首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translation initiation by internal ribosome binding is a recently discovered mechanism of eukaryotic viral and cellular protein synthesis in which ribosome subunits interact with the mRNAs at internal sites in the 5' untranslated RNA sequences and not with the 5' methylguanosine cap structure present at the extreme 5' ends of mRNA molecules. Uncapped poliovirus mRNAs harbor internal ribosome entry sites (IRES) in their long and highly structured 5' noncoding regions. Such IRES sequences are required for viral protein synthesis. In this study, a novel poliovirus was isolated whose genomic RNA contains two gross deletions removing approximately 100 nucleotides from the predicted IRES sequences within the 5' noncoding region. The deletions originated from previously in vivo-selected viral revertants displaying non-temperature-sensitive phenotypes. Each revertant had a different predicted stem-loop structure within the 5' noncoding region of their genomic RNAs deleted. The mutant poliovirus (Se1-5NC-delta DG) described in this study contains both stem-loop deletions in a single RNA genome, thereby creating a minimum IRES. Se1-5NC-delta DG exhibited slow growth and a pinpoint plaque phenotype following infection of HeLa cells, delayed onset of protein synthesis in vivo, and defective initiation during in vitro translation of the mutated poliovirus mRNAs. Interestingly, the peak levels of viral RNA synthesis in cells infected with Se1-5NC-delta DG occurred at slightly later times in infection than those achieved by wild-type poliovirus, but these mutant virus RNAs accumulated in the host cells during the late phases of virus infection. UV cross-linking assays with the 5' noncoding regions of wild-type and mutated RNAs were carried out in cytoplasmic extracts from HeLa cells and neuronal cells and in reticulocyte lysates to identify the cellular factors that interact with the putative IRES elements. The cellular proteins that were cross-linked to the minimum IRES may represent factors playing an essential role in internal translation initiation of poliovirus mRNAs.  相似文献   

2.
3.
Extracts from poliovirus-infected HeLa cells were used to study ribosome binding of native and denatured reovirus mRNAs and translation of capped mRNAs with different degrees of secondary structure. Here, we demonstrate that ribosomes in extracts from poliovirus-infected cells could form initiation complexes with denatured reovirus mRNA, in contrast to their inability to bind native reovirus mRNA. Furthermore, the capped alfalfa mosaic virus 4 RNA, which is most probably devoid of stable secondary structure at its 5' end, could be translated at much higher efficiency than could other capped mRNAs in extracts from poliovirus-infected cells.  相似文献   

4.
Picornavirus RNAs are uncapped messengers and have unusually long 5' nontranslated regions (5'NTRs) which contain many noninitiating AUG triplets. The translational efficiency of different picornavirus RNAs varies between different cell-free extracts and even in the same extract, such as micrococcal nuclease-treated rabbit reticulocyte lysates. The effect of the poliovirus 5'NTR on in vitro translation was compared with that of the 5'NTR of encephalomyocarditis virus by the use of synthetic mRNAs, micrococcal nuclease-treated HeLa cell extracts, and rabbit reticulocyte lysates. Artificial mono- and dicistronic mRNAs synthesized with T7 RNA polymerase were used to investigate whether the 5'NTR of encephalomyocarditis virus RNA contains a potential internal ribosomal entry site. The sequence between nucleotides 260 and 484 in the 5'NTR of encephalomyocarditis RNA was found to play a critical role in the efficient translation in both mono- and dicistronic mRNAs. Our data suggest that an internal ribosomal entry site resides in this region.  相似文献   

