首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Myocardial ischemia-reperfusion (I/R) injury is thought to have its detrimental role in coronary heart disease (CHD), which is considered as the foremost cause of death all over the world. However, molecular mechanism in the progression of myocardial I/R injury is still unclear. The goal of this study was to investigate the expression and function of microRNA-140 (miR-140) in the process of myocardial I/R injury. The miR-140 expression level was analyzed in the myocardium with I/R injury and control myocardium using quantitative real-time polymerase chain reaction. Then the relation between the level of miR-140 and YES proto-oncogene 1 (YES1) was also investigated via luciferase reporter assay. Assessment of myocardial infarct size measurement of serum myocardial enzymes and electron microscopy analysis were used for analyzing the effect of miR-140 on myocardial I/R injury. We also used Western blot analysis to examine the expression levels of the mitochondrial fission–related proteins, Drp1 and Fis1. miR-140 is downregulated, and YES1 is upregulated after myocardial I/R injury. Overexpression of miR-140 could reduce the increase related to myocardial I/R injury in infarct size and myocardial enzymes, and it also could inhibit the expression of proteins related to mitochondrial morphology and myocardial I/R-induced mitochondrial apoptosis by targeting YES1. Taken together, these findings may provide a novel insight into the molecular mechanism of miR-140 and YES1 in the progression of myocardial I/R injury. MiR-140 might become a promising therapeutic target for treating myocardial I/R injury.  相似文献   

2.

Background  

MiR-1 (microRNA-1) has been used as a positive control in some microRNA experiments. We found that miR-1 transfection of nasopharyngeal carcinoma cells reveals a typical apoptotic process as shown by time-lapse microscopy so we investigated the mechanisms of miR-1 inducing apoptosis.  相似文献   

3.
Liu XX  Li XJ  Zhang B  Liang YJ  Zhou CX  Cao DX  He M  Chen GQ  He JR  Zhao Q 《FEBS letters》2011,585(9):1363-1367
MicroRNAs are widely dysregulated in various cancers and integrated into tumorigenic programs as either oncogenes or tumor suppressor genes. Here, we show that miR-26b, which is down-regulated in human breast cancer specimens and cell lines, impairs viability and triggers apoptosis of human breast cancer MCF7 cells. SLC7A11 is identified as a direct target of miR-26b and its expression is remarkably increased in both breast cancer cell lines and clinical samples. Furthermore, SLC7A11 silence mimics miR-26b-aroused viability impairment and apoptosis in MCF7 cells. Our studies reveal a protective role of miR-26b in the molecular etiology of human breast cancer by promoting apoptosis.  相似文献   

4.
5.
Alcoholic liver disease (ALD) and its complication continued to be a major health problem throughout the world. Increasing evidence suggests that microRNA (miRNA) that regulate apoptosis, inflammation and lipid metabolism are affected by alcohol in ALD. MiR-200a has emerged as a major regulator in several liver diseases, but its role in ALD has not been elucidated. The aim of this study is to figure out the biological function of miR-200a in ALD and to explore its underlying mechanism. The expression pattern of miR-200a were analyzed in vitro and in vivo, we showed that miR-200a was up-regulated in ALD in AML-12 and primary hepatocyte. We then examined it's effect on cell apoptosis and identified zinc finger E-box binding homeobox 2 (ZEB2; also known as SIP1) as a direct target gene of miR-200a. Furthermore, reintroduction of ZEB2 could reverse the pro-apoptosis of miR-200a on AML-12. Taken together, our study demonstrated that miR-200a regulates the apoptosis of hepatocyte in ALD by directly target ZEB2, both of which could serve as new therapeutic targets for ALD.  相似文献   

6.
7.
8.
Oligonucleosomal fragmentation of nuclear DNA is the late stage hallmark of the apoptotic process. In mammalian apoptotic cells fragmentation is catalyzed by DFF40/ CAD DNase. DFF40/CAD primary activated through site-specific proteolytic cleavage by caspase 3. The absence of caspase 3 in MCF-7 leads to lack of oligonucleosomal DNA fragmentation under numerous apoptotic stimuli. In this study it was shown that palmitate induces apoptotic changes of nuclei and oligonucleosomal DNA fragmentation in casp3 deficient MCF-7. Activation and accumulation of 40-50 kDa DFF40 like DNases in nuclei and cytoplasm of palmitate-treated MCF-7 were detected by SDS-DNA-PAGE assay. Microsomes of apoptotic MCF-7 activate 40-50 kDa nucleases when incubated with human placental chromatin and induce oligonucleosomal fragmentation of chromatin in cell free system. Both DNases activation and chromatin fragmentation are suppressed in presence of caspase 3/7 inhibitor Ac-DEVD-CHO. Microsome associated caspase 7 is suggested to play the principal role in induction of oligonucleosomal DNA fragmentation of casp3 defitient MCF-7.  相似文献   

