首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Himalayan Mountains provide unique opportunities for the extension of shrub-ring based dendroclimatology beyond the upper tree limit. However, little is known about limiting climate factors of shrub growth under harsh environmental conditions. We established a new ring-width chronology of a Himalayan shrub rhododendron (Rhododendron campanulatum D. Don) at the upper Krummholz treeline in the Mt. Gaurishankar massif, central Himalaya, Nepal. Bootstrapped correlation analysis showed positive relationships between radial growth and temperatures of all months from previous November to current October. Correlations were the highest with winter (December-February) minimum temperature (r = 0.781, p < 0.001), indicating that radial growth of R. campanulatum is strongly sensitive to winter minimum temperature. The linear regression model explained 61 % of the actual winter minimum temperature variance during the calibration period 1960–2013. Periods of low and high minimum winter temperatures in the central Himalaya were consistent with cool and warm episodes found by other regional winter temperature reconstructions from the Himalayas and the Tibetan Plateau. Spatial correlation analysis with land surface temperatures revealed the spatial representativeness of our reconstruction for a larger geographical territory over the Himalayas and the Tibetan Plateau. Furthermore, winter temperature in the central Himalaya is teleconnected with the December-February India-Burma trough. The persistent increasing winter temperature in recent decades in the central Himalaya coincides with continental-scale warming. Alpine vegetation in humid regions of the Himalayas may benefit from winter warming via an earlier start and extension of the growing season, as long as moisture availability is sufficient.  相似文献   

2.
Alternative fire resistance strategies in savanna trees   总被引:9,自引:0,他引:9  
Bark properties (mainly thickness) are usually presented as the main explanation for tree survival in intense fires. Savanna fires are mild, frequent, and supposed to affect tree recruitment rather than adult survival: trunk profile and growth rate of young trees between two successive fires can also affect survival. These factors and fire severity were measured on a sample of 20 trees near the recruitment stage of two savanna species chosen for their contrasted fire resistance strategies (Crossopteryx febrifuga and Piliostigma thonningii). Crossopteryx has a higher intrinsic resistance to fire (bark properties) than Piliostigma: a 20-mm-diameter stem of Crossopteryx survives exposure to 650°C, while Piliostigma needs a diameter of at least 40 mm to survive. Crossopteryx has a thicker trunk than Piliostigma: for two trees of the same height, the basal diameter of Crossopteryx will be 1.6 times greater. Piliostigma grows 2.26 times faster than Crossopteryx between two successive fires. The two species have different fire resistance strategies: one relies on resistance of aboveground structures to fire, while the other relies on its ability to quickly re-build aboveground structures. Crossopteryx is able to recruit in almost any fire conditions while Piliostigma needs locally or temporarily milder fire conditions. In savannas, fire resistance is a complex property which cannot be assessed simply by measuring only one of its components, such as bark thickness. Bark properties, trunk profile and growth rate define strategies of fire resistance. Fire resistance may interact with competition: we suggest that differences in fire resistance strategies have important effects on the structure and dynamics of savanna ecosystems. Received: 16 August 1996 / Accepted: 4 January 1997  相似文献   

3.
Leaf and bud demography and shoot growth were studied in 10 evergreen (ES) and 15 deciduous (DS) tree species occurring between 600 and 2200 m elevation in the central Himalayan mountains in India. Results were analyzed to help explain why ES prevail in the vegetation of this region, even though the number of ES is no greater than for DS. Although each species had its own pattern with regard to leaf and bud demography and seasonality of shoot extension and radial growth, it was possible to group the species on the basis of shoot growth phenology. In most species, leaves emerged during March-April, at the onset of warm and dry summer season. The ES recruit leaves in shoots more rapidly than the DS. Across all species, peak number of leaves per shoot (5.8–20.7), peak leaf area per shoot (116.2–1559.2 cm2), peak number of vegetative buds per shoot (1.9–14.5), bud survival per shoot (23–84%), shoot extension growth (6.4–40.8 cm) and shoot extension period (13–30 weeks) varied considerably. The peak leaf area per shoot (587.7 vs. 246.7 cm2) and shoot extension growth (19.3 vs. 11.2 cm) were significantly greater for DS than for ES, and these two functional groups of species were clearly separable with regard to shoot growth characteristics.Results indicate that rapid recruitment of leaf crop in the shoots, longer leaf life-span, and access to ground water due to deep roots were some of the advantages, the ES had over the DS, that may have likely enable them to maintain growth for a longer period in this region of warm winters and longer winter day length as compared to temperate climates. In the shallow rooted DS, shoot growth seems to be much affected by a seasonal drought in winter and they are likely to be affected more in the event of failure of monsoon rains in this region.  相似文献   