5.
Sequence elements that can function as internal ribosome entry sites (IRES) have been identified in 5' noncoding regions of certain uncapped viral and capped cellular mRNA molecules. However, it has remained largely unknown whether IRES elements are functional when located in their natural capped mRNAs. Therefore, the polysomal association and translation of several IRES-containing cellular mRNAs was tested under conditions that severely inhibited cap-dependent translation, that is, after infection with poliovirus. It was found that several known IRES-containing mRNAs, such as BiP and c-myc, were both associated with the translation apparatus and translated in infected cells when cap-dependent translation of most host-cell mRNAs was blocked, indicating that the IRES elements were functional in their natural mRNAs. Curiously, the mRNAs that encode eukaryotic initiation factor 4GI (eIF4GI) and 4GII (eIF4GII), two proteins with high identity and similar functions in the initiation of cap-dependent translation, were both associated with polysomes in infected cells. The 5'-end sequences of eIF4GI mRNA were isolated from a cDNA expression library and shown to function as an internal ribosome entry site when placed into a dicistronic mRNA. These findings suggest that eIF4G proteins can be synthesized at times when 5' cap-dependent mRNA translation is blocked, supporting the notion that eIF4G proteins are needed in both 5' cap-independent and 5' cap-dependent translational initiation mechanisms.  相似文献   

6.
The nucleotide at position 480 in the 5' noncoding region of the viral RNA genome plays an important role in directing the attenuation phenotype of the Sabin vaccine strain of poliovirus type 1. In vitro translation studies have shown that the attenuated viral genomes of the Sabin strains direct levels of viral protein synthesis lower than those of their neurovirulent counterparts. We previously described the isolation of pseudorevertant polioviruses derived from transfections of HeLa cells with genome-length RNA harboring an eight-nucleotide lesion in a stem-loop structure (stem-loop V) that contains the attenuation determinant at position 480 (A. A. Haller and B. L. Semler, J. Virol. 66:5075-5086, 1992). This stem-loop structure is a major component of the poliovirus internal ribosome entry site required for initiation of viral protein synthesis. The eight-nucleotide lesion (X472) was lethal for virus growth and gave rise only to viruses which had partially reverted nucleotides within the original substituted sequences. In this study, we analyzed two of the poliovirus revertants (X472RI and X472R2) for cell-type-specific growth properties. The X472RI and X472R2 RNA templates directed protein synthesis to wild-type levels in in vitro translation reaction mixtures supplemented with crude cytoplasmic HeLa cell extracts. In contrast, the same X472 revertant RNAs displayed a decreased translation initiation efficiency when translated in a cell-free system supplemented with extracts from neuronal cells. This translation initiation defect of the X472R templates correlated with reduced yields of infectious virus particles in neuronal cells compared with those obtained from HeLa cells infected with the X472 poliovirus revertants. Our results underscore the important of RNA secondary structures within the poliovirus internal ribosome entry site in directing translation initiation and suggest that such structures interact with neuronal cell factors in a specific manner.  相似文献   

7.
Translation initiation factor-dependent extracts from Saccharomyces cerevisiae   总被引:10,自引:0,他引:10  
Translation initiation factor 4A- and 4E-dependent extracts were developed from Saccharomyces cerevisiae and used to study factor requirements for translation of individual mRNAs in vitro. Whereas all mRNAs tested required eIF-4A, mRNAs devoid of secondary structure in their 5' untranslated region did not require exogenous eIF-4E for translation. The latter included alfalfa mosaic virus RNA4, mRNA containing the untranslated region of tobacco mosaic virus RNA and mRNA containing part of the untranslated region of poliovirus RNA. Furthermore, initiation of translation on mRNAs containing part of the untranslated region of poliovirus RNA is most likely internal.  相似文献   

8.
The translation of picornavirus genomic RNAs occurs by a cap-independent mechanism that requires the formation of specific ribonucleoprotein complexes involving host cell factors and highly structured regions of picornavirus 5' noncoding regions known as internal ribosome entry sites (IRES). Although a number of cellular proteins have been shown to be involved in picornavirus RNA translation, the precise role of these factors in picornavirus internal ribosome entry is not understood. In this report, we provide evidence for the existence of distinct mechanisms for the internal initiation of translation between type I and type II picornavirus IRES elements. In vitro translation reactions were conducted in HeLa cell cytoplasmic translation extracts that were depleted of the cellular protein, poly(rC) binding protein 2 (PCBP2). Upon depletion of PCBP2, these extracts possessed a significantly diminished capacity to translate reporter RNAs containing the type I IRES elements of poliovirus, coxsackievirus, or human rhinovirus linked to luciferase; however, the addition of recombinant PCBP2 could reconstitute translation. Furthermore, RNA electrophoretic mobility-shift analysis demonstrated specific interactions between PCBP2 and both type I and type II picornavirus IRES elements; however, the translation of reporter RNAs containing the type II IRES elements of encephalomyocarditis virus and foot-and-mouth disease virus was not PCBP2 dependent. These data demonstrate that PCBP2 is essential for the internal initiation of translation on picornavirus type I IRES elements but is dispensable for translation directed by the structurally distinct type II elements.  相似文献   

