首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The toxic subunit of a plant ricin has been conjugate by a disulfide bond to a polyclonal rabbit antibody specific for the L-chain of human IgG. Both the antibody and ricin A-chain retained their original biological activity after conjugation. This conjugate proved to be a potent cytotoxin for surface Ig positive Burkitt lymphoma EB-3 cells, growing in vitro and produced 50% inhibition of protein synthesis at level of 1.4 x 10(-9) M. When tested for cytotoxic action on target cells, the composite conjugate molecule was at least 100 times more effective than antibodies alone, ricin A-chain alone or a conjugate ricin A-chain--normal rabbit IgG.  相似文献   

2.
To analyze the influence of ricin B-chain on the toxicity of hybrid-protein conjugates, the rate of cellular uptake of conjugates, and the rate at which ricin A-chain (RTA) is delivered to the cytoplasm, we have constructed toxic hybrid proteins consisting of epidermal growth factor (EGF) coupled in disulfide linkage either to ricin or to RTA. EGF-ricin is no more toxic on A431 cells than EGF-RTA. The two conjugates demonstrate similar kinetics of cellular uptake (defined as antibody irreversible toxicity). EGF-RTA and EGF-ricin, like ricin, required a 2-2 1/2 hour period at 37 degrees before the onset of protein synthesis inhibition occurred. Our results suggest that RTA determines the processes which carry it, either in conjugate or toxin, from the plasma membrane binding site to the cytoplasm following endocytosis, and the ricin B chain is not required for these processes.  相似文献   

3.
Hybrid molecules were prepared from the A- and B-chains of the two toxic lectins ricin and modeccin by dialyzing mixtures of isolated chains to allow a disulfide bridge to be formed between them. Whereas the hybrid consisting of ricin A-chain and modeccin B-chain was non-toxic, the converse hybrid, modeccin A-chain/ricin B-chain, was even more toxic to Vero cells than were the parent toxins, native ricin and modeccin. A number of drugs (NH4Cl, monensin, trifluoperazine, verapamil, ionophore A23187) which protect cells against modeccin, but not against ricin, protected to some extent against the toxic hybrid, but less so than against native modeccin. The possibility is discussed that the modeccin A-chain of the hybrid may enter the cytosol by two routes, one which is highly efficient and identical to that used by native modeccin and another less efficient one which cannot be used by native modeccin.  相似文献   

4.
Recently we have developed blocked ricin, a derivative of native ricin in which the galactose-binding sites of the B-chain are blocked by covalent modification with affinity ligands. This modification impedes the binding function of the B-chain, while sparing its ability to facilitate the entry of the toxic subunit of ricin, the A-chain, into the cytoplasm. Immunotoxins prepared with blocked ricin approach the cytotoxic potency of native ricin with antibody-dependent specificity. Here we report that the high cytotoxic potency of these immunoconjugates, which is attributed to the preserved translocation function of the ricin B-chain, is dependent on the minimal residual lectin activity of blocked ricin. Our findings support the notion that two functions of ricin, membrane binding and translocation, cannot be separated.  相似文献   