4.
A better understanding of growth-climate responses of high-elevation tree species across their distribution range is essential to devise an appropriate forest management and conservation strategies against adverse impacts of climate change. The present study evaluates how radial growth of Himalayan fir (Abies spectabilis D. Don) and its relation to climate varies with elevation in the Manaslu Mountain range in the central Himalaya. We developed tree-ring width chronologies of Himalayan fir from three elevational belts at the species’upper distribution limit (3750−3900 m), in the middle range (3500−3600 m), and at the lower distribution limit (3200−3300 m), and analyzed their associations with climatic factors. Tree growth of Himalayan fir varied synchronously across elevational belts, with recent growth increases observed at all elevations. Across the elevation gradient, radial growth correlated positively (negatively) with temperature (precipitation and standardized precipitation-evapotranspiration index, SPEI-03) during the summer (July to September) season. However, the importance of summer (July to September) temperatures on radial growth decreased with elevation, whereas correlations with winter (previous November to current January) temperatures increased. Correlations with spring precipitation and SPEI-03 changed from positive to negative from low to high elevations. Moving correlation analysis revealed a persistent response of tree growth to May and August temperatures. However, growth response to spring moisture availability has strongly increased in recent decades, indicating that intensified spring drought may reduce growth rates of Himalayan fir at lower elevations. Under sufficient moisture conditions, increasing summer temperature might be beneficial for fir trees growing at all elevations, while trees growing at the upper treeline will take additional benefit from winter warming.  相似文献   

5.
Phenological stages of natural species and their use as climate indicators   总被引:7,自引:0,他引:7  
 The objectives of this paper are to: (1) present 10 years of phenological data for nine natural species growing in a Mediterranean-type climate, (2) present threshold temperatures that were derived for the computation of cumulative degree-days (CDD), and (3) evaluate the sensitivity of the nine natural species to weather variability. The study was conducted at the Phenological Research Garden of Oristano, Sardinia, Italy, during the period 1986–96. The observations were made on five typical Mediterranean species and four species that are typical of higher latitudes. The mean annual pattern of phenological events and the CDD from 1 January are given for each development stage. Temperature thresholds were evaluated by comparing the standard deviation about the mean number of days in the development period for each species. A good relationship between timing of phenophase occurrence and temperature was observed for the Mediterranean species, which were little affected by variations in rainfall. Phenological development of the non-native species was affected by springtime rainfall. Accepted: 28 October 1998  相似文献   

6.
 Significant coral reef ecosystems occur along the northwest (NW) coast of Australia in an oceanographic setting somewhat similar to that of the Great Barrier Reef off the northeast (NE) Australian coast. Seasonal and inter-annual variations of several surface climate variables are described for the NW coastal region of Australia from 10°–30°S over the period 1960 to 1992. Average climatic conditions in this region are compared with those for similar latitudes on the Great Barrier Reef. On average, sea surface temperatures (SSTs) along the NW Australian coast are warmer than at similar latitudes along the NE coast north of ∼20°S and cooler than the NE coast at higher latitudes. The annual range of SSTs along the NW coast is lower than found along the NE coast. There is also lower average cloud amount (and greater incoming solar radiation) along the NW coast compared with the NE coast. Corals reefs off the NW Australian coast are less likely to be influenced by freshwater and associated terrestrial impacts than nearshore reefs of the GBR. Although the latitudinal distribution of tropical cyclone activity is similar along the NW and NE Australian coasts, the total number of tropical cyclones and tropical cyclone days is substantially higher on the NW coast compared with the NE coast. Accepted: 22 June 1998  相似文献   