9.
To determine which sequences or structures in the poliovirus 5' noncoding region (5'NCR) are involved in binding proteins used for internal ribosome binding and protein synthesis initiation, translation competition assays were performed in rabbit reticulocyte lysates in the presence and absence of HeLa cell extract. The results revealed two functional domains in the poliovirus 5'NCR. One, requiring nucleotides (nts) 457 to 626, binds proteins that are required for translation of all mRNAs and that are present in both reticulocyte lysates and HeLa cell extracts. Another, contained within nts 286 to 456, interacts with proteins that are specific for poliovirus translation and are present in HeLa cells but not in significant amounts in rabbit reticulocyte lysates. In order to detect HeLa cell proteins that interact stably with the 5'NCR of poliovirus, UV cross-linking was used. At least four major protein-RNA complexes were identified, three of which were shown by RNA competition analysis to bind specifically to defined domains within the 5'NCR. Protein A (54 kDa) cross-linked to RNA sequences and/or structures located between nts 457 and 626; proteins B (48 kDa) and C (38 kDa) bound to nts 286 to 456.  相似文献   

10.
Poliovirus polysomal RNA is naturally uncapped, and as such, its translation must bypass any 5' cap-dependent ribosome recognition event. To elucidate the manner by which poliovirus mRNA is translated, we have determined the translational efficiencies of a series of deletion mutants within the 5' noncoding region of the mRNA. We found striking differences in translatability among the altered mRNAs when assayed in mock-infected and poliovirus-infected HeLa cell extracts. The results identify a functional cis-acting element within the 5' noncoding region of the poliovirus mRNA which enables it to translate in a cap-independent fashion. The major determinant of this element maps between nucleotides 320 and 631 of the 5' end of the poliovirus mRNA. We also show that this region (320 to 631), when fused to a heterologous mRNA, can function in cis to render the mRNA cap independent in translation.  相似文献   

11.
We have expressed in the yeast Saccharomyces cerevisiae a full-length poliovirus cDNA clone under the control of the GAL10 promoter to better characterize the effect of poliovirus on host cell metabolism. We find that yeast cells are unable to translate poliovirus RNA in vivo and that this inhibition is mediated through the 5' untranslated region of the viral RNA. The in vivo inhibition of translation of poliovirus RNA and P2CAT RNA (which contains the 5' untranslated region fused upstream of the bacterial chloramphenicol transferase gene) can be mimicked in vitro in yeast translation lysates. In fact, a trans-acting inhibitor present in yeast lysates can inhibit translation of either poliovirus or P2CAT RNA in HeLa cell translation lysates. In contrast, when the inhibitor is added to translations programmed with chloramphenicol acetyltransferase RNA, yeast prepro-alpha-factor RNA, or an RNA containing the internal ribosome entry site of encephalomyocarditis virus, no inhibition is seen. The inhibitory activity has been partially purified by DEAE-Sephacel chromatography. The partially purified inhibitor is heat stable, escapes phenol extraction, is resistant to proteinase K and DNase I treatment, and is sensitive to RNase A digestion, suggesting that the inhibitor is an RNA. In an in vitro translation assay, the inhibitory activity can be overcome by increasing the concentration of HeLa cell lysate but not P2CAT RNA, suggesting that the inhibitor interacts (directly or indirectly) with one or more components of the HeLa cell translational machinery rather than with the viral RNA.  相似文献   

