首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesenchymal stem cells (MSCs) show accelerated regeneration potential when these cells experience hypoxic stress. This “preconditioning” has shown promising results with respect to cardio-protection as it stimulates endogenous mechanisms resulting in multiple cellular responses. The current study was carried out to analyze the effect of hypoxia on the expression of certain growth factors in rat MSCs and cardiomyocytes (CMs). Both cell types were cultured and assessed separately for their responsiveness to hypoxia by an optimized dose of 2,4,-dinitrophenol (DNP). These cells were allowed to propagate under normal condition for either 2 or 24 h and then analyzed for the expression of growth factors by RT-PCR. Variable patterns of expression were observed which indicate that their expression depends on the time of re-oxygenation and extent of hypoxia. To see whether the growth factors released during hypoxia affect the fusion of MSCs with CMs, we performed co-culture studies in normal and conditioned medium. The conditioned medium is defined as the medium in which CMs were grown for re-oxygenation till the specified time period of either 2 or 24 h after hypoxia induction. The results showed that the fusion efficiency of cells was increased when the conditioned medium was used as compared to that in the normal medium. This may be due to the presence of certain growth factors released by the cells under hypoxic condition that promote cell survival and enhance their fusion or regenerating ability. This study would serve as another attempt in designing a therapeutic strategy in which conditioned MSCs can be used for ischemic diseases and provide more specific therapy for cardiac regeneration.  相似文献   

2.
3.
The bone marrow mesenchymal stem cells (MSCs) are multipotent stem cells which can differentiate into mesenchymal cells in vitro. In this study, MSCs in duck were isolated from bone marrow by density gradient centrifuge separation, purified and expanded in the me- dium. The primary MSCs were expanded for 11 passages. The different-passage MSCs were induced to differentiate into osteoblasts and neuron-like cells. Karyotype analysis indicated that MSCs kept diploid condition and the hereditary feature was stable. The different- passage MSCs expressed CD44, ICAM-1 and SSEA-4, but not CD34, CD45 and SSEA-1 when detected by immunofluorescence staining There was no significant difference among the positive rates of passages 2, 6 and 8 (P 〉 0.05), but a significant difference existed among those of passages 2, 6, 8 and 11 (P 〈 0.05). After the osteogenic inducement was added, the induced different-passage MSCs expressed high-level alkaline phosphatase (ALP), and are positive for tetracycline staining, Alizarin Red staining and Von Kossa staining. After the neural inducement was added, about 70% cells exhibited typical neuron-like phenotype, the induced different-passage MSCs expressed Nestin, neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) when detected by immunofluorescence staining. There was no significant difference among the positive rates of passages 3, 4 and 6 (P〉0.05), but a significant difference existed among those of passages 3, 4, 6 and 8 (P〈0.05). These results suggest that MSCs in duck were capable of differentiating into osteoblasts and neuron-like cells in vitro.  相似文献   

4.
Since discovery, significant interest has been generated in the potential application of mesenchymal stem cells or multipotential stromal cells (MSC) for tissue regeneration and repair, due to their proliferative and multipotential capabilities. Although the sheep is often used as a large animal model for translating potential therapies for musculoskeletal injury and repair, the characteristics of MSC from ovine bone marrow have been inadequately described. Histological and gene expression studies have previously shown that ovine MSC share similar properties with human and rodents MSC, including their capacity for clonogenic growth and multiple stromal lineage differentiation. In the present study, ovine bone marrow derived MSCs positively express cell surface markers associated with MSC such as CD29, CD44 and CD166, and lacked expression of CD14, CD31 and CD45. Under serum‐deprived conditions, proliferation of MSC occurred in response to EGF, PDGF, FGF‐2, IGF‐1 and most significantly TGF‐α. While subcutaneous transplantation of ovine MSC in association with a ceramic HA/TCP carrier into immunocomprimised mice resulted in ectopic osteogenesis, adipogenesis and haematopoietic‐support activity, transplantation of these cells within a gelatin sponge displayed partial chondrogenesis. The comprehensive characterisation of ovine MSC described herein provides important information for future translational studies involving ovine MSC. J. Cell. Physiol. 219: 324–333, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
Bone marrow mesenchymal stem cells (MSCs) can develop into hematopoietic and mesenchymal lineages but have not been known to participate in the production of retina. Here we report that bone marrow mesenchymal stem cells, after being subretinally transplanted into normal or Nd: YAG laser-injured rat eye, can integrate into RPE layer, photoreceptor layer, bipolar cell layer and ganglion layer. DAPI-labeling detection was used to trace the origin of the repopulating cells. DAPI fluorescence was used to identify retina cells of bone marrow origin 10, 20, 35 and 50 days after transplantation. No formation of rosettes was found but some random cells were found at the end of the observation. MSCs-originated cells spread more widely in the injured retinas than in the normal ones. Immunohistochemical detection showed that though the cells could express neuronal nuclei (NeuN), neuron specific enolase (NSE), glial fibrillary acidic protein (GFAP) and cytokeratin (CK), the proteins expression in the injured transplantation group was abnormal in some region compared with that in the normal transplantation group. Electroretinogram (ERG) showed that ERG-b wave of the injured transplantation group is significantly higher than that of the two laser-injured control groups. These results suggest that a proportion of MSCs can differentiate into retina-like structure in vivo and the differentiation differs in normal and laser-injured retinas.  相似文献   

