首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We identified four mutations in two previously undescribed loci involved in microtubule function in Aspergillus nidulans as extragenic suppressors of benA33, a heat-sensitive beta-tubulin mutation. Three of the four mutations map to a locus closely linked to riboB on linkage group VIII; we designated this locus mipA (for microtubule-interacting protein). We were not able to map the remaining suppressor because of chromosomal rearrangements. However, since it recombines with riboB at a significantly higher frequency than the mipA alleles, it is unlikely to be in mipA; thus, we designated it mipB1. The mip mutations are not allelic to the previously identified loci that encode alpha- and beta-tubulin, and it is likely that mipA and mipB encode previously unidentified nontubulin proteins involved in microtubule function. Each of the mip mutations suppresses the heat sensitivity conferred by benA33 and suppresses the blockage of nuclear division and movement conferred by this mutation at high temperatures. Interactions between mipA and benA are allele specific. All of the mipA mutations are cryptic in a wild-type benA background but cause cold sensitivity in combination with benA33. These mutations also confer cold sensitivity in combination with benA31 and benA32 and reduce the resistance conferred by these mutations to the antimicrotubule agent benomyl but do not suppress the heat sensitivity conferred by these alleles. Finally, the mipA alleles suppress the heat sensitivity conferred by benA11, benA17, and benA21 but do not confer cold sensitivity in combination with these alleles.  相似文献   

2.
The p-fluorophenylalanine (FPA) resistance of acc phe, which has previously been shown (Brooks et al., 1972) to be a try-1 mutant, has been further investigated. When incubated in the absence of tyrosine, acc phe and also tyr-1 auxotrophs show a gradual increase in free phenylalanine in the cell but a sharp decrease in FPA incorporation into protein. The decrease in FPA incorporation is apparently due to the excess phenylalanine in the mutants, since the normal endogenous pool component in wild type and also in the mutants incubated on tyrosine does not appear to compete with FPA for incorporation. The rate of FPA incorporation into protein in acc phe remains at 10–15% of the wild-type rate even when the ratio of free FPA to excess phenylalanine in the cell is high as 8:1. If wild type is supplied with exogenous phenylalanine and FPA simultaneously, phenylalanine is preferentially incorporated into protein but, in contrast to the mutant, the rate of FPA incorporation increases as the ratio of free FPA to phenylalanine increases. On the basis of differences in competition with FPA and in susceptibilities to mild extraction procedures, it is proposed that phenylalanine can be located in at least three compartments in Neurospora: a small constant-size endogenous pool always seen in wild type; an expandable exogenous pool; and a protein synthesis pool which is preferentially populated by endogenous phenylalanine but can be entered by exogenous molecules when biosynthesis is regulated. In acc phe, where phenylalanine biosynthesis is not regulated, the excess phenylalanine is located primarily in the protein synthesis pool where it only has to compete with a small FPA component and is thereby preferentially incorporated into protein in this mutant.This work was supported, in part, by an Atomic Energy Commission grant to the Institute of Molecular Biophysics, The Florida State University, and by the Genetics Training Grant, funded by the National Institutes of Health. It contains, in part, data from the doctoral thesis of the senior author, who was supported by a Florida State University Nuclear Fellowship and by a Public Health Service Fellowship.  相似文献   

3.
We are using molecular genetic techniques to identify sites of interaction of beta-tubulin with benzimidizole anti-microtubule agents. We have developed a marker-rescue technique for cloning mutant alleles of the benA, beta-tubulin gene of Aspergillus nidulans and have used the technique to clone two mutant benA alleles, benA16 and benA19. These are the only A. nidulans alleles known to confer resistance to the benzimidazole antimicrotubule agent thiabendazole and supersensitivity to other benzimidazole antimicrotubule agents including benomyl and its active breakdown product, carbendazim. benA16 has been shown, moreover, to reduce thiabendazole binding to beta-tubulin. We have sequenced the two mutant alleles and have found that they carry different nucleotide changes that cause the same single amino acid substitution, valine for alanine at amino acid 165. Since thiabendazole and carbendazim differ at only one side chain, the R2 group, we conclude that the region around amino acid 165 is involved in the binding of the R2 group of benzimidazole antimicrotubule agents to beta-tubulin.  相似文献   