7.
 Field studies of gas exchange of Populus deltoides, Prosopis juliflora and Acacia auriculiformis showed large diurnal changes in net photosynthesis (A) and stomatal conductance (gs) during autumn. P. deltoides and P. juliflora undergo pronounced midday depression in A and gs while A. auriculiformis showed a one-peak response. Several factors indicative of photosynthetic performance were found to be reversibly affected during afternoon decline. These include (i) decrease in initial slope of the CO2 response curve (carboxylation efficiency), (ii) substantial increase in CO2 compensation point and (iii) decrease in overall quantum yield of photosystem II. The phenomenon can be duplicated in potted plants by simulating a typical daily pattern of PPFD and VPD. It is found that high VPD induces significant decline in A and gs at moderate temperature and saturating PPFD (800 μmol m–2 s–1) whereas these parameters are only marginally affected at high PPFD and low VPD. Fluorescence data show that the tree species under study have a high capacity for safe dissipation of excessive excitation energy. The activation of photorespiration, as evident from an increase in CO2 compensation point, maintains constant internal CO2 concentration (Ci) which may aid in minimizing photoinhibition during stomatal closure at midday. In case of P. deltoides and P. juliflora the stomata seem to be quite sensitive to the changes in humidity whereas this does not appear to be essential in case of A. auriculiformis because of its phyllode structure that endows it with mechanisms for conserving water without undergoing large-scale stomatal changes. Received: 16 October 1997 / Accepted: 5 March 1998  相似文献   

8.
In an ongoing long-term study of a breeding population of common toads Bufo bufo at a pond in southern England, the dates of first spawning have been recorded since 1980, the dates of toadlet emergence since 1984, and the numbers of emergent toadlets estimated since 1988. The dates when spawn was first laid varied considerably between years from the earliest on 2 February 1993 (day 33) to the latest on 19 March 1996 (day 79). The duration of the tadpole stage was negatively correlated with the date of appearance of first spawn and was up to 30 days longer in early spawning years than in late ones. Despite this, toadlets still emerged from the natal pond up to 36 days earlier in early spawning years than in late ones. Significant positive correlations were found between the duration of the tadpole stage and both the proportion of days during the tadpole stage when the minimum ground temperature was at or below 0°C and the proportion of days when 10 mm or more rain fell. Tadpole mortality was positively correlated with the proportion of days during the tadpole stage when the minimum ground temperature was at or below 1.5°C. Evidence was also found to suggest that tadpole mortality was density-dependent, being proportionately higher when initial tadpole numbers were high than when they were low. Received: 7 May 1999 / Accepted: 19 July 1999  相似文献   

