首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α-Amylase (EC 3.2.1.1) was excreted by Calvatia gigantea in liquid growth media containing different sources of starch. Among the factors affecting enzyme production in shake flasks were the type and the concentration of starch and the nitrogen source supplied. Optimum cultural conditions for maximum enzyme production were: soluble starch concentration, 5%; inoculum size, 3.75 × 105 conidia per ml; 5-day cultivation time at 28 to 30°C. The observed maximum yield of 81.3 U of saccharifying enzyme activity per ml of growth medium was the highest ever reported in the literature for submerged cultures. Partially purified enzyme functioned optimally at pH 4.5 to 5.5 and 53 to 58°C. The activation energy of enzymic hydrolysis of starch in the range of 20 to 40°C was 8,125 cal/mol (ca. 3.41 × 104 J). The apparent Km value of the enzyme at 25°C was 7.68 × 10−4 g/ml. Some of the properties of the enzyme under investigation were similar to those of α-amylases excreted from molds producing large amounts of the enzyme.  相似文献   

2.
A novel thermoacidophilic pullulan-hydrolyzing enzyme (PUL) from hyperthermophilic archaeon Thermococcus kodakarensis (TK-PUL) that efficiently hydrolyzes starch under industrial conditions in the absence of any additional metal ions was cloned and characterized. TK-PUL possessed both pullulanase and α-amylase activities. The highest activities were observed at 95 to 100°C. Although the enzyme was active over a broad pH range (3.0 to 8.5), the pH optima for both activities were 3.5 in acetate buffer and 4.2 in citrate buffer. TK-PUL was stable for several hours at 90°C. Its half-life at 100°C was 45 min when incubated either at pH 6.5 or 8.5. The Km value toward pullulan was 2 mg ml−1, with a Vmax of 109 U mg−1. Metal ions were not required for the activity and stability of recombinant TK-PUL. The enzyme was able to hydrolyze both α-1,6 and α-1,4 glycosidic linkages in pullulan. The most preferred substrate, after pullulan, was γ-cyclodextrin, which is a novel feature for this type of enzyme. Additionally, the enzyme hydrolyzed a variety of polysaccharides, including starch, glycogen, dextrin, amylose, amylopectin, and cyclodextrins (α, β, and γ), mainly into maltose. A unique feature of TK-PUL was the ability to hydrolyze maltotriose into maltose and glucose.  相似文献   

3.
A β-amylase-overproducing mutant of Clostridium thermosulfurogenes was grown in continuous culture on soluble starch to produce thermostable β-amylase. Enzyme productivity was reasonably stable over periods of weeks to months. The pH and temperature optima for β-amylase production were pH 6.0 and 60°C, respectively. Enzyme concentration was maximized by increasing biomass concentration by using high substrate concentrations and by maintaining a low growth rate. β-Amylase concentration reached 90 U ml−1 at a dilution rate of 0.07 h−1 in a 3% starch medium. A further increase in enzyme activity levels was limited by acetic acid inhibition of growth and low β-amylase productivity at low growth rates.  相似文献   

4.
A thermoanaerobe (Thermoanaerobacter sp.) grown in TYE-starch (0.5%) medium at 60°C produced both extra- and intracellular pullulanase (1.90 U/ml) and amylase (1.19 U/ml) activities. Both activities were produced at high levels on a variety of carbon sources. The temperature and pH optima for both pullulanase and amylase activities were 75°C and pH 5.0, respectively. Both the enzyme activities were stable up to 70°C (without substrate) and at pH 4.5 to 5.0. The half-lives of both enzyme activities were 5 h at 70°C and 45 min at 75°C. The enzyme activities did not show any metal ion activity, and both activities were inhibited by β- and γ-cyclodextrins but not by α-cyclodextrin. A single amylolytic pullulanase responsible for both activities was purified to homogeneity by DEAE-Sepharose CL-6B column chromatography, gel filtration using high-pressure liquid chromatography, and pullulan-Sepharose affinity chromatography. It was a 450,000-molecular-weight glycoprotein composed of two equivalent subunits. The pullulanase cleaved pullulan in α1,6 linkages and produced multiple saccharides from cleavage of α-1,4 linkages in starch. The Kms for pullulan and soluble starch were 0.43 and 0.37 mg/ml, respectively.  相似文献   

