首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rate-limiting factors in urate synthesis and gluconeogenesis in avian liver   总被引:1,自引:1,他引:0  
1. Urate synthesis and other metabolic characteristics of isolated chicken hepatocytes were studied. 2. The distinction is made between immediate precursors of the purine ring (glycine, glutamine, aspartate, formyltetrahydrofolate, bicarbonate) and ultimate precursors from which the immediate precursors are formed in the liver. 3. In hepatocytes from well-fed chickens the rate of urate synthesis was not greatly increased by the addition of amino acids or NH4Cl, but in hepatocytes from 72h-starved chickens the rate was much increased when alanine or asparagine was added as the only substrate. Other amino acids, when added alone, did not affect the rate. The exceptional effect of alanine and asparagine is due to the ready formation of the immediate precursors. 4. Conditions are described under which glutamine, serine, glycine plus formate, ribose and glucose increased the rate of urate synthesis. 5. At 1mm-NH4Cl (a concentration not much higher than that of blood plasma) the rate of urate synthesis in the presence of lactate was increased, but higher concentrations inhibited urate synthesis in the presence of lactate or alanine; with alanine even 1mm-NH4Cl was inhibitory. 6. Glucose synthesis from lactate, alanine or dihydroxyacetone was also inhibited by 1mm-NH4Cl. 7. NH4Cl inhibition of urate and glucose synthesis was paralleled by an increased rate of glutamine synthesis. Thus in the presence of NH4Cl the gluconeogenic precursors are diverted from the pathway of gluconeogenesis to that of glutamate and glutamine synthesis. This implies that the synthesis of these amino acids is the primary process in the detoxication of ammonia in the avian liver. 8. Urate synthesis, like urea synthesis, can be looked on as a cyclic process with either phosphoribosyl pyrophosphate or ribose acting as the carrier on which the purine ring is assembled. 9. The energy requirements of urate synthesis depend on whether phosphoribosyl pyrophosphate is regenerated from IMP by pyrophosphorylase or by phosphorylation and pyrophosphorylation of ribose. It is 6 or 9 pyrophosphate bonds of ATP respectively.  相似文献   

2.
3.
4.
5.
1. The carboxylation of pyruvate to oxaloacetate by pyruvate carboxylase in guinea-pig liver mitochondria was determined by measuring the amount of (14)C from H(14)CO(3) (-) fixed into organic acids in the presence of pyruvate, ATP, Mg(2+) and P(i). The main products of pyruvate carboxylation were malate, fumarate and citrate. Pyruvate utilization, metabolite formation and incorporation of (14)C from H(14)CO(3) (-) into these metabolites in the presence and the absence of ATP were examined. The synthesis of phosphoenolpyruvate from pyruvate and bicarbonate is minimal during continued oxidation of pyruvate. Larger amounts of phosphoenolpyruvate are formed from alpha-oxoglutarate than from pyruvate. Addition of glutamate, alpha-oxoglutarate or fumarate did not appreciably increase formation of phosphoenolpyruvate when pyruvate was used as substrate. With alpha-oxoglutarate as substrate addition of fumarate resulted in increased formation of phosphoenolpyruvate, whereas addition of succinate inhibited phosphoenolpyruvate formation. In the presence of added oxaloacetate guinea-pig liver mitochondria synthesized phosphoenolpyruvate in amount sufficiently high to play an appreciable role in gluconeogenesis. 2. Addition of fatty acids of increasing carbon chain length caused a strong inhibition of pyruvate oxidation and phosphoenolpyruvate formation, and greatly promoted carbon dioxide fixation and malate, citrate and acetoacetate accumulation. The incorporation of (14)C from H(14)CO(3) (-), [1-(14)C]pyruvate and [2-(14)C]pyruvate into organic acids formed was examined. 3. It is concluded that guinea-pig liver pyruvate carboxylase contributes significantly to gluconeogenesis and that fatty acids and metabolites play an important role in its regulation.  相似文献   

6.
7.
8.
Glucagon and dibutyryl cyclic AMP inhibited glucose utilization and lowered fructose 2,6-bisphosphate levels of hepatocytes prepared from fed chickens. Partially purified preparations of chicken liver 6-phosphofructo-1-kinase and fructose 1,6-bisphosphatase were activated and inhibited by fructose 2,6-bisphosphate, respectively. The sensitivities of these enzymes and the changes observed in fructose 2,6-bisphosphate levels are consistent with an important role for this allosteric effector in hormonal regulation of carbohydrate metabolism in chicken liver. In contrast, oleate inhibition of glucose utilization by chicken hepatocytes occurred without change in fructose, 2,6-bisphosphate levels. Likewise, pyruvate inhibition of lactate gluconeogenesis in chicken hepatocytes cannot be explained by changes in fructose 2,6-bisphosphate levels. Exogenous glucose caused a marked increase in fructose 2,6-bisphosphate content of hepatocytes from fasted but not fed birds. Both glucagon and lactate prevented this glucose effect. Fasted chicken hepatocytes responded to lower glucose concentrations than fasted rat hepatocytes, perhaps reflecting the species difference in hexokinase isozymes.  相似文献   