6.
Withinthebonemarrowstromathereexistsasubsetofnonhematopoieticcellsreferredtoasmes-enchymalstemormesenchymalprogenitorcells.Mesenchymalstemcells(MSCs)areapopulationofpluripotentcellswithinthehuman,birdorrodentbonemarrowmicroenvironmentdefinedbytheirability,eitherinvitroorinvivo,todifferentiateintocellsoftheosteogenic,chondrogenic,tendonogenic,adipo-genic,neuralcellsandmyogeniclineages[1].Themethodologiestoisolateandculture-expandMSCsfromhumanbonemarrowforestablishingthecellularortissuediffere…  相似文献   

7.
Bone tissue engineering(BTE) is now a promising re-search issue to improve the drawbacks from traditional bone grafting procedure such as limited donor sources and possible complications. Stem cells are one of the major factors in BTE due to the capability of self re-newal and multi-lineage differentiation. Unlike embry-onic stem cells, which are more controversial in ethical problem, adult mesenchymal stem cells are considered to be a more appropriate cell source for BTE. Bone marrow mesenchymal stem cells(BMSCs) are the ear-liest-discovered and well-known stem cell source using in BTE. However, the low stem cell yield requiring long expansion time in vitro, pain and possible morbidities during bone marrow aspiration and poor proliferation and osteogenic ability at old age impede its' clinical ap-plication. Afterwards, a new stem cell source coming from adipose tissue, so-called adipose-derived stemcells(ASCs), is found to be more suitable in clinical ap-plication because of high stem cells yield from lipoaspi-rates, faster cell proliferation and less discomfort and morbidities during harvesting procedure. However, the osteogenic capacity of ASCs is now still debated be-cause most papers described the inferior osteogenesis of ASCs than BMSCs. A better understanding of the osteogenic differences between ASCs and BMSCs is crucial for future selection of cells in clinical application for BTE. In this review, we describe the commonality and difference between BMSCs and ASCs by cell yield, cell surface markers and multiple-differentiation poten-tial. Then we compare the osteogenic capacity in vitro and bone regeneration ability in vivo between BMSCs and ASCs based on the literatures which utilized both BMSCs and ASCs simultaneously in their articles. The outcome indicated both BMSCs and ASCs exhibited the osteogenic ability to a certain extent both in-vitro and in-vivo. However, most in-vitro study papers verified the inferior osteogenesis of ASCs; conversely, in-vivo research reviews revealed more controversies in this issue. We expect the new researchers can have a quick understanding of the progress in this filed and design a more comprehensive research based on this review.  相似文献   

