首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadmium induces p53-dependent apoptosis in human prostate epithelial cells   总被引:1,自引:0,他引:1  
Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl(2) and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl(2) concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis.  相似文献   

2.
p53 acetylation enhances Taxol-induced apoptosis in human cancer cells   总被引:1,自引:0,他引:1  
Microtubule inhibitors (MTIs) such as Taxol have been used for treating various malignant tumors. Although MTIs have been known to induce cell death through mitotic arrest, other mechanisms can operate in MTI-induced cell death. Especially, the role of p53 in this process has been controversial for a long time. Here we investigated the function of p53 in Taxol-induced apoptosis using p53 wild type and p53 null cancer cell lines. p53 was upregulated upon Taxol treatment in p53 wild type cells and deletion of p53 diminished Taxol-induced apoptosis. p53 target proteins including MDM2, p21, BAX, and β-isoform of PUMA were also upregulated by Taxol in p53 wild type cells. Conversely, when the wild type p53 was re-introduced into two different p53 null cancer cell lines, Taxol-induced apoptosis was enhanced. Among post-translational modifications that affect p53 stability and function, p53 acetylation, rather than phosphorylation, increased significantly in Taxol-treated cells. When acetylation was enhanced by anti-Sirt1 siRNA or an HDAC inhibitor, Taxol-induced apoptosis was enhanced, which was not observed in p53 null cells. When an acetylation-defective mutant of p53 was re-introduced to p53 null cells, apoptosis was partially reduced compared to the re-introduction of the wild type p53. Thus, p53 plays a pro-apoptotic role in Taxol-induced apoptosis and acetylation of p53 contributes to this pro-apoptotic function in response to Taxol in several human cancer cell lines, suggesting that enhancing acetylation of p53 could have potential implication for increasing the sensitivity of cancer cells to Taxol.  相似文献   

3.
4.
We propose here a novel p53-targeting radio-cancer therapy using p53 C-terminal peptides for patients having mutated p53. Hoechst 33342 staining showed that X-ray irradiation alone efficiently induced apoptotic bodies in wild-type p53 (wt p53) human head and neck cancer cells transfected with a neo control vector (SAS/neo cells), but hardly induced apoptotic bodies in mutation-type p53 (m p53) cells transfected with a vector carrying the m p53 gene (SAS/m p53). In contrast, transfection of p53 C-terminal peptides (amino acid residues 361-382 or 353-374) via liposomes caused a remarkable increase of apoptotic bodies in X-ray-irradiated SAS/m p53 cells, but did not enhance apoptotic bodies in X-ray-irradiated SAS/neo cells. In immunocytochemical analysis, positively stained cells for active type caspase-3 were observed at high frequency after X-ray irradiation in the SAS/m p53 cells pre-treated with p53 C-terminal peptides. In SAS/neo cells, positively stained cells for active type caspase-3 were observed with X-ray irradiation alone. Furthermore, protein extracts from X-ray-irradiated SAS/m p53 cells showed higher DNA-binding activity of p53 to p53 consensus sequence when supplemented in vitro with p53 C-terminal peptides than extracts from non-irradiated SAS/m p53 cells. These results suggest that radiation treatment in the presence of p53 C-terminal peptides is more effective for inducing p53 -mediated apoptosis than radiation treatment alone or p53 C-terminal peptide treatment alone, especially in m p53 cancer cells. This novel tool for enhancement of apoptosis induction in m p53 cells might be useful for p53-targeted radio-cancer therapy.  相似文献   