5.
The toxic plant protein ricin binds to both the apical and basolateral surface domains of MDCK (strain I) cells grown on polycarbonate filters. Endocytosis of 125I-labeled ricin was not only higher from the basolateral than from the apical surface--an observation which can be explained by the higher surface area of the basolateral surface--but it also appeared to be more efficient when measured as a percentage of total cell-associated ricin. Monovalent ricin-horseradish peroxidase (Ri-HRP), which is known to behave like native ricin with respect to intracellular transport, also binds to, and is taken up from, both the apical and the basolateral surfaces. Initially, after 10 to 15 min, molecules taken up from the two surface domains at 37 degrees C are present in two separate (basolateral and apical) early endosomal populations. This can also be obtained by incubating for 60 min at 18 degrees C. However, after 30 to 60 min at 37 degrees C, most internalized ligand is found in apical lysosomes, regardless from which surface endocytosis took place. Experiments with endocytosis of cationized ferritin from the apical pole and HRP or Ri-HRP from the basolateral pole showed that intermixing in apical lysosomes (or prelysosomes) of molecules taken up from the two poles occurs. Bidirectional transcytosis involving coated pits of both 125I-labeled ricin and Ri-HRP was demonstrated and was found to be most efficient (as measured in per cent of endocytosed toxin) from the apical pole. Transcytosis was strongly reduced at 18 degrees C, and no transepithelial transport of ricin could be measured at 4 degrees C. Transcytosed ricin was intact and could intoxicate new cells. Finally, delivery of ricin internalized from both the apical and the basolateral surface to the apically localized trans-Golgi network occurred at 37 degrees C but not at 18 degrees C, and ricin inhibited protein synthesis largely with the same kinetics following uptake from the two poles. Incubation at 18 degrees C strongly inhibited the toxic effect of ricin. These data show that ricin can intoxicate epithelia from both sides and also penetrate tight epithelial barriers in intact form.  相似文献   

6.
A toxic lectin, ricin D, present in the seeds of Ricinus communis has been purified and crystallized in a form suitable for high resolution crystallographic structure studies. This protein is different from a previously found form of ricin (also present in the same seeds), the only ricin for which a preliminary x-ray investigation has been reported so far. Ricin D crystallizes from an aqueous solution in an orthorhombic unit cell of symmetry P2(1)2(1)2(1) and a = 79.0, b = 114.7, and c = 72.8 A. The asymmetric unit contains one molecule with an average molecular weight of 62,400. The crystal is fairly stable to x-radiation and has a water content of approximately 54% by volume. It appears to comprise two closely related species of proteins, the major species corresponding to recin D and the other presumably corresponding to a deamidation product of ricin D. The two species have nearly identical molecular size and amino acid compositions, but different charges.  相似文献   

7.
Identification of the ricin lipase site and implication in cytotoxicity   总被引:4,自引:0,他引:4  
Ricin is a heterodimeric plant toxin and the prototype of type II ribosome-inactivating proteins. Its B-chain is a lectin that enables cell binding. After endocytosis, the A-chain translocates through the membrane of intracellular compartments to reach the cytosol where its N-glycosidase activity inactivates ribosomes, thereby arresting protein synthesis. We here show that ricin possesses a functional lipase active site at the interface between the two subunits. It involves residues from both chains. Mutation to alanine of catalytic serine 221 on the A-chain abolished ricin lipase activity. Moreover, this mutation slowed down the A-chain translocation rate and inhibited toxicity by 35%. Lipase activity is therefore required for efficient ricin A-chain translocation and cytotoxicity. This conclusion was further supported by structural examination of type II ribosome-inactivating proteins that showed that this lipase site is present in toxic (ricin and abrin) but is altered in nontoxic (ebulin 1 and mistletoe lectin I) members of this family.  相似文献   

8.
The molecular properties of ricin (the toxic lectin from Ricinus communis seeds, RCA II or RCA 60) were evaluated by analytical ultracentrifugation, viscosimetry, c.d., fluorescence and equilibrium dialysis. Measurements of sedimentation (S0(20,W) = 4.60 S) and viscosity (eta = 2.96 X 10(-2) dl/g) indicated that, at neutral pH, the ricin molecule is very compact. Various transitions were explored, and a pH-triggered change in the ricin conformation was observed between pH 7 and 4. In this range, the sedimentation coefficient, far-u.v. c.d. and fluorescence altered simultaneously without unfolding. Below pH 7 the change in the ricin conformation was accompanied by a decrease in the affinity of ricin for galactosides, and at pH 4.0 by an alteration in its binding capacity. These effects of low pH are discussed in relation to the physical conditions encountered by ricin molecules during their entry into living cells.  相似文献   

9.
Effects of physical and chemical treatments on the cytoagglutinating activity, toxicity and inhibitory activity of cell-free protein synthesis of ricin D or its constituent polypeptide chains were investigated. The results indicated that the isolated polypeptide chains were much less stable than intact ricin D in acidic pH, heating as well as chemicals, and the Ala chain was more unstable than the lie chain.