8.
Diets containing 8% salt or 4% fructose (FR) cause insulin resistance and increase tissue methylglyoxal and advanced glycation end products (AGEs), platelet cytosolic-free calcium, and systolic blood pressure (SBP) in rats. In WKY rats, we have shown that moderately high salt, 4% NaCl (MHS) alone in diet does not cause hypertension, and when given along with 4% FR it does not have an additive effect. N-acetylcysteine (NAC) or l-arginine (ARG), treatment alone does not prevent hypertension in this model. The objectives of this study were to investigate the effect of NAC plus ARG in diet on SBP, platelet cytosolic-free calcium in a MHS + FR model, and to measure the plasma levels of methylglyoxal and the AGE, methylglyoxal-derived hydroimidazolone (MGH). At 7 weeks of age, WKY rats were divided into three groups: control group was given regular rat chow (0.7% NaCl) and water; MHS + FR group, diet containing 4% NaCl and 4% FR in drinking water; and MHS + FR + NAC + ARG group, MHS diet supplemented with 1.5% N-acetylcysteine (NAC) and 1.5% l-arginine (ARG), and 4% FR in drinking water, and followed for 6 weeks. NAC + ARG prevented the increase in platelet cytosolic-free calcium and SBP in MHS + FR treated rats. There was no difference in mean values of plasma methylglyoxal and MGH among the groups. In conclusion, NAC + ARG treatment is effective in preventing hypertension in a moderately high salt + FR-induced animal model. Plasma methylglyoxal and MGH may not represent tissue modification or, alternatively, other tissue AGEs, derived from methylglyoxal or other aldehydes, may be involved in hypertension in this model.  相似文献   

9.
Liu G  Shu C  Cui L  Liu W  Cao Y 《Cryobiology》2008,56(3):209-215
Bone marrow mesenchymal stem cells (MSCs) have become the main cell source for bone tissue engineering. It has been reported that cryopreserved human MSCs can maintain their potential for proliferation and osteogenic differentiation in vitro. There are, however, no reports on osteogenesis with cryopreserved human MSCs in vivo. The aim of this study was to determine whether cryopreservation had an effect on the proliferation capability and osteogenic differentiation of human MSCs on scaffolds in vitro and in vivo. MSCs were isolated from human bone marrow, cultured in vitro until passage 2, and then frozen and stored at −196 °C in liquid nitrogen with 10% Me2SO as cryoprotectant for 24 h. The cryopreserved MSCs were then thawed rapidly, seeded onto partially demineralized bone matrix (pDBM) scaffolds and cultured in osteogenic media containing 10 mM sodium β-glycerophosphate, 50 μM l-ascorbic acid, and 10 nM dexamethasone. Non-cryopreserved MSCs seeded onto the pDBM scaffolds were used as control groups. Scanning electronic microscopy (SEM) observation, DNA content assays, and measurements of alkaline phosphatase (ALP) activity and osteocalcin (OCN) content were applied, and the results showed that the proliferation potential and osteogenic differentiation of MSCs on pDBM in vitro were not affected by cryopreservation. After 2 weeks of subculture, the MSCs/pDBM composites were subcutaneously implanted into the athymic mice. The constructs were harvested at 4 and 8 weeks postimplantation, and histological examination showed tissue-engineered bone formation in the pDBM pores in both groups. Based on these results, it can be concluded that cryopreservation allows human MSCs to be available for potential therapeutic use to tissue-engineer bone.  相似文献   

10.
11.
人骨髓间充质干细胞在成年大鼠脑内的迁移及分化   总被引:27,自引:2,他引:27  
Hou LL  Zheng M  Wang DM  Yuan HF  Li HM  Chen L  Bai CX  Zhang Y  Pei XT 《生理学报》2003,55(2):153-159
骨髓间充质干细胞 (mesenchymalstemcells,MSCs)是目前备受关注的一类具有多向分化潜能的组织干细胞 ,体外可以分化为骨、软骨、脂肪等多种细胞。因此 ,MSCs是细胞治疗和基因治疗的种子细胞之一。为了探索MSCs的迁移和分化趋势 ,为帕金森病 (Parkinsondisease,PD)的干细胞治疗提供理论和实验依据 ,本实验将体外扩增并转染增强型绿色荧光蛋白 (enhancedgreenfluorescentprotein ,EGFP)的人骨髓MSCs注入PD大鼠脑内纹状体 ,观察了人骨髓MSCs在大鼠脑内的存活、迁移、分化以及注射MSCs前后大鼠的行为变化。结果表明 ,人骨髓MSCs在大鼠脑内可存活较长时间 ( 10周以上 ) ;随着时间的延长 ,MSCs迁移范围扩大 ,分布于纹状体、胼胝体、皮质以及脑内血管壁 ;免疫组化法检测证实MSCs在大鼠脑内表达人神经丝蛋白 (neurofilament,NF)、神经元特异性烯醇化酶 (neuron specificeno lase,NSE)以及胶质原纤维酸性蛋白 ( glialfibrillaryacidprotein ,GFAP) ;PD大鼠的异常行为有所缓解 ,转圈数由 8 86±2 0 9r/min下降到 4 87± 2 0 6r/min ,统计学分析P <0 0 5为差异显著。以上观察结果表明 ,骨髓MSCs有望成为治疗PD的种子细胞  相似文献   