5.
α-Amylase produced by Bacillus licheniformis CUMC305 was purified 212-fold with a 42% yield through a series of four steps. The purified enzyme was homogeneous as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme showed maximal activity at 90°C and pH 9.0, and 91% of this activity remained at 100°C. The enzyme retained 91, 79, and 71% maximal activity after 3 h of treatment at 60°C, 3 h at 70°C, and 90 min at 80°C, respectively, in the absence of substrate. On the contrary, in the presence of substrate (soluble starch), the α-amylase enzyme was fully stable after a 4-h incubation at 100°C. The enzyme showed 100% stability in the pH range 7 to 9; 95% stability at pH 10; and 84, 74, 68, and 50% stability at pH values of 6, 5, 4, and 3, respectively, after 18 h of treatment. The activation energy for this enzyme was calculated as 5.1 × 105 J/mol. The molecular weight was estimated to be 28,000 by sodium dodecyl sulfate-gel electrophoresis. The relative rates of hydrolysis of soluble starch, amylose, amylopectin, and glycogen were 1.27, 1.8, 1.94, and 2.28 mg/ml, respectively. Vmax values for hydrolysis of these substrates were calculated as 0.738, 1.08, 0.8, and 0.5 mg of maltose/ml per min, respectively. Of the cations, Na+, Ca2+, and Mg2+, showed stimulatory effect, whereas Hg2+, Cu2+, Ni2+, Zn2+, Ag+, Fe2+, Co2+, Cd2+, Al3+, and Mn2+ were inhibitory. Of the anions, azide, F, SO32−, SO43−, S2O32−, MoO42−, and Wo42− showed an excitant effect. p-Chloromercuribenzoic acid and sodium iodoacetate were inhibitory, whereas cysteine, reduced glutathione, thiourea, β-mercaptoethanol, and sodium glycerophosphate afforded protection to enzyme activity. α-Amylase was fairly resistant to EDTA treatment at 30°C, but heating at 90°C in presence of EDTA resulted in the complete loss of enzyme activity, which could be recovered partially by the addition of Cu2+ and Fe2+ but not by the addition of Ca2+ or any other divalent ions.  相似文献   

6.
A bacterial glucoamylase was purified from the anaerobic thermophilic bacterium Clostridium thermosaccharolyticum and characterized. The enzyme, which was purified 63-fold, with a yield of 36%, consisted of a single subunit with an apparent molecular mass of 75 kDa. The purified enzyme was able to attack α-1,4- and α-1,6-glycosidic linkages in various α-glucans, liberating glucose with a β-anomeric configuration. The purified glucoamylase, which was optimally active at 70°C and pH 5.0, attacked preferentially polysaccharides such as starch, glycogen, amylopectin, and maltodextrin. The velocity of oligosaccharide hydrolysis decreased with a decrease in the size of the substrate. The Km values for starch and maltose were 18 mg/ml and 20 mM, respectively. Enzyme activity was not significantly influenced by Ca2+, EDTA, or α- or β-cyclodextrins.  相似文献   

7.
α-Amylase production was examined in the ruminal anaerobic fungus Neocallimastix frontalis. The enzyme was released mainly into the culture fluid and had temperature and pH optima of 55°C and 5.5, respectively, and the apparent Km for starch was 0.8 mg ml−1. The products of α-amylase action were mainly maltotriose, maltotetraose, and longer-chain oligosaccharides. No activity of the enzyme was observed towards these compounds or pullulan, but activity on amylose was similar to starch. Evidence for the endo action of α-amylase was also obtained from experiments which showed that the reduction in iodine-staining capacity and release in reducing power by action on amylose was similar to that for commercial α-amylase. Activities of α-amylase up to 4.4 U ml−1 (1 U represents 1 μmol of glucose equivalents released per min) were obtained for cultures grown on 2.5 mg of starch ml−1 in shaken cultures. No growth occurred in unshaken cultures. With elevated concentrations of starch (>2.5 mg ml−1), α-amylase production declined and glucose accumulated in the cultures. Addition of glucose to cultures grown on low levels of starch, in which little glucose accumulated, suppressed α-amylase production, and in bisubstrate growth studies, active production of the enzyme only occurred during growth on starch after glucose had been preferentially utilized. When cellulose, cellobiose, glucose, xylan, and xylose were tested as growth substrates for the production of α-amylase (initial concentration, 2.5 mg ml−1), they were found to be less effective than starch, but maltose was almost as effective. The fungal α-amylase was found to be stable at 60°C in the presence of low concentrations of starch (≤5%), suggesting that it may be suitable for industrial application.  相似文献   

