首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Spinal muscular atrophy is a neuromuscular disease resulting from mutations in the SMN1 gene, which encodes the survival motor neuron (SMN) protein. SMN is part of a large complex that is essential for the biogenesis of spliceosomal small nuclear RNPs. SMN also colocalizes with mRNAs in granules that are actively transported in neuronal processes, supporting the hypothesis that SMN is involved in axonal trafficking of mRNPs. Here, we have performed a genome-wide analysis of RNAs present in complexes containing the SMN protein and identified more than 200 mRNAs associated with SMN in differentiated NSC-34 motor neuron-like cells. Remarkably, ∼30% are described to localize in axons of different neuron types. In situ hybridization and immuno-fluorescence experiments performed on several candidates indicate that these mRNAs colocalize with the SMN protein in neurites and axons of differentiated NSC-34 cells. Moreover, they localize in cell processes in an SMN-dependent manner. Thus, low SMN levels might result in localization deficiencies of mRNAs required for axonogenesis.  相似文献   

4.
5.
Information transfer among regulatory T cell subsets is mediated by biologically active T cell factors. Many of these factors are comprised of two molecules: one that binds antigen, and another that is I-J+ and determines the self recognition capability of the factor (I-J molecule). In the in vitro response to sheep red blood cells, we used three functionally distinct I-J+ factors to study the relationship between polymorphic I-J determinants and the biological activity of these factors. Our study shows that several monoclonal I-J antibodies react with I-J molecules associated with T suppressor-inducer factor (TsiF) and T suppressor-effector factor (TseF), but not with T contrasuppressor inducer factor (TcsiF). In contrast, a different set of monoclonal I-J reagents reacts with TcsiF but not TsiF or TseF. Finally, some monoclonal I-J antibodies distinguish between I-J molecules associated with TsiF and TseF. Thus anti-I-J reagents differentially react with I-J determinants on regulatory factors, and this differential pattern of reactivity correlates with the functional activity of the factors. The possible relationship between I-J heterogeneity and the biological function of I-J molecules in regulation is discussed.  相似文献   

6.
7.
The mechanism of translation in eubacteria and organelles is thought to be similar. In eubacteria, the three initiation factors IF1, IF2, and IF3 are vital. Although the homologs of IF2 and IF3 are found in mammalian mitochondria, an IF1 homolog has never been detected. Here, we show that bovine mitochondrial IF2 (IF2(mt)) complements E. coli containing a deletion of the IF2 gene (E. coli DeltainfB). We find that IF1 is no longer essential in an IF2(mt)-supported E. coli DeltainfB strain. Furthermore, biochemical and molecular modeling data show that a conserved insertion of 37 amino acids in the IF2(mt) substitutes for the function of IF1. Deletion of this insertion from IF2(mt) supports E. coli for the essential function of IF2. However, in this background, IF1 remains essential. These observations provide strong evidence that a single factor (IF2(mt)) in mammalian mitochondria performs the functions of two eubacterial factors, IF1 and IF2.  相似文献   

8.
9.
S A Lewis  W Gu  N J Cowan 《Cell》1987,49(4):539-548
Mammalian cells express a spectrum of tubulin isotypes whose relationship to the diversity of microtubule function is unknown. To examine whether different isotypes are segregated into functionally distinct microtubules, we generated immune sera capable of discriminating among the various naturally occurring beta-tubulin isotypes. Cloned fusion proteins encoding each isotype were used first to tolerogenize animals against shared epitopes, and then as immunogens to elicit a specific response. In experiments using these sera, we show that there is neither complete nor partial segregation of beta-tubulin isotypes: both interphase cytoskeletal and mitotic spindle microtubules are mixed copolymers of all expressed beta-tubulin isotypes. Indeed, a highly divergent isotype normally expressed only in certain hematopoietic cells is also indiscriminately assembled into all microtubules both in their normal context and when transfected into HeLa cells.  相似文献   

10.
Human natural killer (NK) cells are one major component of lymphocytes that mediate early protection against viruses and tumor cells, and play an important role in immune regulatory functions. In this study, we demonstrated that human NK cells could be divided into four subsets, CD56hi CD16(-), CD56lo CD16(-), CD56+CD16+ and CD56(-)CD16+, based on the expression of cell surface CD56 and CD16 molecules. Phenotypic analysis of NK cell subsets indicated that the expression of activation markers, adhesion molecules, memory cell markers, inhibitory and activating receptors, and intracellular proteins (granzyme B and perforin) were heterogeneous. Following interleukin (IL)-2 stimulation, interferon-gamma was preferentially produced by CD56+CD16(-) NK cells and this subset showed more proliferative capacity. The cytolytic activity of both CD56+CD16(-) and CD56+/-CD16+ subsets could be augmented in response to IL-2. The data provided a new definition for NK cell subsets demonstrating their phenotypic and functional diversity and possible stage of NK cell differentiation in peripheral blood.  相似文献   