12.
Dai ZQ  Wang R  Ling SK  Wan YM  Li YH 《Cell proliferation》2007,40(5):671-684
OBJECTIVES: Microgravity is known to affect the differentiation of bone marrow mesenchymal stem cells (BMSCs). However, a few controversial findings have recently been reported with respect to the effects of microgravity on BMSC proliferation. Thus, we investigated the effects of simulated microgravity on rat BMSC (rBMSC) proliferation and their osteogeneic potential. MATERIALS AND METHODS: rBMSCs isolated from marrow using our established effective method, based on erythrocyte lysis, were identified by their surface markers and their proliferation characteristics under normal conditions. Then, they were cultured in a clinostat to simulate microgravity, with or without growth factors, and in osteogenic medium. Subsequently, proliferation and cell cycle parameters were assessed using methylene blue staining and flow cytometry, respectively; gene expression was determined using Western blotting and microarray analysis. RESULTS: Simulated microgravity inhibited population growth of the rBMSCs, cells being arrested in the G(0)/G(1) phase of cell cycle. Growth factors, such as insulin-like growth factor-I, epidermal growth factor and basic fibroblastic growth factor, markedly stimulated rBMSC proliferation in normal gravity, but had only a slight effect in simulated microgravity. Akt and extracellular signal-related kinase 1/2 phosphorylation levels and the expression of core-binding factor alpha1 decreased after 3 days of clinorotation culture. Microarray and gene ontology analyses further confirmed that rBMSC proliferation and osteogenesis decreased under simulated microgravity. CONCLUSIONS: The above data suggest that simulated microgravity inhibits population growth of rBMSCs and their differentiation towards osteoblasts. These changes may be responsible for some of the physiological changes noted during spaceflight.  相似文献   

13.
Adult bone marrow mesenchymal stem cells (MSCs) can differentiate into several types of mesenchymal cells, including osteocytes, chondrocytes, and adipocytes, but can also differentiate into non-mesenchymal cells, such as neural cells, under appropriate experimental conditions. Until now, many protocols for inducing neuro-differentiation in MSCs in vitro have been reported. But due to the differences in MSCs' isolation and culture conditions, the results of previous studies lacked consistency and comparability. In this study, we induced differentiation into neural phenotype in the same MSCs population by three different treatments: beta-mercaptoethanol, serum-free medium and co-cultivation with fetal mouse brain astrocytes. In all of the three treatments, MSCs could express neural markers such as NeuN or GFAP, associating with remarkable morphological modifications. But these treatments led to neural phenotype in a non-identical manner. In serum-free medium, MSCs mainly differentiated into neuron-like cells, expressing neuronal marker NeuN, and BME can promote this process. Differently, after co-culturing with astrocytes, MSCs leaned to differentiate into GFAP(+) cells. These data confirmed that MSCs can exhibit plastic neuro-differentiational potential in vitro, depending on the protocols of inducement.  相似文献   