5.
Urokinase plasminogen activator (uPA) is a serine protease that catalyzes the conversion of plasminogen to plasmin. The plasminogen/plasmin system includes the uPA, its receptor, and its inhibitor (plasminogen activator inhibitor-1). Interactions between these molecules regulate cellular proteolysis as well as adhesion, cellular proliferation, and migration, processes germane to the pathogenesis of lung injury and neoplasia. In previous studies, we found that uPA regulates cell surface fibrinolysis by regulating its own expression as well as that of the uPA receptor and plasminogen activator inhibitor-1. In this study, we found that uPA alters expression of the tumor suppressor protein p53 in Beas2B airway epithelial cells in both a time- and concentration-dependent manner. These effects do not require uPA catalytic activity because the amino-terminal fragment of uPA lacking catalytic activity was as potent as two chain active uPA. Single chain uPA also enhanced p53 expression to the same extent as intact two chain active uPA and the amino-terminal fragment. Pretreatment of cells with anti-beta1 integrin antibody blocked uPA-induced p53 expression. uPA-induced p53 expression occurs without increased p53 mRNA expression. However, uPA induced oncoprotein MDM2 in a concentration-dependent manner. uPA-induced p53 expression does not require activation of tyrosine kinases. Inactivation of protein-tyrosine phosphatase SHP-2 inhibits both basal and uPA-induced p53 expression. Plasmin did not alter uPA-mediated p53 expression. The induction of p53 expression by exposure of lung epithelial cells to uPA is a newly recognized pathway by which urokinase may influence the proliferation of lung epithelial cells. This pathway could regulate pathophysiologic alterations of p53 expression in the setting of lung inflammation or neoplasia.  相似文献   

6.
Although the p53 tumor-suppressor gene product plays a critical role in apoptotic cell death induced by DNA-damaging chemotherapeutic agents, human glioma cells with functional p53 were more resistant to gamma-radiation than those with mutant p53. U-87 MG cells with wild-type p53 were resistant to gamma-radiation. U87-W E6 cells that lost functional p53, by the expression of type 16 human papillomavirus E6 oncoprotein, became susceptible to radiation-induced apoptosis. The formation of ceramide by acid sphingomyelinase (A-SMase), but not by neutral sphingomyelinase, was associated with p53-independent apoptosis. SR33557 (2-isopropyl-1-(4-[3-N-methyl-N-(3,4-dimethoxybphenethyl)amino]propyloxy)benzene-sulfonyl) indolizine, an inhibitor of A-SMase, suppressed radiation-induced apoptotic cell death. In contrast, radiation-induced A-SMase activation was blocked in glioma cells with endogenous functional p53. The expression of acid ceramidase was induced by gamma-radiation, and was more evident in cells with functional p53. N-oleoylethanolamine, which is known to inhibit ceramidase activity, unexpectedly downregulated acid ceramidase and accelerated radiation-induced apoptosis in U87-W E6 cells. Moreover, cells with functional p53 could be sensitized to gamma-radiation by N-oleoylethanolamine, which suppressed radiation-induced acid ceramidase expression and then enhanced ceramide formation. Sensitization to gamma-radiation was also observed in U87-MG cells depleted of functional p53 by retroviral expression of small interfering RNA. These results indicate that ceramide may function as a mediator of p53-independent apoptosis in human glioma cells in response to gamma-radiation, and suggest that p53-dependent expression of acid ceramidase and blockage of A-SMase activation play pivotal roles in protection from gamma-radiation of cells with endogenous functional p53.  相似文献   

7.
Suppression of apoptosis is an important feature of the Abelson murine leukemia virus (Ab-MLV) transformation process. During multistep transformation, Ab-MLV-infected pre-B cells undergo p53-dependent apoptosis during the crisis phase of transformation. Even once cells are fully transformed, an active v-Abl protein tyrosine kinase is required to suppress apoptosis because cells transformed by temperature-sensitive (ts) kinase mutants undergo rapid apoptosis after a shift to the nonpermissive temperature. However, inactivation of the v-Abl protein by a temperature shift interrupts signals transmitted via multiple pathways, making it difficult to identify those that are critically important for the suppression of apoptosis. To begin to dissect these pathways, we tested the ability of an SH2 domain Ab-MLV mutant, P120/R273K, to rescue aspects of the ts phenotype of pre-B cells transformed by the conditional kinase domain mutant. The P120/R273K mutant suppressed apoptosis at the nonpermissive temperature, a phenotype correlated with its ability to activate Akt. Apoptosis also was suppressed at the nonpermissive temperature by constitutively active Akt and in p53-null pre-B cells transformed with the ts kinase domain mutant. These data indicate that an intact Src homology 2 (SH2) domain is not critical for apoptosis suppression and suggest that signals transmitted through Akt and p53 play an important role in the response.  相似文献   