4.
A p-fluorophenylalanine-resistant mutant (acc phe ) which grows on minimal medium has an altered prephenate dehydrogenase and maps at the try-1 locus. Two other tyr-1 mutants which require tyrosine for normal growth can eventually grow on minimal or minimal plus p-fluorophenylalanine (FPA). The three different tyr-1 mutants all accumulate phenylalanine when incubated in minimal medium. FPA is incorporated into protein at only 10–15% the wild-type rate when mutant conidia are incubated in a minimal salts-glucose system. Under the same conditions, phenylalanine incorporation in the mutants is initially the same as in wild type. When tyrosine is included in the medium, resistance to FPA is lost, phenylalanine accumulation is prevented, and FPA is incorporated into protein at the wild-type rate. Tyrosine apparently prevents the overproduction of phenylalanine by preventing the overproduction of chorismate and prephenate.This work was supported, in part, by an Atomic Energy Commission grant to the Institute of Molecular Biophysics, the Florida State University, and by the Genetics Training Grant, funded by the National Institute of Health. It contains, in part, data from the doctoral thesis of the senior author, who was supported by a Florida State University Nuclear Fellowship and by a Public Health Service Fellowship.  相似文献   

5.
Summary We have isolated large numbers of conditionally lethal -tubulin mutations to provide raw material for analyzing the structure and function of tubulin and of microtubules. We have isolated such mutations as intragenic suppressors of benA33, a heat-sensitive (hs-) -tubulin mutation of Aspergillus nidulans. Among over 2,600 revertants isolated, 126 were cold-sensitive (cs-). In 41 of 78 cs- revertants analyzed, cold sensitivity and reversion from hs- to hs+ were due to mutations linked to benA33. In three cases reversion was due to mutations closely linked to benA33 but cold sensitivity was due to a coincidental mutation unlinked to benA33. In the remaining 34 cases reversion was due to mutations unlinked to benA33. Thirty-three of the revertants in which cold sensitivity and reversion were linked to benA33 were sufficiently cold-sensitive to allow us to select for rare recombinants between benA33 and putative suppressors in a revertant x wild-type (wt) cross. We found only one recombinant among 1,000 or more viable progeny from crosses of each of these revertants with a wt strain. Reversion is thus due to a back mutation or very closely linked suppressor in each case. We have analyzed 17 of these 33 revertants with greater precision and have found that, in each case, reversion is due to a suppressor mutation that maps to the right of benA33. The recombination frequencies between benA33 and the suppressors are very low (less than 1.2×10-4) in all cases. Five of these 33 revertants have been examined microscopically and in each of them nuclear division and nuclear migration are inhibited at a restrictive temperature. We conclude that at least some and perhaps all of these revertants carry intragenic suppressors of benA33 that, in combination with benA33, cause cold sensitivity by inhibiting the functioning of microtubules at low temperatures. Of the 17 suppressors mapped, 11 map to two clusters. These clusters are likely to define regions particularly important to the functioning of the -tubulin molecule.  相似文献   

6.
The amino acid antimetabolite, DL-p-fluorophenylalanine (FPA), inhibited induction of flowering in the short-day cocklebur plant, Xanthium pensylvanicum Wall., primarily by interfering with processes occurring during the inductive dark period. At the concentrations used the inhibitor had little effect on subsequent vegetative development of the plant.The inhibition was largely reversed (internally) by L-phenylalanine, but not by D-phenylalanine nor by DL-tyrosine. The FPA strongly inhibited the absorption of labeled phenylalanine, leucine, and glycine, and inhibited the conversion of phenylalanine into protein in experiments where incorporation was separated in time from effects upon absorption. The FPA, too, was incorporated into protein, at nearly half the rate of phenylalanine. Neither D- nor L-phenylalanine significantly interfered with absorption of FPA, showing the FPA did not affect amino acid absorption by simple competition for a common carrier site. It was concluded that FPA may affect flower induction because of its interference with normal enzyme synthesis, although effects on other processes might also be involved.  相似文献   

7.
We have constructed a chimeric beta-tubulin gene that places the structural gene for the tubC beta-tubulin of Aspergillus nidulans under the control of the benA beta-tubulin promoter. Introduction of either this chimeric gene or a second wild-type benA gene into a benomyl-resistant benA22 strain causes it to become benomyl sensitive, indicating that the introduced genes are functional. Analysis of the tubulin proteins synthesized in benA22 strains into which a second wild-type benA beta-tubulin gene was transformed showed that the total amount of beta-tubulin protein was the same as in the parental strain with a single benA gene. Thus the level of beta-tubulin must be regulated. This was also true of transformants carrying an extra copy of the chimeric beta-tubulin gene. The total amount of beta-tubulin was the same as in the parental strain. Two-dimensional gel analysis showed that the endogenous benA22 and the introduced chimeric tubC gene contributed equally to the total beta-tubulin pool. The fact that one-half of the benA beta-tubulin could be replaced by tubC beta-tubulin with no effect on the growth of the cells suggests that the benA and tubC beta-tubulins are functionally interchangeable.  相似文献   