14.
Bone marrow-derived mesenchymal stem cells (BM-MSCs) can differentiate into many lineages. Although the growing interest in BM-MSCs has led to a number of characterization studies, some important biochemical and immunohistochemical properties are still lacking. In this study, morphological and immunophenotypic properties of BM-MSCs were examined in detail. Differentiation potential and growth kinetics of adult rat BM-MSCs were also determined. Immunohistochemistry and RT-PCR results indicated that BM-MSCs expressed myogenic (desmin, myogenin, myosin IIa, and α-SMA), neurogenic (γ-enolase, MAP2a,b, c-fos, nestin, GFAP and beta III tubulin), and osteogenic (osteonectin, osteocalcin, osteopontin, Runx-2, BMP-2, BMP-4 and type I collagen) markers without stimulation towards differentiation. These expression patterns indicated why these cells can easily differentiate into multiple lineages both in vitro and in vivo. Ultrastructural characteristics of rBM-MSCs showed more developed and metabolically active cells.  相似文献   

15.
16.
The presence within bone marrow of a population of mesenchymal stem cells (MSCs) able to differentiate into a number of different mesenchymal tissues, including bone and cartilage, was first suggested by Friedenstein nearly 40 years ago. Since then MSCs have been demonstrated in a variety of fetal and adult tissues, including bone marrow, fetal blood and liver, cord blood, amniotic fluid and, in some circumstances, in adult peripheral blood. MSCs from all of these sources can be extensively expanded in vitro and when cultured under specific permissive conditions retain their ability to differentiate into multiple lineages including bone, cartilage, fat, muscle, nerve, glial and stromal cells. There has been great interest in these cells both because of their value as a model for studying the molecular basis of differentiation and because of their therapeutic potential for tissue repair and immune modulation. However, MSCs are a rare population in these tissues. Here we tried to identify cells with MSC-like potency in human placenta. We isolated adherent cells from trypsin-digested term placentas and examined these cells for morphology, surface markers, and differentiation potential and found that they expressed several stem cell markers. They also showed endothelial and neurogenic differentiation potentials under appropriate conditions. We suggest that placenta-derived cells have multilineage differentiation potential similar to MSCs in terms of morphology and cell-surface antigen expression. The placenta may prove to be a useful source of MSCs.  相似文献   

17.
18.
Li XH  Fu YH  Lin QX  Liu ZY  Shan ZX  Deng CY  Zhu JN  Yang M  Lin SG  Li Y  Yu XY 《Molecular biology reports》2012,39(2):1333-1342
We investigated whether transplantation of bone marrow mesenchymal stem cells (BMSC) with induced BMSC (iBMSC) or uninduced BMSC (uBMSC) into the myocardium could improve the performance of post-infarcted rat hearts. BMSCs were specified by flowcytometry. IBMSCs were cocultured with rat cardiomyocyte before transplantation. Cells were injected into borders of cardiac scar tissue 1?week after experimental infarction. Cardiac performance was evaluated by echocardiography at 1, 2, and 4?weeks after cellular or PBS injection. Langendorff working-heart and histological studies were performed 4?weeks after treatment. Myogenesis was detected by quantitative PCR and immunofluorescence. Echocardiography showed a nearly normal ejection fraction (EF) in iBMSC-treated rats and all sham control rats but a lower EF in all PBS-treated animals. The iBMSC-treated heart, assessed by echocardiography, improved fractional shortening compared with PBS-treated hearts. The coronary flow (CF) was decreased obviously in PBS and uBMSC-treated groups, but recovered in iBMSC-treated heart at 4?weeks (P?<?0.01). Immunofluorescent microscopy revealed co-localization of Superparamagnetic iron oxide (SPIO)-labeled transplanted cells with cardiac markers for cardiomyocytes, indicating regeneration of damaged myocardium. These data provide strong evidence that iBMSC implantation is of more potential to improve infarcted cardiac performance than uBMSC treatment. It will open new promising therapeutic opportunities for patients with post-infarction heart failure.  相似文献   

19.
20.
骨髓间充质干细胞可塑性研究   总被引:1,自引:0,他引:1  
Deng J  Su YP 《生理科学进展》2007,38(2):133-135
骨髓间充质干细胞(bone marrow mesenchymal stem cells,MSCs)具有跨系统、甚至跨胚层分化的特性,称为MSCs的可塑性(plasticity),成为细胞工程、再生医学中的主要选择细胞。但随着对成体干细胞可塑性质疑的出现,使MSCs是否具有转分化能力,存在着极大的分歧。对MSCs可塑性是否真正存在的进一步明确,越加显得急切和重要,也对干细胞基础理论及其临床应用具有指导性意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号