9.
The natural geographical occurrence, carbon assimilation, and structural and biochemical diversity of species with C4 photosynthesis in the vegetation of Mongolia was studied. The Mongolian flora was screened for C4 plants by using 13C/12C isotope fractionation, determining the early products of 14CO2 fixation, microscopy of leaf mesophyll cell anatomy, and from reported literature data. Eighty C4 species were found among eight families: Amaranthaceae, Chenopodiaceae, Euphorbiaceae, Molluginaceae, Poaceae, Polygonaceae, Portulacaceae and Zygophyllaceae. Most of the C4 species were in three families: Chenopodiceae (41 species), Poaceae (25 species) and Polygonaceae, genus Calligonum (6 species). Some new C4 species in Chenopodiaceae, Poaceae and Polygonaceae were detected. C4 Chenopodiaceae species make up 45% of the total chenopods and are very important ecologically in saline areas and in cold arid deserts. C4 grasses make up about 10% of the total Poaceae species and these species naturally concentrate in steppe zones. Naturalized grasses with Kranz anatomy,of genera such as Setaria, Echinochloa, Eragrostis, Panicum and Chloris, were found in almost all the botanical-geographical regions of Mongolia, where they commonly occur in annually disturbed areas and desert oases. We analyzed the relationships between the occurrence of C4 plants in 16 natural botanical-geographical regions of Mongolia and their major climatic influences. The proportion of C4 species increases with decreasing geographical latitude and along the north-to-south temperature gradient; however grasses and chenopods differ in their responses to climate. The abundance of Chenopodiaceae species was closely correlated with aridity, but the distribution of the C4 grasses was more dependent on temperature. Also, we found a unique distribution of different C4 Chenopodiaceae structural and biochemical subtypes along the aridity gradient. NADP-malic enzyme (NADP-ME) tree-like species with a salsoloid type of Kranz anatomy, such as Haloxylon ammodendron and Iljinia regelii, plus shrubby Salsola and Anabasis species, were the plants most resistant to ecological stress and conditions in highly arid Gobian deserts with less than 100 mm of annual precipitation. Most of the annual C4 chenopod species were halophytes, succulent, and occurred in saline and arid environments in steppe and desert regions. The relative abundance of C3 succulent chenopod species also increased along the aridity gradient. Native C4 grasses were mainly annual and perennial species from the Cynodonteae tribe with NAD-ME and PEP-carboxykinase (PEP-CK) photosynthetic types. They occurred across much of Mongolia, but were most common in steppe zones where they are often dominant in grazing ecosystems. Received: 17 March 1999 / Accepted: 1 November 1999  相似文献   

10.
The frequent clinical observation that the course of atopic eczema, a skin disease involving a disturbed cutaneous barrier function, is influenced by climate and weather motivated us to analyse these relationships biometrically. In the Swiss high-mountain area of Davos the intensity of itching experienced by patients with atopic eczema was evaluated and compared to 15 single meteorological variables recorded daily during an entire 7-year observation period. By means of univariate analyses and multiple regressions, itch intensity was found to be correlated with some meteorological variables. A clear-cut inverse correlation exists with air temperature (coefficient of correlation: –0.235, P<0.001), but the effects of water vapour pressure, air pressure and hours of sunshine are less pronounced. The results show that itching in atopic eczema is significantly dependent on meteorological conditions. The data suggest that, in patients with atopic eczema, a certain range of thermo-hygric atmospheric conditions with a balance of heat and water loss on the skin surface is essential for the skin to feel comfortable. Received: 9 August 1999 / Revised: 10 July 2000 / Accepted: 11 July 2000  相似文献   

11.
Leaf growth patterns were investigated in 11 evergreen (with leaf life-spans of just more than 1 year) and 15 deciduous species, occurring along an elevational gradient of 600–2200 m elevation in the Central Himalaya. Records were made of the leaf initiation period, leaf population dynamics, leaf expansion, leaf mass changes, leaf longevity and related parameters. Species of both groups produced leaves at similar rates during March to April, the driest period of the year. Species of both groups had approximately fully developed foliage during the warm, wet period (mid-June to mid-September) of the monsoon. However, significant differences were found at group level in other characters: shoot length (19.5 cm per shoot for deciduous and 11.7 cm for evergreen species); leaf population per 10 cm shoot length (4.7 vs 15.0); leaf area (107.9 vs 41.4 cm2/ leaf); specific leaf mass (106.9 vs 191.3 g/m2); and leaf mass loss after the monsoon period, being rapid and higher (31.6%) in deciduous species and slow and limited in the evergreens (26.2%). However, species of the two groups showed considerable overlaps in the values of above characters. The evergreen species of the Central Himalaya resembled the deciduous species of the region more than the multi-year leaves of clearly evergreen species. The evergreens bear leaves throughout the year, but like deciduous species bear the cost of annual replacement of old leaves by new leaves. They seem to outcompete deciduous species by producing annually a greater mass of leaves of low-carbon cost (per unit leaf mass), which is capable of conducting photosynthesis all year round. A situation of less marked contrast between favourable and nonfavourable periods, with respect to temperature, seems to favour the leaf characters of the evergreens.  相似文献   