9.
Radiation-induced hair cell injury is detrimental for human health but the underlying mechanism is not clear. MicroRNAs (miRNAs) have critical roles in various types of cellular biological processes. The present study investigated the role of miR-222 in the regulation of ionizing radiation (IR)-induced cell injury in auditory cells and its underlying mechanism. Real-time PCR was performed to identify the expression profile of miR-222 in the cochlea hair cell line HEI-OC1 after IR exposure. miRNA mimics or inhibitor-mediated up- or down-regulation of indicated miRNA was applied to characterize the biological effects of miR-222 using MTT, apoptosis and DNA damage assay. Bioinformatics analyses and luciferase reporter assays were applied to identify an miRNA target gene. Our study confirmed that IR treatment significantly suppressed miR-222 levels in a dose-dependent manner. Up-regulation of miR-222 enhances cell viability and alleviated IR-induced apoptosis and DNA damage in HEI-OC1 cells. In addition, BCL-2-like protein 11 (BCL2L11) was validated as a direct target of miR-222. Overexpression of BCL2L11 abolished the protective effects of miR-222 in IR-treated HEI-OC1 cells. Moreover, miR-222 alleviated IR-induced apoptosis and DNA damage by directly targeting BCL2L11. The present study demonstrates that miR-222 exhibits protective effects against irradiation-induced cell injury by directly targeting BCL2L11 in cochlear cells.  相似文献   

10.
MicroRNAs (miRNAs) represent an abundant group of small non-coding RNAs that regulate gene expression, and have been demonstrated to play roles as tumor suppressor genes (oncogenes), and affect homeostatic processes such as development, cell proliferation, and cell death. Subsequently, epidermal growth factor-like domain 7 (EGFL7), which is confirmed to be involved in cellular responses such as cell migration and blood vessel formation, is identified as a potential miR-126 target by bioinformatics. However, there is still no evidence showing EGFL7’s relationship with miR-126 and the proliferation of lung cancer cells. The aim of this work is to investigate whether miR-126, together with EGFL7, have an effect on non-small cell lung cancer (NSCLC) cells’ proliferation. Therefore, we constructed overexpressed miR-126 plasmid to target EGFL7 and transfected them into NSCLC cell line A549 cells. Then, we used methods like quantitative RT-PCR, Western blot, flow cytometry assay, and immunohistochemistry staining to confirm our findings. The result was that overexpression of miR-126 in A549 cells could increase EGFL7 expression. Furthermore, the most notable finding by cell proliferation related assays is that miR-126 can inhibit A549 cells proliferation in vitro and inhibit tumor growth in vivo by targeting EGFL7. As a result, our study demonstrates that miR-126 can inhibit proliferation of non-small cell lung cancer cells through one of its targets, EGFL7.  相似文献   

11.
MicroRNA-205 (miR-205) is involved in various physiological and pathological processes, but its biological function in follicular atresia remains unclear. In this study, we investigated miR-205 expression in mouse granulosa cells (mGCs) and analyzed its functions in primary mGCs by performing a series of in vitro experiments. Quantitative real-time polymerase chain reaction showed that miR-205 expression was significantly higher in early atretic follicles and progressively atretic follicles than in healthy follicles. miR-205 overexpression in mGCs significantly promoted apoptosis and caspase-3/9 activities, as well as inhibited estrogen (E2) release and cytochrome P450 family 19 subfamily A polypeptide 1 (CYP19A1, a key gene in E2 production) expression. Bioinformatics and luciferase reporter assays revealed that the gene encoding cyclic AMP response element (CRE)-binding protein 1 (CREB1) was a direct target of miR-205 in mGCs. CREB1 upregulation partially rescued the effects of miR-205 on apoptosis, caspase-3/9 activities, E2 production, and CYP19A1 expression on mGCs. These results indicate that miR-205 might play an important role in ovarian follicular development and provide new insights into follicular atresia  相似文献   

12.
MicroRNAs (MiRs) are short noncoding RNAs that can regulate gene expression. It has been reported that miR-21 suppresses apoptosis in activated T cells, but the molecular mechanism remains undefined. Tumor suppressor Tipe2 (or tumor necrosis factor-α-induced protein 8 (TNFAIP8)-like 2 (TNFAIP8L2)) is a newly identified anti-inflammatory protein of the TNFAIP8 family that is essential for maintaining immune homeostasis. We report here that miR-21 is a direct target of nuclear factor-κB and could regulate Tipe2 expression in a Tipe2 coding region-dependent manner. In activated T cells and macrophages, Tipe2 expression was markedly downregulated, whereas miR-21 expression was upregulated. Importantly, Tipe2-deficient T cells were significantly less sensitive to apoptosis. Conversely, overexpression of Tipe2 in EL-4 T cells increased their susceptibility to activation-induced apoptosis. Therefore, Tipe2 provides a molecular bridge between miR-21 and cell apoptosis; miR-21 suppresses apoptosis in activated T cells at least in part through directly targeting tumor suppressor gene Tipe2.  相似文献   