8.
Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G(2)/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling, even in mp53 bearing cancer cells.  相似文献   

9.
Trichloroethylene (TCE) and perchloroethylene (PERC) are volatile organic compounds (VOCs) that are primarily inhaled through the respiratory system. The aim of this study was to elucidate the role of glutathione (GSH) and p53 in TCE- and PERC-induced lung toxicity. Human lung adenocarcinoma cells NCI-H460 (p53-wild-type) have constitutively lower levels of GSH than NCI-H1299 (p53-null) cells. The results showed that exposure to vapor TCE and PERC produced a dose-dependent and more pronounced accumulation of H(2)O(2) in p53-WT H460 than p53-null H1299 cells. The accumulation of H(2)O(2) was accompanied by severe cellular damage, as indicated by the significant increase of lipid peroxidation and apoptosis in p53-WT H460 cells, but not p53-null H1299 cells. Cotreatment of p53-WT H460 cells with free radical scavengers, such as D-mannitol, uric acid, and sodium selenite, significantly attenuated the TCE- or PERC-induced lipid peroxidation. In contrast, depletion of GSH in p53-null H1299 cells enhanced TCE- or PERC-induced lipid peroxidation. The levels of p53 and Bax proteins were elevated, while Bcl-2 protein was downregulated in TCE- or PERC-treated p53-WT H460 cells. Activity of caspase 3, the apoptotic executioner, was also significantly enhanced in TCE- or PERC-treated cells. These data suggest that, in human lung cancer cells, GSH plays a vital role in the protection of TCE- and PERC-induced oxidative stress and apoptosis, which may be mediated through a p53-dependent pathway.  相似文献   

10.
11.
12.
An SH  Kang JH  Kim DH  Lee MS 《BMB reports》2011,44(3):211-216
Vitamin C (VC) is an important antioxidant and enzyme co-factor that works by stimulating the immune system and protecting against infections. It is well known that melanoma cells are more susceptible to VC than any other tumor cells. However, the role of VC in the treatment of colon cancer has not been studied. Cisplatin (CDDP) is a DNA damaging agent and is widely used for treating cancer, while the role of p53 in CDDP-induced cell death has been stressed. Using cell growth assays, morphological methods, Western blotting, flow cytometry, and DNA fragmentation analysis, we measured the expression of p53 level involved in the effect of VC on CDDP-induced apoptosis of HCT116, a human colon cancer cell line. CDDP plus VC treatment resulted in significantly increased apoptosis along with upregulation of p53 compared to untreated cells and/or CDDP-treated cells. These results suggest that VC enhanced CDDP sensitivity and apoptosis via upregulation of p53.  相似文献   

13.
Celecoxib, a clinical non-steroidal anti-inflammatory drug, displays anticarcinogenic and chemopreventive activities in human colorectal cancers, although the mechanisms of apoptosis by celecoxib are poorly understood. The existence of functional p53 but not securin in colorectal cancer cells was higher on the induction of cytotoxicity than the p53-mutational colorectal cancer cells following celecoxib treatment. The p53-wild type HCT116 cells were more susceptible to increase ∼25% cell death than the p53-null HCT116 cells after treatment with 100 μM celecoxib for 24 h. Transfection with a small interfering RNA of p53 reduced the celecoxib-induced cytotoxicity in the RKO (p53-wild type) colorectal cancer cells. Celecoxib (80-100 μM for 24 h) significantly increased total p53 proteins and the phosphorylated p53 proteins at serine-15, -20, -46, and -392 in RKO cells. However, the phospho-p53 (serine-15, -20, and -392) proteins were presented on the nuclei of cells but the phospho-p53 (serine-46) protein was located on the cytoplasma of apoptotic cells following treatment with celecoxib. Interestingly, the p53 up-regulated modulator of apoptosis (PUMA) protein, which located on the mitochondria, was induced by celecoxib in the p53-functional colorectal cancer cells but not in the p53-mutational cells. Together, this study provides the first time that celecoxib induces the various phosphorylated sites of p53 and activates p53-PUMA pathway, which potentiates the apoptosis induction in human colorectal cancer cells.  相似文献   

