence of the Synechococcus sp. PCC7942 glgB gene has been determined. The gene contains a single open reading frame (ORF) of 2322 bp encoding a polypeptide of 774 amino acids (aa) with an Mr of 89,206. Extensive sequence similarity exists between the deduced aa sequence of the Synechococcus sp. glgB gene product and that of the Escherichia coli branching enzyme in the middle portions of the proteins (62% identical aa). In contrast, the N-terminal portions shared little homology. The sequenced region which follows glgB contains an ORF encoding 79 aa of the N terminus of a polypeptide that shares extensive sequence similarity (41% identical aa) with human and rat uroporphyrinogen decarboxylase. This suggests that the region downstream from glgB contains the hemE gene and, therefore, that the organization of genes involved in glycogen biosynthesis in Synechococcus sp. is different from that described for E. coli. A fusion gene was constructed between the 5' end of the Bacillus licheniformis penP gene and the Synechococcus sp. glgB gene. The fusion gene was efficiently expressed in the Gram+ micro-organism Bacillus subtilis and specified a branching enzyme with an optimal temperature for activity similar to the wild-type enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号