13.
Macrophages in adipose tissue contribute to inflammation and the development of insulin resistance in obesity. Exposure of macrophages to saturated fatty acids alters cell metabolism and activates pro-inflammatory signaling. How fatty acids influence macrophage mitochondrial dynamics is unclear. We investigated the mechanism of palmitate-induced mitochondrial fragmentation and its impact on inflammatory responses in primary human macrophages. Fatty acids, such as palmitate, caused mitochondrial fragmentation in human macrophages. Increased mitochondrial fragmentation was also observed in peritoneal macrophages from hyperlipidemic apolipoprotein E knockout mice. Fatty acid-induced mitochondrial fragmentation was independent of the fatty acid chain saturation and required dynamin-related protein 1 (DRP1). Mechanistically, mitochondrial fragmentation was regulated by incorporation of palmitate into mitochondrial phospholipids and their precursors. Palmitate-induced endoplasmic reticulum stress and loss of mitochondrial membrane potential did not contribute to mitochondrial fragmentation. Macrophages treated with palmitate maintained intact mitochondrial respiration and ATP levels. Pharmacological or genetic inhibition of DRP1 enhanced palmitate-induced mitochondrial ROS production, c-Jun phosphorylation, and inflammatory cytokine expression. Our results indicate that mitochondrial fragmentation is a protective mechanism attenuating inflammatory responses induced by palmitate in human macrophages.  相似文献   

14.
15.
Heat stress affects milk yield and quality in lactating dairy cows in summer. Bovine mammary epithelial cells (bMECs) play a key role in milk secretion, and microRNAs (miRNAs) regulate numerous functions of bMEC. Previous reports have verified that miR-216b regulated cell apoptosis through repressing target genes in several cancer cells. So, our purpose was to explore the potential involvement of miR-216b in heat stress-induced cell apoptosis in bMECs. Firstly, the heat stress model was constructed and we found that apoptotic rates of bMECs significantly increased under heat stress. The expression of miR-216b, Bax mRNA, and caspase-3 mRNA was upregulated. However, Bcl-2 mRNA level was detected to differentially downregulated. Overexpression of miR-216b remarkably downregulated the expression of caspase-3 and Bax mRNA and protein, and the mRNA and protein level of Bcl-2 was increased. Inhibition of miR-216b increased the activity of caspase-3 and Bax, and the level of Bcl-2 was inhibited. Moreover, Fas was identified as a target gene of miR-216b through bioinformatic analysis and dual-luciferase reporter assay. Fas activity was significantly inhibited and enhanced respectively after transfecting miRNA mimics and inhibitor. Finally, inhibition of Fas via the small interfering RNA (siRNA) also inhibited cell apoptosis induced by heat stress. Taken together, our results indicated that miR-216b exerted as an anti-apoptotic effect under heat stress in bMECs by targeting Fas.  相似文献   

16.
17.
miR-19a has been shown to be involved in coronary microvascular obstruction injury; however, the underlying molecular mechanisms remain unknown. In our study, we tried to explore the role of miR-19a in cardiomyocyte apoptosis and calcium overload in vivo and in vitro induced by hypoxia. We established the acute myocardial infarction (AMI) rat model by ligating the left anterior descending artery. The expression of miR-19a in the infarct zone of AMI rats and myocardial tissue in the same position in sham rats was analyzed using RT-qPCR while Na(+)/H(+) exchanger 1 (NHE-1) was detected by Western blotting. We also observed the effects of overexpressing miR-19a or administering an NHE-1 inhibitor (cariporide) on hypoxia-induced (HI) calcium overload and apoptosis in primary cardiomyocytes. In addition, dual-luciferase reporter assays were conducted to investigate the potential target of miR-19a on NHE-1. Decreased miR-19a expression, as well as increased apoptosis and NHE-1 expression, were observed in the AMI model. Furthermore, after hypoxia stimulation, miR-19a was gradually reduced as time increased in primary cardiomyocytes. Overexpressing miR-19a using mimics ameliorated the increase in NHE-1 in hypoxic cardiomyocytes and thereby reduced the HI cell calcium overload and cell apoptosis rate from 12.32% to 9.5% (P < .01). In addition, the dual-luciferase reporter gene assay results verified that NHE-1 was the direct target of miR-19a. Our findings suggest that miR-19a activation can attenuate HI cardiomyocyte apoptosis by downregulating NHE-1 expression and decreasing calcium overload.  相似文献   

18.
19.
20.
The PicTar program predicted that microRNA-126 (miR-126), miR-145, and let-7s target highly conserved sites within the Hoxa9 homeobox. There are increased nucleotide constraints in the three microRNA seed sites among Hoxa9 genes beyond that required to maintain protein identity, suggesting additional functional conservation. In preliminary experiments, forced expression of these microRNAs in Hoxa9-immortalized bone marrow cells downregulated the HOXA9 protein and caused loss of biological activity. The microRNAs were shown to target their predicted sites within the homeobox. miR-126 and Hoxa9 mRNA are coexpressed in hematopoietic stem cells and downregulated in parallel during progenitor cell differentiation; however, miR-145 is barely detectable in hematopoietic cells, and let-7s are highly expressed in bone marrow progenitors, suggesting that miR-126 may function in normal hematopoietic cells to modulate HOXA9 protein. In support of this hypothesis, expression of miR-126 alone in MLL-ENL-immortalized bone marrow cells decreased endogenous HOXA9 protein, while inhibition of endogenous miR-126 increased expression of HOXA9 in F9 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号