12.
Decomposition rate constants were measured for boles of 155 large dead trees (>10 cm diameter) in central Amazon forests. Mortality data from 21 ha of permanent inventory plots, monitored for 10–15 years, were used to select dead trees for sampling. Measured rate constants varied by over 1.5 orders of magnitude (0.015–0.67 year–1), averaging 0.19 year–1 with predicted error of 0.026 year. Wood density and bole diameter were significantly and inversely correlated with rate constants. A tree of average biomass was predicted to decompose at 0.17 year–1. Based on mortality data, an average of 7.0 trees ha–1 year–1 died producing 3.6 Mg ha–1 year–1 of coarse litter (>10 cm diameter). Mean coarse litter standing-stocks were predicted to be 21 Mg ha–1, with a mean residence time of 5.9 years, and a maximum mean carbon flux to the atmosphere of 1.8 Mg C ha–1 year–1. Total litter is estimated to be partitioned into 16% fine wood, 30% coarse wood, and 54% non-woody litter (e.g., leaves, fruits, flowers). Decomposition rate constants for coarse litter were compiled from 20 globally distributed studies. Rates were highly correlated with mean annual temperature, giving a respiration quotient (Q 10) of 2.4 (10°C–1). Received: 14 June 1999 / Accepted: 31 August 1999  相似文献   

13.
The White-Winged Wood duck (Asarcornis scutulata) is an endangered forest wetland bird currently on the verge of extinction due to an array of anthropogenic pressures. It has been reported that global climate change could affect the distribution of many bird species globally. Therefore, an understanding the potential distribution of the White-Winged Wood duck in future climate scenarios could facilitate the creation of immediate conservation plans and the mitigation of subsequent threats. This is the first ever study on the distribution of White-Winged Wood Duck (WWWD) where Representative Concentration Pathway (RCP) 8.5 scenario was used to forecast the distribution of the WWWD in the Indian Eastern Himalayan region in the 2050s and 2070s. The study revealed that 1.87 % of the total area of IEH has the high potential distribution of WWWD. The state of Assam alone includes 1.68 % of the highly potential habitat in the region. It was predicted that 436.61 km2 of highly potential habitat would be lost by 2070. Changes in the annual temperature range, precipitation in the wettest months (June to September), and precipitation decrease in the warmest quarter (October to December) would result in the loss of highly potential habitats. Under the influence of climate change, the habitat of WWWD in the eastern part of the region is likely to shift towards the western part. It was found that there will be a decline in potential habitat in the Indian states of Arunachal Pradesh, Assam, Nagaland, and Tripura located in the IEH under future climate scenarios. The potential of areas located at the Bhutan and Assam border would increase for supporting WWWD as this species' requires the average annual precipitation about 1000–1200 mm. However, the simultaneous anthropogenic activity would further destroy potential habitats in the future. The current study has provided baseline data on the potential distribution of WWWD in the IEH region for immediate conservation management plans.  相似文献   

14.
We examined the distribution of butterflies over the mostly arid and semi-arid continent of Australia and analyzed the proportion of migrant species and species diversity with respect to an array of climatic and geographic variables. On a continent-wide scale, latitude explained virtually no variance in either proportion of migrants (r 2=0.01) or species diversity (r 2=0.03) in Australian butterflies. These results are in marked contrast to those for temperate-zone birds from three continents where latitude explained between 82 and 98% of the variance in frequency of migrants and also accounted for much of the variance in bird species diversity. In eastern Australia where rainfall regimes are similar to those in temperate Europe and North and South America, latitude explains 78% of the variance in frequency of butterfly migrants. In both eastern and central Australia, latitude also accounts for relatively high proportions of the variance in species diversity. Rainfall patterns and especially soil moisture are negatively associated with migration frequency in Australian butterfly faunas, both alone and in combination with other climate variables. Where moisture levels are relatively high, as in eastern Australia, measures of temperature are associated with migration frequency, a result consistent with findings for temperate-zone birds, suggesting latitude is a surrogate for temperature. The ultimate causes of migration in temperate-zone birds and Australian butterflies are the uneven temporal, and in Australia also spatial, distribution of resources. Uneven distribution is brought about primarily by temperature in temperate regions and by erratic rainfall over much of arid Australia. As a key determinant of productivity, especially in the tropics and subtropics, aridity is likely to be an important determinant of the global distributions of migrants. Received: 14 July 1999 / Accepted: 12 January 2000  相似文献   