8.
Alpha-glucan phosphorylase catalyzes the reversible cleavage of α-1-4-linked glucose polymers into α-D-glucose-1-phosphate. We report the recombinant production of an α-glucan/maltodextrin phosphorylase (PF1535) from a hyperthermophilic archaeon, Pyrococcus furiosus, and the first detailed biochemical characterization of this enzyme from any archaeal source using a mass-spectrometry-based assay. The apparent 98 kDa recombinant enzyme was active over a broad range of temperatures and pH, with optimal activity at 80 °C and pH 6.5–7. This archaeal protein retained its complete activity after 24 h at 80 °C in Tris-HCl buffer. Unlike other previously reported phosphorylases, the Ni-affinity column purified enzyme showed broad substrate specificity in both the synthesis and degradation of maltooligosaccharides. In the synthetic direction of the enzymatic reaction, the lowest oligosaccharide required for the chain elongation was maltose. In the degradative direction, the archaeal enzyme can produce glucose-1-phosphate from maltotriose or longer maltooligosaccharides including both glycogen and starch. The specific activity of the enzyme at 80 °C in the presence of 10 mM maltoheptaose and at 10 mg ml–1 glycogen concentration was 52 U mg–1 and 31 U mg–1, respectively. The apparent Michaelis constant and maximum velocity for inorganic phosphate were 31 ± 2 mM and 0.60 ± 0.02 mM min–1 µg–1, respectively. An initial velocity study of the enzymatic reaction indicated a sequential bi-bi catalytic mechanism. Unlike the more widely studied mammalian glycogen phosphorylase, the Pyrococcus enzyme is active in the absence of added AMP.  相似文献   

9.
We studied the activity of a debranching enzyme (TreX) from Sulfolobus solfataricus on glycogen-mimic substrates, branched maltotetraosyl-β-cyclodextrin (Glc4-β-CD), and natural glycogen to better understand substrate transglycosylation and the effect thereof on glycogen debranching in microorganisms. The validation test of Glc4-β-CD as a glycogen mimic substrate showed that it followed the breakdown process of the well-known yeast and rat liver extract. TreX catalyzed both hydrolysis of α-1,6-glycosidic linkages and transglycosylation at relatively high (>0.5 mM) substrate concentrations. TreX transferred maltotetraosyl moieties from the donor substrate to acceptor molecules, resulting in the formation of two positional isomers of dimaltotetraosyl-α-1,6-β-cyclodextrin [(Glc4)2-β-CD]; these were 61,63- and 61,64-dimaltotetraosyl-α-1,6-β-CD. Use of a modified Michaelis-Menten equation to study substrate transglycosylation revealed that the kcat and Km values for transglycosylation were 1.78 × 103 s−1 and 3.30 mM, respectively, whereas the values for hydrolysis were 2.57 × 103 s−1 and 0.206 mM, respectively. Also, enzyme catalytic efficiency (the kcat/Km ratio) increased as the degree of polymerization of branch chains rose. In the model reaction system of Escherichia coli, glucose-1-phosphate production from glycogen by the glycogen phosphorylase was elevated ∼1.45-fold in the presence of TreX compared to that produced in the absence of TreX. The results suggest that outward shifting of glycogen branch chains via transglycosylation increases the number of exposed chains susceptible to phosphorylase action. We developed a model of the glycogen breakdown process featuring both hydrolysis and transglycosylation catalyzed by the debranching enzyme.  相似文献   