14.
15.
Human non-small-cell-lung-cancer (NSCLC) cells of p53-null genotype were exposed to low-dosage topoisomearse II inhibitor etoposide (VP-16). The cellular proliferation rate could be effectively inhibited by VP-16 in dose-dependent manner. The effective drug concentration for growth inhibition could be as low as 0.5 M and the apoptotic phenotype became evident 48 h later. In H1299 cells, VP-16-induced cytotoxic effect was demonstrated associated with apoptosis that disappeared when restored with wild-type p53. Cell cycle analysis revealed that, upon VP-16 induction, cell death began with growth arrest by accumulating cells at the G2-M phase. The cells at sub-G1 phase increased at the expense of those at G2-M transition state. To assess the regulation of cell cycle modulators, western blot analysis of H1299 cell lysates showed the release of apoptosis initiator, cytochrome c and apaf-1 hours following drug induction. The cleavage of downstream effectors, procaspase-9 and procaspase-7, but not procaspase-3, was accompanied with proteolysis of poly-(ADP-ribose) polymerase (PARP). VP-16-activated procaspase-7 cleavage was abrogated in cells with ectopically expressed p53.On the other hand, the inhibited procaspase-7 fragmentation by caspase-specific inhibitor reversed apoptotic phenotype caused by drug induction. Thus, VP-16-induced apoptotic cell death was contributed by caspase-7 activation inp53-deficient human NSCLC cells.  相似文献   

16.
17.
Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells. However, the regulation of survivin and p53 on the quercetin-induced cell growth inhibition and apoptosis in cancer cells remains unclear. In this study, we investigated the roles of survivin and p53 in the quercetin-treated human lung carcinoma cells. Quercetin (20-80 mum for 24 h) induced the cytotoxicity and apoptosis in both A549 and H1299 lung carcinoma cells in a concentration-dependent manner. Additionally, quercetin inhibited the cell growth, increased the fractions of G(2)/M phase, and raised the levels of cyclin B1 and phospho-cdc2 (threonine 161) proteins. Moreover, quercetin induced abnormal chromosome segregation in H1299 cells. The survivin proteins were highly expressed in mitotic phase and were located on the midbody of cytokinesis; however, the survivin proteins were increased and concentrated on the nuclei following quercetin treatment in the lung carcinoma cells. Transfection of a survivin antisense oligodeoxynucleotide enhanced the quercetin-induced cell growth inhibition and cytotoxicity. Subsequently, quercetin increased the levels of total p53 (DO-1), phospho-p53 (serine 15), and p21 proteins, which were translocated to the nuclei in A549 cells. Treatment with a specific p53 inhibitor, pifithrin-alpha, or transfection of a p53 antisense oligodeoxynucleotide enhanced the cytotoxicity of the quercetin-treated cells. Furthermore, transfection of a small interfering RNA of p21 enhanced the quercetin-induced cell death in A549 cells. Together, our results suggest that survivin can reduce the cell growth inhibition and apoptosis, and p53 elevates the p21 level, which may attenuate the cell death in the quercetin-treated human lung carcinoma cells.  相似文献   