Chemical modifications of ricin D with specific reagents revealed that the tryptophan and tyrosine residues as well as the carboxyl groups participated in the phenomena of cyto- agglutination and toxic action of ricin D, whereas arginine residues were considered not to be directly involved. Trinitrophenylation of free amino groups did not result in a loss of cytoagglutinating activity, whereas caused a loss of toxicity, suggesting that free amino groups in the lie chain were involved in the toxic action of ricin D.  相似文献   

10.
The castor bean (Ricinus communis) represents a potential candidate for biodiesel production. The Petrobras Research Center is developing a biodiesel production process from castor bean seeds, in which an unwanted byproduct named castor bean waste is produced. This extremely alkaline waste is toxic and allergenic and, as such, poses a significant environmental problem. Solid-state fermentation (SSF) of castor bean waste was carried out to achieve ricin detoxification, reduce allergenic potential and stimulate lipase production. The fungus, Penicillium simplicissimum, an excellent lipase producer, was able to grow and produce lipase enzyme. After an optimization process, the maximum lipase activity achieved was 44.8 U/g. Moreover, the fungus P. simplicissimum was able to reduce the ricin content to non-detectable levels in addition to diminishing castor bean waste allergenic potential by approximately 16%. In this way, SSF of castor bean waste by P. simplicissimum may increase the utility of the waste by promoting enzyme production and eliminating the principal toxic element, ricin.  相似文献   

11.
Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that a component of reconstituted powdered milk has a high binding affinity to ricin. We discovered that milk can competitively bind to and reduce the amount of toxin available to asialofetuin type II, which is used as a model to study the binding of ricin to galactose cell-surface receptors. Milk also removes ricin bound to the microtiter plate. In parallel experiments, we demonstrated by activity assay and by immuno-PCR that milk can bind competitively to 1 ng/ml ricin, reducing the amount of toxin uptake by the cells, and thus inhibit the biological activity of ricin. The inhibitory effect of milk on ricin activity in Vero cells was at the same level as by anti-ricin antibodies. We also found that (a) milk did not inhibit ricin at concentrations of 10 or 100 ng/ml; (b) autoclaving 10 and 100 ng/ml ricin in DMEM at 121 °C for 30 min completely abolished activity; and (c) milk did not affect the activity of another ribosome inactivating protein, Shiga toxin type 2 (Stx2), produced by pathogenic Escherichia coli O157:H7. Unlike ricin, which is internalized into the cells via a galactose-binding site, Stx2 is internalized through the cell surface receptor glycolipid globotriasylceramides Gb3 and Gb4. These observations suggest that ricin toxicity may possibly be reduced at room temperature by a widely consumed natural liquid food.  相似文献   

12.
Selection and characterization of peptide memitopes binding to ricin   总被引:3,自引:0,他引:3  
A combinatorial random peptide display library expressed in E. coli was employed to identify short, linear peptide sequences that showed affinity for ricin and could be used as reagents for detection and identification of ricin. One peptide, P3, from a collection of four short peptides showed specific binding to ricin. The kinetic analysis of this peptide binding to the ricin showed lower equilibrium binding constants for the peptide P3 than monoclonal antibody. This is attributed due to both slower association and faster dissociation rates for the peptide P3. The random ricin peptide P3 binds to ricin with a KD of 1 M versus the antibody's KD of 14 nM. This particular peptide memitope P3 against ricin showed specific binding to ricin without any significant cross-reactivity against other proteins such as bovine serum albumin (BSA), lysozyme and natural bacterial toxins such as Staphylococcal enterotoxins A and B. The results provided proof-of-principal that peptide memitopes are another choice of reagents due to ease in production to be used for the detection of highly toxic bio-threat or biowarfare agents such as ricin.  相似文献   