9.
10.
1. Starvation increases the activity of cytosolic P-enolpyruvate carboxkinase in rabbit liver some 4-5 fold but does not alter the activities of mitochondrial P-enolpyruvate carboxykinase, fructose-1,6-diphosphatase or glucose-6-phosphatase.2. Alloxan-induced diabetes increases the activities of cytosolic P-enolpyruvate carboxykinase, fructose-1,6-diphosphatase and glucose-6-phosphatase approx. 6-, 2- and 2-fold, respectively. Again the activity of mitochondrial P-enolpyruvate carboxykinase is not altered. 3. Administration of mannoheptulose rapidly increases blood glucose levels and also causes a significant increase in cytosolic P-enolpyruvate carboyxkinase activity within 4 h. The activities of mitochondrial P-enolpyruvate carboxykinase, fructose-1,6-diphosphatase and glucose-6-phosphatase are not affected. 4. Administration of hydrocortisone also increases blood glucose levels and the activities of cytosolic P-enolpyruvate carboxykinase and glucose-6-phosphatase are significantly increased within 12h. Again, mitochondrial P-enolpyruvate carboxykinase and fructose-1,6-diphosphatase activities remain unaffected. 5. The observations that (A) the activity of cytosolic P-enolpyruvate carboxykinase responds to more situations conducive to gluconeogenesis than do the activities of mitochondrial P-enolpyruvate carboxykinase, fructose-1,6-diphosphatase and glucose-6-phosphatase, and (B) cytosolic P-enolpyruvate carboxykinase activity is rapidly adaptive under appropriate circumstances, suggests that this particular enzyme's activity plays an important role in the regulation of gluconeogenesis in rabbits.  相似文献   

11.
1. Measurements in livers of rats delivered by Caesarian section show a rapid change in the relative proportion of adenine nucleotides. By 20min the ATP/ADP ratio had increased from 1.76 to 8.7 and the value of the relationship [ATP][AMP]/[ADP](2) increased from 1.0 to 4.4. These changes are dependent on the availability of oxygen to the animal. 2. The free [NAD(+)]/[NADH] ratio in the liver cytosol increases from 180 after delivery to reach a maximum of 1010 at 2h, before falling to 540 in the 24h-old animal. 3. The mitochondrial NAD redox potential also shows a sharp increase towards a more oxidized state in livers of delivered rats. 4. These results probably indicate that the foetal liver is hypoxic, with oxygenation occurring in the first hour after delivery. 5. Measurements in livers of naturally born rats 2min after birth also suggest that this tissue is hypoxic with an ATP/ADP ratio of 1.83 and a free [NAD(+)]/[NADH] ratio of 117. 6. Concentrations of intermediates in the gluconeogenic pathway have been determined in livers of foetal, 1h-old and 1-day-old rats. These experiments imply a facilitation of lactate dehydrogenase and glucose 6-phosphatase activities by 1h after birth, and a stimulation of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase steps by 1 day after birth. 7. The appearance of gluconeogenesis in livers of newborn rats seems therefore to involve an oxygenation stage followed by an increase in phosphoenolpyruvate carboxykinase activity.  相似文献   

12.
13.
14.
15.
16.
Thymectomized rats have been studied with the aim to determine the activity of gluconeogenesis key enzymes (phosphoenol pyruvate carboxykinase, fructose-1.6-diphosphatase, glucose-6-phosphatase), the glycogen content in the liver, the corticosterone level in blood and electrolytes concentration in erythrocytes and blood plasma. The activity of glucose-6-phosphatase and the glycogen content in the liver as well as the corticosterone level in the rat blood are shown to diminish after thymectomy. Changes are found in the electrolytic composition of blood as well as in the activity of key enzyme of the pentose cycle in erythrocytes. The data obtained indicate that thymectomy in rats is followed by the pronounced biochemical shifts induced by the thymus hormone deficiency and disturbance of interrelations in the system of neuroendocrine regulation.  相似文献   

17.
18.
The activity of glucogenesis key enzymes (phosphoenolpyruvate carboxinase, fructoso-1,6-siphosphatase, glucoso-6-phosphatase) of the rat liver and kidneys was studied simultaneously under the effect of extreme and subextreme factors on the organism. The low initial phosphoenolpyruvate carboxikinase activity in the liver and its high inductivity under extreme conditions suggest a role of this enzyme as limiting link in glyconeogenesis. The activity of phosphoenolpyruvate carboxinase in the kidneys is comparable to that of fructoso-1,6-diphosphatase; it is considerably higher than the activity of glucoso-6-phosphatase. The phosphoenolpyruvate carboxinase activity in the kidneys is 5--6 times higher than in the liver. The activity of phosphoenolpyruvate carboxinase and glucoso-6-phosphatase is increased under the effect of extreme factors, and that of fructoso-1,6-diphosphatase remains unchanged. The lack of clear synchronous changes in the activity of glucogenesis key enzymes in the liver and kidneys indicates that the cells of these organs do not provide the united operon for phosphoenolpyruvate carboxinase, fructoso-1,6-diphosphatase and glucoso-6-phosphatase with common regulation mechanism.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号