11.
12.
13.
R Tacke  J L Manley 《The EMBO journal》1995,14(14):3540-3551
ASF/SF2 and SC35 belong to a highly conserved family of nuclear proteins that are both essential for splicing of pre-mRNA in vitro and are able to influence selection of alternative splice sites. An important question is whether these proteins display distinct RNA binding specificities and, if so, whether this influences their functional interactions with pre-mRNA. To address these issues, we first performed selection/amplification from pools of random RNA sequences (SELEX) with portions of the two proteins comprising the RNA binding domains (RBDs). Although both molecules selected mainly purine-rich sequences, comparison of individual sequences indicated that the motifs recognized are different. Binding assays performed with the full-length proteins confirmed that ASF/SF2 and SC35 indeed have distinct specificities, and at the same time provided evidence that the highly charged arginine-serine region of each protein is not a major determinant of specificity. In the case of ASF/SF2, evidence is presented that binding specificity involves cooperation between the protein's two RBDs. Finally, we demonstrate that an element containing three copies of a high-affinity ASF/SF2 binding site constitutes a powerful splicing enhancer. In contrast, a similar element consisting of three SC35 sites was inactive. The ASF/SF2 enhancer can be activated specifically in splicing-deficient S100 extracts by recombinant ASF/SF2 in conjunction with one or more additional protein factors. These and other results suggest a central role for ASF/SF2 in the function of purine-rich splicing enhancers.  相似文献   

14.
RNA-binding proteins (RBPs) are proteins that bind to the RNA and participate in forming ribonucleoprotein complexes. They have crucial roles in various biological processes such as RNA splicing, editing, transport, maintenance, degradation, intracellular localization and translation. The RBPs bind RNA with different RNA-sequence specificities and affinities, thus, identification of protein binding sites on RNAs (R-PBSs) will deeper our understanding of RNA-protein interactions. Currently, high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP, also known as CLIP-Seq) is one of the most powerful methods to map RNA-protein binding sites or RNA modification sites. However, this method is only used for identification of single known RBPs and antibodies for RBPs are required. Here we developed a novel method, called capture of protein binding sites on RNAs (RPBS-Cap) to identify genome-wide protein binding sites on RNAs without using antibodies. Double click strategy is used for the RPBS-Cap assay. Proteins and RNAs are UV-crosslinked in vivo first, then the proteins are crosslinked to the magnetic beads. The RNA elements associated with proteins are captured, reverse transcribed and sequenced. Our approach has potential applications for studying genome-wide RNA-protein interactions.  相似文献   

15.
Mammalian cells have the ability to proliferate under different nutrient environments by utilizing different combinations of the nutrients, especially glucose and the amino acids. Under the conditions often used in in vitro cultivation, the cells consume glucose and amino acids in great excess of what is needed for making up biomass and products. They also produce large amounts of metabolites with lactate, ammonia, and some non-essential amino acids such as alanine as the most dominant ones. By controlling glucose and glutamine at low levels, cellular metabolism can be altered and can result in reduced glucose and glutamine consumption as well as in reduced metabolite formation. Using a fed-batch reactor to manipulate glucose at a low level (as compared to a typical batch culture), cell metabolism was altered to a state with substantially reduced lactate production. The culture was then switched to a continuous mode and allowed to reach a steady-state. At this steady-state, the concentrations of cells and antibody were substantially higher than a control culture that was initiated from a batch culture without first altering cellular metabolism. The lactate and other metabolite concentrations were also substantially reduced as compared to the control culture. This newly observed steady-state was achieved at the same dilution rate and feed medium as the control culture. The paths leading to the two steady-states, however, were different. These results demonstrate steady-state multiplicity. At this new steady-state, not only was glucose metabolism altered, but the metabolism of amino acids was altered as well. The amino acid metabolism in the new steady-state was more balanced, and the excretion of non-essential amino acids and ammonia was substantially lower. This approach of reaching a more desirable steady-state with higher concentrations of cells and product opens a new avenue for high-density- and high-productivity-cell culture.  相似文献   

16.
17.
18.
Phosphorylation of phospholamban by either a cAMP-dependent or a calmodulin-dependent kinase stimulates the Ca2+ transporting activity of cardiac sarcoplasmic reticulum membranes. It has now been found that phospholamban consists of 2 distinct proteins; one is the specific substrate for the cAMP-dependent phosphorylation, and the other for the calmodulin-dependent kinase. In spite of functional diversity, the 2 polypeptides share a number of properties. Among them, the proteolipid character, Mr, resistance to trypsinization, and subunit composition.  相似文献   

19.
20.
Autophagy is a cellular degradation system widely conserved among eukaryotes. During autophagy, cytoplasmic materials fated for degradation are compartmentalized in double membrane–bound organelles called autophagosomes. After fusing with the vacuole, their inner membrane–bound structures are released into the vacuolar lumen to become autophagic bodies and eventually degraded by vacuolar hydrolases. Atg15 is a lipase that is essential for disintegration of autophagic body membranes and has a transmembrane domain at the N-terminus and a lipase domain at the C-terminus. However, the roles of the two domains in vivo are not well understood. In this study, we found that the N-terminal domain alone can travel to the vacuole via the multivesicular body pathway, and that targeting of the C-terminal lipase domain to the vacuole is required for degradation of autophagic bodies. Moreover, we found that the C-terminal domain could disintegrate autophagic bodies when it was transported to the vacuole via the Pho8 pathway instead of the multivesicular body pathway. Finally, we identified H435 as one of the residues composing the putative catalytic triad and W466 as an important residue for degradation of autophagic bodies. This study may provide a clue to how the C-terminal lipase domain recognizes autophagic bodies to degrade them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号