8.
An internal 1.4-kb Bst EII fragment was used to disrupt the benA gene and establish heterokaryons. The heterokaryons demonstrated that the molecular disruption of benA results in a recessive benA null mutation. Conidia from a heterokaryon swell and germinate but cannot undergo nuclear division and are thus inviable. A chimeric beta-tubulin gene was constructed with the benA promoter driving the tubC structural gene. This chimeric gene construction was placed on a plasmid containing a selectable marker for Aspergillus transformation and the gene disrupting fragment of benA. Integration of this plasmid at benA by the internal gene disrupting fragment of benA simultaneously disrupts the benA gene and replaces it with the chimeric beta-tubulin gene, rescuing the benA null generated by the integration. Strains generated by this procedure contain only tubC beta-tubulin for all beta-tubulin functions. Strains having only tubC beta-tubulin are viable and exhibit no detectable microtubule dysfunction though they are more sensitive than wild-type strains to the antimicrotubule drug benomyl. It is concluded that the two beta-tubulin genes of Aspergillus nidulans, though highly divergent, are interchangeable.  相似文献   

9.
Aspergillus nidulans beta-tubulin genes are unusually divergent   总被引:14,自引:0,他引:14  
G S May  M L Tsang  H Smith  S Fidel  N R Morris 《Gene》1987,55(2-3):231-243
  相似文献   

10.
Tubulins in Aspergillus nidulans   总被引:2,自引:0,他引:2  
The discovery and characterization of the tubulin superfamily in Aspergillus nidulans is described. Remarkably, the genes that encode alpha-, beta-, and gamma-tubulins were all identified first in A. nidulans. There are two alpha-tubulin genes, tubA and tubB, two beta-tubulin genes, benA and tubC, and one gamma-tubulin gene, mipA. Hyphal tubulin is encoded mainly by the essential genes tubA and benA. TubC is expressed during conidiation and tubB is required for the sexual cycle. Promoter swapping experiments indicate that the alpha-tubulins encoded by tubA and tubB are functionally interchangeable as are the beta-tubulins encoded by benA and tubC. BenA mutations that alter resistance to benzimidazole antimicrotubule agents are clustered and define a putative binding region for these compounds. gamma-Tubulin localizes to the spindle pole body and is essential for mitotic spindle formation. The phenotypes of mipA mutants suggest, moreover, that gamma-tubulin has essential functions in addition to microtubule nucleation.  相似文献   

11.
12.
Six mutants resistant to p-fluorophenylalanine (FPA) were selected on a medium containing aspartate as the sole source of nitrogen using a phenylalanine-requiring (phenA)auxotroph of A. nidulans as the wild type. The mutants, on the basis of genetic characterization, were found to be alleilic and located on the left arm of the linkage group III, approximately 13 map unit left to meth H locus, henceforth assigned to the symbol fpaV. At a fixed concentration of phenylalanine (23 micrograms/ml), the LD50 value of FPA for all the six mutants was found to be about three times more than that for the wild type strain. Affinity chromatographic purification of the enzyme phenylalanyl-tRNA (Phe-tRNA) synthetase from the mutant as well as the wild type strains, revealed that the wild type enzyme had about 1.4-fold higher affinity for phenylalanine as compared to that for FPA, both in the affinity column and in the catalytic reaction. However, the mutant enzyme showed almost a similar affinity for both in columns but a greatly reduced affinity for FPA in the catalytic reaction.  相似文献   

13.
The effect of p-fluorophenylalanine (FPA) on growing cultures of Escherichia coli was studied with regard to the composition and morphology of the cell envelope. A cell wall fraction was prepared by autolysis in hypertonic medium, and the resulting spheroplasts were osmotically lysed to obtain a cytoplasmic membrane fraction. Incorporation of labeled phenylalanine, FPA, and N-acetylglucosamine into both fractions of FPA-inhibited cells suggested that the composition of the membrane changed with time, whereas that of the cell wall remained relatively constant. Amino acid analysis revealed changes in the composition of the membrane fraction after FPA inhibition. Electron micrographs of shadowed cells and membranes revealed the presence of electron-dense metachromatic granules during the early stages of FPA inhibition.  相似文献   