13.
The values of the thermodynamic parameters characterizing the association of the subunits of reduced ricin have been determined from equilibrium studies in the analytical ultracentrifuge. van't Hoff analysis indicates that the Gibbs free energy change for subunit association is predominantly of entropic origin. The positive values for the entropy and enthalpy changes suggest that hydrophobic forces may play a dominant role in the association. The association is characterized by values of Ka of 1.72 X 10(6) M-1 at 22 degrees C and 5.66 X 10(6) M-1 at 37 degrees C. The association was not affected by the presence of 20 mM lactose. Toxicity studies demonstrated that reduced ricin at a concentration where it was 52% associated had a toxicity equal to that of native ricin at that same concentration. At higher concentrations, reduced ricin was even more toxic than native ricin. Diethyl maleate, which reduces intracellular glutathione levels, blocked the toxicity of ricin but not the toxicity of reduced ricin. The disulfide bond linking the A and B subunits appears to play no role in toxicity other than to hold the two subunits together at low concentrations.  相似文献   

14.
蓖麻毒素与其单克隆抗体相互作用动力学研究   总被引:3,自引:0,他引:3  
表面等离子体激元共振(SPR)是一种可微量、实时、动态地监测生物分子相互作用的生物传感技术。蓖麻毒素为核糖体失活蛋白,具有很强的细胞毒性作用。通过SPR技术研究了两种抗蓖麻毒素的单克隆抗体C5、D12与蓖麻毒素相互作用的动力学,计算出两者的亲和常数分别为2.49×108mol-1·L和7.9×108mol-1·L,并对两种抗体的抗原表位进行了分析。  相似文献   

15.
The carbohydrate in the toxic glycoprotein ricin was chemically modified by simultaneous treatment with sodium metaperiodate and sodium cyanoborohydride. This treatment causes oxidative cleavage of the sugar residues and reduction of the aldehyde groups which are formed to primary alcohols. The modification markedly decreased the rapid removal of ricin from the blood by hepatic non-parenchymal cells with only a relatively small increase in accumulation of the toxin by parenchymal cells. Binding, uptake and toxicity of the modified ricin in primary monolayer cultures of hepatic non-parenchymal cells were all decreased to a much greater extent than in parenchymal cells. The results indicate that native ricin binds to non-parenchymal cells by a dual recognition process which involves both interaction of cell receptors with the mannose-containing oligosaccharides of the toxin and binding of ricin to galactose-containing glycoproteins and glycolipids on the cells. However, uptake and toxicity of native ricin in non-parenchymal cells appears to result principally from entry of the toxin through the mannose recognition pathway. By contrast, uptake and toxicity of the expressed essentially through the galactose-recognition route.  相似文献   

16.
The cytotoxicity of intact cinnamomin (a type II ribosome-inactivating protein, RIP) and the RNA N-glycosidase activity of cinnamomin A-chain have been studied and compared with those of ricin. Cinnamomin A-chain exhibits a similar RNA N-glycosidase activity in inhibiting in vitro protein synthesis compared with that of ricin, whereas the cytotoxicity to BA/F3beta cells of intact cinnamomin is markedly lower than intact ricin. In order to demonstrate that it is the B-chains of the two RIPs that bear the difference in cytotoxicity, two hybrid RIPs are prepared from the purified A-/B-chains of cinnamomin and ricin by the disulfide exchange reaction. It has been found that hybrid RIP constructed from cinnamomin A-chain and ricin B-chain is more toxic to BA/F3beta cells than the native cinnamomin, and equivalent to the native ricin. However, the cytotoxicity to BA/F3beta cells of the hybrid RIP constructed from the ricin A-chain and cinnamomin B-chain is lower than ricin, equivalent to the native cinnamomin. Furthermore, the bound amounts of two B-chains on the cell surface are determined by the method of direct cellular ELISA and Scatchard analysis of the binding of the two B-chains indicates that cinnamomin and ricin share similar binding sites with different affinity.  相似文献   