15.
Phenology of high-altitude plants of Kumaun in Central Himalaya,India   总被引:1,自引:0,他引:1  
The various developmental stages of 184 species of high-altitude plants were studied during 1987 and 1988 in the Pindari glacial moraine area of Kumaun Himalaya in the Central Himalaya. The initiation of growth was synchronised with the beginning of the spring/or summer temperature rise and snowmelt. In this high-altitude zone, the peaks of various phenophases succeeded one after another over about 4 months from early June to October. It is suggested that the plants complete various growth cycles within a very short period of favourable conditions to ensure the survival of their progeny.  相似文献   

16.
Aim Climate change has far‐reaching effects on species and ecosystems. The aims of this study were to determine how climate factors affect the growth pattern of indigenous and exotic trees in Zambia and to predict tree growth responses to a warmer climate with the use of mathematical models. Location Two savanna sites in central Zambia. Methods Diameter at breast height (1.3 m above ground, d.b.h.) of 91 permanently marked trees belonging to three indigenous and four exotic species was measured fortnightly for periods of 1–2 years from 1998 to 2003. Correlation and regression analysis was used to determine the effect of climate factors (minimum, maximum and average temperature and rainfall) on monthly daily d.b.h. increment of each species. Regression models were used to predict the growth behaviour of trees under a 0.5 °C warmer climate. Results Interactions between temperature and rainfall explained 60–98% of the variation in d.b.h. increment in all the tree species, except the exotic Eucalyptus grandis. For deciduous species, stem expansion was delayed by 2–12 weeks following leaf‐flush and d.b.h. increment peaked during the rainy season. Evergreen and deciduous species could not be separated on the basis of annual d.b.h. increment because the higher growth rates of deciduous species compensated for the shorter growing period. Mathematical models predicted slight changes in d.b.h. growth pattern under a 0.5 °C warmer climate in five of the seven species. Significant changes in d.b.h. growth patterns were predicted in the indigenous Bridelia micrantha and exotic Gmelina arborea under a warmer climate. However, models failed to adequately represent potential soil water stress that might result from changes in tree growth patterns and a warmer climate. Main conclusions Climate factors explained a large proportion of the variation in diameter growth of both indigenous and exotic trees, rendering it possible to model tree growth patterns from climate data. Tree growth models suggest that a rise in temperature of 0.5 °C is unlikely to induce significant changes in the growth behaviour of the majority of the studied species. However, because the growth behaviour of some species may be substantially affected by climate change, it is recommended that strategies for the future production of such climate‐sensitive trees should incorporate aspects of climate change.  相似文献   

17.
The biomass and net primary productivity (NPP) of 5- to 15-year-old Shisham (Dalbergia sissoo Roxb.) forests growing in central Himalaya were estimated. Allometric equations were developed for all above- and below-ground components of trees and shrubs for each stand. Understorey forest floor biomass and litter fall were also estimated in forest stands. The biomass (dry matter), forest floor biomass (standing crop litter), tree litter fall and NPP of trees and shrubs increased with increasing age of the forest stand, whereas the dry matter and herb NPP decreased significantly (P < 0.001) with increasing age of the forest. Total forest biomass and NPP ranged from 58.7 (5-year-old stand) to 136.1 t ha(-1) (15-year-old stand) and 12.6 (5-year-old stand) to 20.3 t ha(-1) year(-1) (15-year-old stand), respectively. Of these values, tree biomass accounted for 85.7 (5-year-old stand) to 90.1% (15-year-old) of total forest biomass, and tree NPP for 72.2 (5-year-old) to 82.3% (15-year-old) of total forest NPP. The biomass accumulation ratio (BAR) of the bole component (bole wood + bole bark) increased with increasing age of the forest stand. The bole BAR was 5.8 (5-year-old stand) to 7.9 (15-year-old stand). However, total BAR of the forest stand ranged from 5.5 (5-year-old) to 7.5 (15-year-old).  相似文献   