10.
Transfer RNA structure involves complex folding interactions of the TΨC domain with the D domain. However, the role of the highly conserved nucleoside modifications in the TΨC domain, rT54, Ψ55 and m5C49, in tertiary folding is not understood. To determine whether these modified nucleosides have a role in tRNA folding, the association of variously modified yeast tRNAPhe T-half molecules (nucleosides 40–72) with the corresponding unmodified D-half molecule (nucleosides 1–30) was detected and quantified using a native polyacrylamide gel mobility shift assay. Mg2+ was required for formation and maintenance of all complexes. The modified T-half folding interactions with the D-half resulted in Kds (rT54 = 6 ± 2, m5C49 = 11 ± 2, Ψ55 = 14 ± 5, and rT5455 = 11 ± 3 µM) significantly lower than that of the unmodified T-half (40 ± 10 µM). However, the global folds of the unmodified and modified complexes were comparable to each other and to that of an unmodified yeast tRNAPhe and native yeast tRNAPhe, as determined by lead cleavage patterns at U17 and nucleoside substitutions disrupting the Levitt base pair. Thus, conserved modifications of tRNA’s TΨC domain enhanced the affinity between the two half-molecules without altering the global conformation indicating an enhanced stability to the complex and/or an altered folding pathway.  相似文献   

11.
The cryotolerance in frozen doughs and in water suspensions of bakers' yeast (Saccharomyces cerevisiae) previously grown under various industrial conditions was evaluated on a laboratory scale. Fed-batch cultures were very superior to batch cultures, and strong aeration enhanced cryoresistance in both cases for freezing rates of 1 to 56°C min−1. Loss of cell viability in frozen dough or water was related to the duration of the dissolved-oxygen deficit during fed-batch growth. Strongly aerobic fed-batch cultures grown at a reduced average specific rate (μ = 0.088 h−1 compared with 0.117 h−1) also showed greater trehalose synthesis and improved frozen-dough stability. Insufficient aeration (dissolved-oxygen deficit) and lower growth temperature (20°C instead of 30°C) decreased both fed-batch-grown yeast cryoresistance and trehalose content. Although trehalose had a cryoprotective effect in S. cerevisiae, its effect was neutralized by even a momentary lack of excess dissolved oxygen in the fed-batch growth medium.  相似文献   

12.
Phanerochaete chrysosporium produces intracellular soluble and particulate β-glucosidases and an extracellular β-glucosidase. The extracellular enzyme is induced by cellulose but repressed in the presence of glucose. The molecular weight of this enzyme is 90,000. The Km for p-nitrophenyl-β-glucoside is 1.6 × 10−4 M; the Ki for glucose, a competitive inhibitor, is 5.0 × 10−4 M. The Km for cellobiose is 5.3 × 10−4 M. The intracellular soluble enzyme is induced by cellobiose; this induction is prevented by cycloheximide. The presence of 300 mM glucose in the medium, however, had no effect on induction. The Km for p-nitrophenyl-β-glucoside is 1.1 × 10−4 M. The molecular weight of this enzyme is ~410,000. Both enzymes have an optimal temperature of 45°C and an Eact of 9.15 kcal (ca. 3.83 × 104 J). The pH optima, however, were ~7.0 and 5.5 for the intracellular and extracellular enzymes, respectively.  相似文献   