12.
Expression vectors that yield mono-, di-, and tricistronic mRNAs upon transfection of COS-1 cells were used to assess the influence of the 5' nontranslated regions (5'NTRs) on translation of reporter genes. A segment of the 5'NTR of encephalomyocarditis virus (EMCV) allowed translation of an adjacent downstream reporter gene (CAT) regardless of its position in the mRNAs. A deletion in the EMCV 5'NTR abolishes this effect. Poliovirus infection completely inhibits translation of the first cistron of a dicistronic mRNA that is preceded by the capped globin 5'NTR, whereas the second cistron preceded by the EMCV 5'NTR is still translated. We conclude that the EMCV 5'NTR contains an internal ribosomal entry site that allows cap-independent initiation of translation. mRNA containing the adenovirus tripartite leader is also resistant to inhibition of translation by poliovirus.  相似文献   

13.
A significant number of viral and cellular mRNAs utilize cap-independent translation, employing mechanisms distinct from those of canonical translation initiation. Cap-independent translation requires noncanonical, cellular RNA-binding proteins; however, the roles of such proteins in ribosome recruitment and translation initiation are not fully understood. This work demonstrates that a nucleo-cytoplasmic SR protein, SRp20, functions in internal ribosome entry site (IRES)-mediated translation of a viral RNA. We found that SRp20 interacts with the cellular RNA-binding protein, PCBP2, a protein that binds to IRES sequences within the genomic RNAs of certain picornaviruses and is required for viral translation. We utilized in vitro translation in HeLa cell extracts depleted of SRp20 to demonstrate that SRp20 is required for poliovirus translation initiation. Targeting SRp20 in HeLa cells with short interfering RNAs resulted in inhibition of SRp20 protein expression and a corresponding decrease in poliovirus translation. Our data have identified a previously unknown function of an SR protein (i.e., the stimulation of IRES-mediated translation), further documenting the multifunctional nature of this important class of cellular RNA-binding proteins.  相似文献   

14.
A HeLa cell clone (2A7d) that inducibly expresses the gene for poliovirus protease 2A (2A(pro)) under the control of tetracycline has been obtained. Synthesis of 2A(pro) induces severe morphological changes in 2A7d cells. One day after tetracycline removal, cells round up and a few hours later die. Poliovirus 2A(pro) cleaves both forms of initiation factor eIF4G, causing extensive inhibition of capped-mRNA translation a few hours after protease induction. Methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone, a selective inhibitor of 2A(pro), prevents both eIF4G cleavage and inhibition of translation but not cellular death. Expression of 2A(pro) still allows both the replication of poliovirus and the translation of mRNAs containing a picornavirus leader sequence, while vaccinia virus replication is drastically inhibited. Translation of transfected capped mRNA is blocked in 2A7d-On cells, while luciferase synthesis from a mRNA bearing a picornavirus internal ribosome entry site (IRES) sequence is enhanced by the presence of 2A(pro). Moreover, synthesis of 2A(pro) in 2A7d cells complements the translational defect of a poliovirus 2A(pro)-defective variant. These results show that poliovirus 2A(pro) expression mimics some phenotypical characteristics of poliovirus-infected cells, such as cell rounding, inhibition of protein synthesis and enhancement of IRES-driven translation. This cell line constitutes a useful tool to further analyze 2A(pro) functions, to complement poliovirus 2A(pro) mutants, and to test antiviral compounds.  相似文献   

15.
Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5' end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection.  相似文献   