18.
In the mid-western Himalaya (altitude 1350 m, rainfall 1100 mm), multipurpose trees found as escapees in agricultural fields or naturally growing in the forests, play an important role in providing fuel, fooder and small timber to the farmers. Shoot elogation, and tree architecture of 4 year old trees of Grewia optiva, Robinia pseudoacacia and Celtis australis (early successionals), and Quercus leucotrichophora, Q. glauca and Ilex odorata (late successionals), were analyzed. All the late successional species showed a proleptic type of bud and branch production, while the early successional trees made growth through syllepsis. The shoot elongation differed significantly (P <0.05) with the crown position, and ranged from 11 to 30 cm in different species. Early successional species tended to maintain a comparatively narrow crown and showed a significantly (P <0.05) higher ramification ratio, and multilayered canopy. The late successionals, in contrast, showed a wide crown with monolayered canopy, adapted to the weak light intensity. There was only one flush of leaves in Q. leucotrichophora and Q. glauca while in the rest of the species there were two distinct flush periods. The results are important for the management of agroforestry trees.  相似文献   

19.
 Glial cells are involved in several functions during the development of the nervous system. To understand potential glial contributions to neuropile formation, we examined the cellular pattern of glia during the development of the mushroom body, antennal lobe and central complex in the brain of the honeybee. Using an antibody against the glial-specific repo-protein of Drosophila, the location of the glial somata was detected in the larval and pupal brain of the bee. In the early larva, a continuous layer of glial cell bodies defines the boundaries of all growing neuropiles. Initially, the neuropiles develop in the absence of any intrinsic glial somata. In a secondary process, glial cells migrate into defined locations in the neuropiles. The corresponding increase in the number of neuropile-associated glial cells is most likely due to massive immigrations of glial cells from the cell body rind using neuronal fibres as guidance cues. The combined data from the three brain regions suggest that glial cells can prepattern the neuropilar boundaries. Received: 3 November 1996 / Accepted: 7 February 1997  相似文献   

20.
Eight forest types varying in disturbance frequencies were identified along an elevational gradient in Uttaranchal, central Himalaya. Low elevation forests were close to human habitation and had high disturbance frequency, while high elevation forests were situated far from the human habitation and had low disturbance. The dominant tree species at low elevation were Pinus roxburghii and Quercus leucotrichophora, while Q. floribunda and Q. semecarpifolia dominated the high elevation forests. Pyracantha crenulata was the shrub present in all the forests except in Q. semecarpifolia forest and Anaphalis contorta, a herb species, was present in all the forests. Disturbance decreased the dominance of single species and increased the plant biodiversity by mixing species of different successional status. Species richness and diversity for all the vegetation layers were higher in low elevation–high disturbance forests. Mean tree density decreased from high to moderate and increased in low disturbance. The shrub density decreased from high to low disturbance while the reverse occured for herbs. High proportion of early successional species in disturbed forests indicated that disturbance induces succession. The mean number of young individuals increasing from high to low disturbance indicates that disturbance adversely affects regeneration. But, however, the high number of young individuals of Coriaria nepalensis, a small non-leguminous nitrogen fixing tree, in disturbed forests shows that the forest is regenerating. This species could be helpful in the re-establishment of original vegetation through triggering the regeneration of these forests. High elevation–low disturbed forests separated from low elevation–high disturbed forests. Forest type and elevation may have more influence on tree richness while shrub and herb richness may be more sensitive to disturbance and forest types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号