17.
Ricin is a toxic lectin that inhibits protein synthesis. Because ricin decreases arterial pressure and causes cardiovascular collapse, its effects on the vascular neuroeffector system were investigated. Rabbits were given either of two doses of ricin, and then norepinephrine (NE) release from aorta to transmural stimulation, NE uptake into aorta, NE content of aorta, monoamine oxidase activity, and catechol-O-methyl transferase activity in aorta were determined 18 hours, 4 days or 7 days later. Norepinephrine uptake and enzyme activities in the aorta were not altered by ricin administration. Norepinephrine release and content of aorta were increased at most time periods following ricin administration, significantly so for NE content at 4 days and for release at 18 hours following the lower dose of ricin. We conclude that the mechanisms involved in the release of NE from sympathetic nerves in the vasculature are not impaired by ricin administration, but rather show changes that indicate increased compensatory activity.  相似文献   

18.
The protozoan Tetrahymenapyriformis was found to be resistant to the toxic action of ricin invivo. Isolated Tetrahymena ribosomes were strongly resistant to the A subunit of ricin when tested in a cell free protein synthesis system under different conditions and also lacked the ability to bind A chain stoichometrically. This suggests that Tetrahymena is resistant invivo because it contains a ribosome which is not susceptible to the toxic action of ricin.  相似文献   

19.
The binding to and toxicity of ricin on Zajdela hepatoma ascites cells were studied. The kinetic analysis of [125I]-ricin binding to hepatoma cells indicated that maximal specific binding was reached within 30 min. at 4 degrees C and 60 min. at 25 degrees C and that toxin binding to hepatoma cells was saturable. When the binding data were plotted according to the method of Scatchard, curvilinear graphs were obtained suggesting that hepatoma cells have both high and low affinity receptors for ricin. The number of high and low affinity receptors was identical at 4 and 25 degrees C, i.e., 8 x 10(5) and 1.2 x 10(7) sites per cell respectively. However, the capacity of hepatoma cells to bind ricin is stronger at 4 degrees C than at 25 degrees C. The toxic activity of ricin was totally abolished in the presence of lactose suggesting that ricin binding to cells occurs through binding sites containing galactosyl residues.  相似文献   

20.
We have previously reported that ricin, a toxic lectin that inhibits protein synthesis induced apoptotic cell death. In this study, we have found that isolated ricin CM-B-chain, which has no effect on cellular protein synthesis, induced DNA fragmentation in U937 cells in a dose- and time-dependent manner, albeit it required a longer incubation time and higher concentration than those of holotoxin ricin. Z-Asp-CH2-DCB, a caspase family inhibitor and serine protease inhibitor, 3,4-dichloroisocoumarine (DCI) effectively inhibited the CM-B-chain-mediated DNA fragmentation as well as in ricin. Thus, like ricin, multiple proteases with different substrate specificity may also be involved in the CM-B-chain-mediated apoptotic pathway. Furthermore, BFA inhibited both ricin- and CM-B-chain-mediated DNA fragmentation, suggesting an intracellular vesicle transport system through the Golgi complex may be involved in the apoptotic induction by these proteins as a common feature. On the other hand, cycloheximide (CHA) strongly increased the CM-B-chain-mediated DNA fragmentation, but inhibited ricin-mediated DNA fragmentation. The opposite effects of CHA may reflect the difference in the apoptotic mechanism between ricin and CM-B-chain. In conclusion, our results suggest that ricin-B-chain can induce apoptosis through its lectin activity, but the underlying mechanism may be distinct from that of ricin in which the A-chain contributes profoundly to the apoptotic induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号