16.
A cloverleaf structure at the 5' terminus of poliovirus RNA binds viral and cellular proteins. To examine the role of the cloverleaf in poliovirus replication, we determined how cloverleaf mutations affected the stability, translation and replication of poliovirus RNA in HeLa S10 translation-replication reactions. Mutations within the cloverleaf destabilized viral RNA in these reactions. Adding a 5' 7-methyl guanosine cap fully restored the stability of the mutant RNAs and had no effect on their translation. These results indicate that the 5' cloverleaf normally protects uncapped poliovirus RNA from rapid degradation by cellular nucleases. Preinitiation RNA replication complexes formed with the capped mutant RNAs were used to measure negative-strand synthesis. Although the mutant RNAs were stable and functional mRNAs, they were not active templates for negative-strand RNA synthesis. Therefore, the 5' cloverleaf is a multifunctional cis-acting replication element required for the initiation of negative-strand RNA synthesis. We propose a replication model in which the 5' and 3' ends of viral RNA interact to form a circular ribonucleoprotein complex that regulates the stability, translation and replication of poliovirus RNA.  相似文献   

17.
18.
I Edery  K A Lee  N Sonenberg 《Biochemistry》1984,23(11):2456-2462
We examined the effects of a eukaryotic mRNA cap binding protein (CBP) complex purified by cap analogue affinity chromatography [Edery, I., Humebelin, M., Darveau, A., Lee, K.A. W., Milburn, S., Hershey, J.W.B., Trachsel, H., & Sonenberg, N. (1983) J. Biol. Chem. 258, 11398 11403], on translation of several capped and naturally uncapped mRNAs in extracts prepared from poliovirus-infected or mock-infected HeLa cells. The CBP complex has activity that restores capped mRNA (globin, tobacco mosaic virus, and others) function in extracts from poliovirus-infected HeLa cells. Translation of two naturally uncapped RNAs (poliovirus and mengovirus RNAs), the translation of which is not restricted in extracts from poliovirus-infected cells, is also not stimulated by the CBP complex. Translation of several capped eukaryotic mRNAs (vesicular stomatitis virus, reovirus, and tobacco mosaic virus) in extracts from mock-infected cells is inhibited when the potassium ion concentration is increased. However, translation of capped AMV-4 RNA, which has negligible secondary structure at its 5' end, is resistant to this inhibition. Furthermore, the CBP complex reverses the high salt induced inhibition of translation of the former mRNAs. Since mRNA secondary structure is more stable at elevated salt concentrations, these data are consistent with a model in which the CBP complex has a role in melting mRNA secondary structure involving 5'-proximal sequences, to facilitate ribosome binding.  相似文献   

19.
Development of an efficient cell-free translation system from mammalian cells is an important goal. We examined whether supplementation of HeLa cell extracts with any translation initiation factor or translational regulator could enhance protein synthesis. eIF2 (eukaryotic translation initiation factor 2) and eIF2B augmented translation of capped, uncapped and encephalomyocarditis virus-internal ribosome entry site-promoted mRNAs. eIF4E specifically stimulated capped mRNA translation, while p97, a homologue to the C-terminal two-thirds of eIF4G, increased uncapped mRNA translation. When the HeLa cell extract was supplemented with a combination of eIF2, eIF2B, and p97, the capacity to synthesize a protein from an uncapped mRNA became comparable to that from the capped counterpart stimulated with a combination of eIF2, eIF2B, and eIF4E. A dialysis method rendered the HeLa cell extract capable of synthesizing proteins for 36h, and the yield was augmented when supplemented with initiation factors. In contrast, the productivity of a rabbit reticulocyte lysate was not enhanced by this method. Collectively, the translation factor-supplemented HeLa cell extract should become an important tool for the production of recombinant proteins.  相似文献   

20.
Translation initiation on EMCV RNA occurs via binding of ribosomes to an internal sequence within the 5' noncoding region. To investigate the organization of the internal ribosome entry site (IRES) we have determined the translational efficiencies of a series of deletion mutants within the 5' noncoding region of EMCV RNA. Three functional regions have been distinguished: a sequence between nts 315-484 and the upper parts of the double-helical structural domains III (nts 488-647) and IV (nts 701-763). The first one greatly enhances translation, but is not absolutely necessary for internal initiation. The other two regions are indispensable to this process. A sequence within domain IV determines inhibition of in vitro translation of mRNAs with 5'-terminal dependent initiation. It is proposed to interact with a translational factor(s) common to the internal and 5'-terminal dependent initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号