14.
Avena coleoptile elongation: stimulation by fluorophenylalanine   总被引:1,自引:1,他引:0       下载免费PDF全文
A 100 to 150% stimulation of Avena coleoptile segment elongation by the amino acid analogue p-fluorophenylalanine (FPA) has been observed. The effect is reversed by phenylalanine and is not seen with comparable concentrations of sodium fluoride. FPA does not alter elongation of red-irradiated segments. Stimulation by FPA occurs only when the apex is intact and the segments are incubated in the absence of exogenous auxin. In the presence of FPA, 14C-leucine uptake by coleoptile segments is reduced by 34% and protein synthesis by 42%. When pre-incubated on labeled media and subsequently transferred to unlabeled media, segments fail to incorporate into the protein fraction any of the previously absorbed label. It is therefore difficult to ascertain whether FPA results in a genuine inhibition of protein synthesis in apical coleoptile segments. Possible mechanisms for the action of FPA and its relationship to light dependent elongation are considered.  相似文献   

15.
Summary We have isolated and characterized a new class of p-fluorophenylalanine (FPA)-resistant mutant in Aspergillus nidulans using a phenA strain as the wild type, by optimizing the conditions of growth. All four spontaneous mutants selected on a medium containing FPA were found to be recessive to their wild-type alleles in heterozygous diploids. Complementation analyses and linkage data showed that they were allelic and mapped at a single locus (fpaU) in the facA-riboD interval on the right arm of linkage group V. Partial purification and characterization of Phe-tRNA synthetase from wild-type and mutant strains revealed that the mutant enzyme had a greatly reduced ability to activate the analogue. It is suggested that mutation in the fpaU gene brings about a structural alteration in Phe-tRNA synthetase.Abbreviations FPA DL-p-fluorophenylalanine - phenA auxotroph of phenylalanine - Phe-tRNA synthetase phenylalanyl-transfer ribonucleic acid synthetase Current address: Department of Biological Sciences (M/C 066) The University of Illinois at Chicago, Box 4348, Chicago, IL 60680, USA  相似文献   

16.
Aspergillus contains multiple tubulin genes   总被引:6,自引:0,他引:6  
Previous work with benomyl-resistant mutants of Aspergillus nidulans has demonstrated that the benA locus is a structural gene for beta-tubulin. Two of the benA mutants, benA22 and benA85, show altered electrophoretic mobilities on two-dimensional gels for two beta-tubulins (designated beta 1 and beta 2). These shifts of the beta 1- and beta 2-tubulins uncover a spot in the region where wild-type beta-tubulins migrate that is occluded on gels of wild-type extracts by the beta 1- and beta 2-tubulins. Evidence has now been obtained indicating that this spot represents an additional beta-tubulin (designated beta 3). Tubulin was partially purified from Aspergillus and run on one- and two-dimensional gels and the band or spot uncovered by the shift of the beta 1- and beta 2-tubulins was identified as a beta-tubulin by immunoblotting with monoclonal and affinity-purified polyclonal anti-tubulin antibodies and by one-dimensional peptide mapping. These observations show that Aspergillus contains at least two structural genes for beta-tubulins. Similar techniques have also been applied to a mutant showing altered alpha-tubulins to confirm and modify earlier observations suggesting that at least two structural genes for alpha-tubulins are also present.  相似文献   

17.
Pseudomonas aeruginosa displays a native resistance to a variety of inhibitory compounds, including many analogues of amino acids, purines, and pyrimidines. Therefore, it has been difficult to isolate analogue-resistant regulatory mutants which have been so valuable in other microbial species for the study of enzyme control mechanisms and for the study of amino acid transport and its regulation. However, we have found that increased sensitivity to growth inhibition by analogues can be demonstrated by manipulation of the nutritional environment. When P. aeruginosa is grown with fructose as the nutritional source of carbon and energy, the cells become sensitive to growth inhibition by beta-2-thienylalanine and p-amino-phenylalanine, analogues of phenylalanine and tyrosine, respectively. Thus, mutants were isolated which are resistant to growth inhibition by beta-2-thienylalanine and p-amino-phenylalanine when fructose is the carbon source, and many of the beta-2-thienylalanine-resistant mutants overproduce phenylalanine. Several lines of evidence suggest that the increased sensitivity to growth inhibition by analogues of phenylalanine and tyrosine reflects a decreased rate of synthesis of aromatic amino acids or their precursors when fructose is the carbon source. This general approach promises to be valuable in the study of regulatory phenomena in microorganisms which, like P. aeruginosa, are naturally resistant to many metabolite analogues.  相似文献   