18.
MicroRNAs have crucial roles in lung cancer cell development. They regulate cell growth, proliferation and migration by mediating the expression of tumor suppressor genes and oncogenes. We identified and characterized the novel miR-9500 in human lung cancer cells. The miR-9500 forms a stem-loop structure and is conserved in other mammals. The expression levels of miR-9500 were reduced in lung cancer cells and lung cancer tissues compared with normal tissues, as verified by TaqMan miRNA assays. It was confirmed that the putative target gene, Akt1, was directly suppressed by miR-9500, as demonstrated by a luciferase reporter assay. The miR-9500 significantly repressed the protein expression levels of Akt1, as demonstrated via western blot, but did not affect the corresponding mRNA levels. Akt1 has an important role in lung carcinogenesis, and depletion of Akt1 has been shown to have antiproliferative and anti-migratory effects in previous studies. In the current study, the overexpression of miR-9500 inhibited cell proliferation and the expression of cell cycle-related proteins. Likewise, the overexpression of miR-9500 impeded cell migration in human lung cancer cells. In an in vivo assay, miR-9500 significantly suppressed Fluc expression compared with NC and ASO-miR-9500, suggesting that cell proliferation was inhibited in nude mice. Likewise, miR-9500 repressed tumorigenesis and metastasis by targeting Akt1. These data indicate that miR-9500 might be applicable for lung cancer therapy.MicroRNAs (miRNAs) are small, non-coding RNAs, 18–25 nucleotides (nt) in length that regulate gene expression by binding to the 3′-untranslated region (UTR) of their target genes,1, 2 and these RNAs are processed from introns, exons or intergenic regions.3 First, miRNAs are transcribed by RNA polymerase II into primary miRNA (pri-miRNA) molecules that contain several thousand nucleotides. The pri-miRNAs are then sequentially processed by a microprocessor, such as Drosha RNase III endonuclease and DiGeorge syndrome region gene 8 protein (DGCR8), to form ∼70 nt-stem-loop intermediates known as miRNA precursors (pre-miRNAs).4, 5 The pre-miRNAs are then exported from the nucleus into the cytoplasm via Exportin-5 (EXP5), with its cofactor Ran-GTP; in the cytoplasm, these pre-miRNAs are processed into 18–25 nt mature miRNA duplexes by the RNase III endonuclease Dicer.6, 7 The mature miRNA duplexes, along with the Argonaute proteins, are integrated as single-stranded RNAs into an RNA-induced silencing complex, which induces either the cleavage or the translational inhibition of the targeted mRNAs.8, 9, 10 miRNAs have been implicated in a variety of biological processes associated with cancer development, including cell proliferation and invasion,11 and miRNA expression is deregulated in many forms of cancer.12Cancer is a major public health problem worldwide. Lung cancer represents one of the most predominant types of cancer, with high mortality rates in both men and women. Epithelial lung cancer can be categorized into one of two types: small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC). NSCLC accounts for ∼80% of lung cancer cases, and these cases can be further categorized as adenocarcinoma (40%), squamous cell carcinoma (30–35%), and large cell carcinoma (5–15%). NSCLC has a 5-year survival rate of only 16%.13, 14, 15 Current studies have shown that miRNAs are deregulated in various cancers, including NSCLC, and may act as oncogenes or tumor suppressor genes.16 For example, the Let-7 family,17 miR-15a/16,18 miR-17-92,19 miR-107 and miR-185,20 are deregulated in lung cancer.Some studies have reported that phosphatidylinositol 3-kinase (PI3K) signaling is activated in human cancers21, 22 and has an important role in the progression of NSCLC. The PI3K pathway modulates several cellular mechanisms, such as cell survival, proliferation, migration and motility, and thereby significantly affects the growth of tumors.23, 24 The primary regulator of the PI3K pathway is Akt, a protein kinase B that mediates cell survival, cell death,25 cell growth, cell migration and angiogenesis.26, 27, 28 The silencing of the Akt1 gene has been shown to inhibit the proliferation of gastric cancer cells both in vitro and in vivo.29 Other studies have shown that aberrant AKT activation has a critical role in tumorigenesis.30In this study, we identified small RNAs in lung cancer cells. To analyze a novel miRNA signature, we examined the structure and sequence of the small RNAs, analyzed the expression patterns of the novel miRNAs in lung cancer tissues and assessed the miRNA target genes. Our data revealed that miR-9500 regulates certain human lung cancer cell functions, including cell growth, proliferation, and migration.  相似文献   