18.
Escherichia coli K-12 mutants that are resistant to bacteriophage chi, defective in motility, and unable to grow at high temperature (42 degrees C) were isolated from among those selected for rifampin resistance at low temperature (30 degrees C) after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Genetic analysis of one such mutant indicated the presence of two mutations that probably affect the beta subunit of ribonucleic acid (RNA) polymerase: one (rif) causing rifampin resistance and the other (Ts-74) conferring resistance to phage chi (and loss of motility) and temperature sensitivity for growth. Observations with an electron microscope revealed that the number of flagella per mutant cell was significantly reduced, suggesting that the Ts-74 mutation somehow affected flagella formation at the permissive temperature. When a mutant culture was transferred from 30 to 42 degrees C, deoxyribonucleic acid synthesis accelerated normally, but RNA or protein synthesis was enhanced relatively little. The rate of synthesis of beta and beta' subunits of RNA polymerase was low even at 30 degrees C and was further reduced at 42 degrees C, in contrast to the parental wild-type strain. Expression of the lactose and other sugar fermentation operons, as well as lysogenization with phage lambda, occurred normally at 30 degrees C, suggesting that the mutation does not cause general shut-off of gene expression regulated by cyclic adenosine 3',5'-monophosphate.  相似文献   

19.
Roots of decapitated maize seedlings (Zea mays L.) were exposed for 12 hours to 1.0 millimolar KNO3 (98.5 atom per cent 15N) in the presence and absence (control) of 0.1 millimolar p-fluorophenylalanine (FPA), an analog of the amino acid phenylalanine. FPA decreased nitrate uptake but had little effect on potassium uptake. In contrast, accumulation of both ions in the xylem exudate was greatly restricted. The proportion of reduced 15N-nitrogen that was translocated at each time was also restricted by FPA. These observations are interpreted as indicating that synthesis of functional protein(s) is required for nitrate uptake and for transport of potassium, nitrate, and reduced-15N from xylem parenchyma cells into xylem elements. The effect of FPA on nitrate reduction is less clear. Initially, FPA limited nitrate reduction more than nitrate uptake, but by 8 hours the cumulative reduction of entering nitrate was similar (~35%) in both control and FPA-treated roots. A relationship between nitrate uptake and nitrate reduction is implied. It is suggested that nitrate influx regulates the proportion of nitrate reductase in the active state, and thereby regulates concurrent nitrate reduction in decapitated maize seedlings.  相似文献   

20.
Strains of Aspergillus containing the benA22 mutation are resistant to benomyl for vegetative growth but do not produce conidia. To test whether conidiation involved an additional benomyl-sensitive tubulin (i.e., was mediated by a tubulin other than the tubulins coded for by the benA locus), a collection of mutants was produced that formed conidia in the presence of benomyl, i.e., were conidiation-resistant (CR-) mutants. We analyzed the tubulins of these CR- mutants using two-dimensional gel electrophoresis and found that the mutants lacked one species of beta-tubulin (designated beta 3). We have examined two of these mutants in detail. In crosses with strains containing wild-type tubulins, we found that the absence of the beta 3-tubulin co-segregated perfectly with the CR- phenotype. In diploids containing both the benA22 and CR- mutations, we found that the CR- phenotype was recessive and that beta 3-tubulin was present on two-dimensional gels of tubulins prepared from these diploids. In another set of crosses, these two CR- strains and seven others were first made auxotrophic for uridine and then crossed against strains that had homologously integrated a plasmid containing an incomplete internal fragment of the beta 3-tubulin gene and the pyr4 gene of Neurospora crassa (which confers uridine prototrophy on transformants). If the CR- phenotype were produced by a mutation in a gene distinct from the structural gene for beta 3-tubulin (designated the tubC gene), then crossing over should have produced some CR+ segregants among the uridine auxotrophic progeny of the second cross. All of the uridine auxotrophs from this type of cross, however, showed the CR- phenotype, suggesting that the mutation in these strains is at or closely linked to the tubC locus. The most obvious explanation of these results is that beta 3-tubulin is ordinarily used during conidiation and the presence of this species of beta-tubulin renders conidiation sensitive to benomyl. In the CR- mutants, beta 3-tubulin is absent, and in the presence of the benA22 mutation the benomyl-resistant beta 1-and/or beta 2-tubulin substitutes for beta 3 to make conidiation benomyl resistant. We discuss these results and give two models to explain the interactions between these beta-tubulin species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号