19.
PI3k-Akt and p53 pathways are known to play anti- and pro-apoptotic roles in cell death, respectively. Whether these pathways are recruited in influenza virus infection in highly productive monkey (CV-1) and canine (MDCK) kidney cells was studied here. Phosphorylation of Akt (Akt-pho) was found to occur only early after infection (5–9 h.p.i). Nuclear accumulation and phosphorylation of p53 (p53-pho), and expression of its natural target p21/waf showed low constitutive levels at this period, whereas all three parameters were markedly elevated at the late apoptotic stage (17–20 h.p.i.). Up-regulation of Akt-pho and p53-pho was not induced by UV-inactivated virus suggesting that it required virus replication. Also, mRNAs of p53 and its natural antagonist mdm2 were not increased throughout infection indicating that p53-pho was up-regulated by posttranslational mechanisms. However, p53 activation did not seem to play a leading role in influenza-induced cell death: (i) infection of CV1 and MDCK cells with recombinant NS1-deficient virus provoked accelerated apoptotic death characterized by the lack of p53 activation; (ii) mixed apoptosis-necrosis death developed in influenza-infected human bronchial H1299 cells carrying a tetracycline-regulated p53 gene did not depend on p53 gene activation by tetracycline. Virus-induced apoptosis and signaling of Akt and p53 developed in IFN-deficient VERO cells with similar kinetics as in IFN-competent CV1-infected cells indicating that these processes were endocrine IFN-independent. Apoptosis in influenza-infected CV-1 and MDCK cells was Akt-dependent and was accelerated by Ly294002, a specific inhibitor of PI3k-Akt signaling, and down-regulated by the viral protein NS1, an inducer of host Akt. The obtained data suggest that influenza virus (i) initiates anti-apoptotic PI3k-Akt signaling at early and middle phases of infection to protect cells from fast apoptotic death and (ii) provokes both p53-dependent and alternative p53-independent apoptotic and/or necrotic (in some host systems) cell death at the late stage of infection. These data have been partially presented at The 3rd Orthomyxovirus Research Conference (sponsored by ESWI and NIH). Abstr. p. 23 entitled: “Influenza virus-specific up-regulation of Akt and Mdm2 in infected cells” by Zhirnov O.P., and Klenk H.D., July 28–21, 2005. Queen’s College, Cambridge, United Kingdom; and at The Annual Meeting of Virology in Munich, March 15–18 (2006)—“Influenza virus-specific up-regulation of Akt, Mdm2, and p53 in infected cells” by O. P. Zhirnov and H. D. Klenk; Book of abstracts, p. 339  相似文献   

20.
The lung is a target organ for cadmium (Cd) toxicity. Apoptosis induced by cadmium acetate (CdAc) was studied in alveolar type 2 cells and Clara cells isolated from rat lung. Relatively low concentrations of CdAc (1–10 μmol/L) induced apoptosis after exposure for 20 h. Type 2 cells were more sensitive than Clara cells to Cd-induced apoptosis and loss of cell viability. On exposure to 10 μmol/L CdAc, the levels of the apoptosis-modulating proteins p53 and Bax were increased at 2 h and 5–12 h, respectively. The expression of p53 preceded the expression of Bax and the apoptotic process. The exposure to 10 μmol/L CdAc did not significantly increase the formation of cellular reactive oxygen species (ROS). However, after exposure to a high concentration of CdAc (100 μmol/L), a 30% increase of the ROS level was observed. No significant nitric oxide production was measured following CdAc exposure. Catalase, superoxide dismutase, dimethyl sulfoxide, or tetramethylthiourea did not protect against Cd-induced apoptosis. In conclusion, the results show that Clara cells and type 2 cells are sensitive to Cd-induced apoptosis. Increased levels of p53 and Bax are suggested to be involved in the apoptosis. The apoptosis did not appear to be mediated by oxidative pathways. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号