13.
1. The formation of adenosine 5′-phosphate, guanosine 5′-phosphate and inosine 5′-phosphate from [8-14C]adenine, [8-14C]guanine and [8-14C]hypoxanthine respectively in the presence of 5-phosphoribosyl pyrophosphate and an extract from Ehrlich ascites-tumour cells was assayed by a method involving liquid-scintillation counting of the radioactive nucleotides on diethylaminoethylcellulose paper. The results obtained with guanine were confirmed by a spectrophotometric assay which was also used to assay the conversion of 6-mercaptopurine and 5-phosphoribosyl pyrophosphate into 6-thioinosine 5′-phosphate in the presence of 6-mercaptopurine phosphoribosyltransferase from these cells. 2. At pH 7·8 and 25° the Michaelis constants for adenine, guanine and hypoxanthine were 0·9 μm, 2·9 μm and 11·0 μm in the assay with radioactive purines; the Michaelis constant for guanine in the spectrophotometric assay was 2·6 μm. At pH 7·9 the Michaelis constant for 6-mercaptopurine was 10·9 μm. 3. 25 μm-6-Mercaptopurine did not inhibit adenine phosphoribosyltransferase. 6-Mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 4·7 μm) and hypoxanthine phosphoribosyltransferase (Ki 8·3 μm). Hypoxanthine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 3·4 μm). 4. Differences in kinetic parameters and in the distribution of phosphoribosyltransferase activities after electrophoresis in starch gel indicate that different enzymes are involved in the conversion of adenine, guanine and hypoxanthine into their nucleotides. 5. From the low values of Ki for 6-mercaptopurine, and from published evidence that ascites-tumour cells require supplies of purines from the host tissues, it is likely that inhibition of hypoxanthine and guanine phosphoribosyltransferases by free 6-mercaptopurine is involved in the biological activity of this drug.  相似文献   

14.
The most abundant β-amylase (EC 3.2.1.2) in pea (Pisum sativum L.) was purified greater than 880-fold from epicotyls of etiolated germinating seedlings by anion exchange and gel filtration chromatography, glycogen precipitation, and preparative electrophoresis. The electrophoretic mobility and relative abundance of this β-amylase are the same as that of an exoamylase previously reported to be primarily vacuolar. The enzyme was determined to be a β-amylase by end product analysis and by its inability to hydrolyze β-limit dextrin and to release dye from starch azure. Pea β-amylase is an approximate 55 to 57 kilodalton monomer with a pl of 4.35, a pH optimum of 6.0 (soluble starch substrate), an Arrhenius energy of activation of 6.28 kilocalories per mole, and a Km of 1.67 milligrams per milliliter (soluble starch). The enzyme is strongly inhibited by heavy metals, p-chloromer-curiphenylsulfonic acid and N-ethylmaleimide, but much less strongly by iodoacetamide and iodoacetic acid, indicating cysteinyl sulfhydryls are not directly involved in catalysis. Pea β-amylase is competitively inhibited by its end product, maltose, with a Ki of 11.5 millimolar. The enzyme is partially inhibited by Schardinger maltodextrins, with α-cyclohexaamylose being a stronger inhibitor than β-cycloheptaamylose. Moderately branched glucans (e.g. amylopectin) were better substrates for pea β-amylase than less branched or non-branched (amyloses) or highly branched (glycogens) glucans. The enzyme failed to hydrolyze native starch grains from pea and glucans smaller than maltotetraose. The mechanism of pea β-amylase is the multichain type. Possible roles of pea β-amylase in cellular glucan metabolism are discussed.  相似文献   

15.
A novel α-amylase, AmyM, was purified from the culture supernatant of Corallococcus sp. strain EGB. AmyM is a maltohexaose-forming exoamylase with an apparent molecular mass of 43 kDa. Based on the results of matrix-assisted laser desorption ionization–time of flight mass spectrometry and peptide mass fingerprinting of AmyM and by comparison to the genome sequence of Corallococcus coralloides DSM 2259, the AmyM gene was identified and cloned into Escherichia coli. amyM encodes a secretory amylase with a predicted signal peptide of 23 amino acid residues, which showed no significant identity with known and functionally verified amylases. amyM was expressed in E. coli BL21(DE3) cells with a hexahistidine tag. The signal peptide efficiently induced the secretion of mature AmyM in E. coli. Recombinant AmyM (rAmyM) was purified by Ni-nitrilotriacetic acid (NTA) affinity chromatography, with a specific activity of up to 14,000 U/mg. rAmyM was optimally active at 50°C in Tris-HCl buffer (50 mM; pH 7.0) and stable at temperatures of <50°C. rAmyM was stable over a wide range of pH values (from pH 5.0 to 10.0) and highly tolerant to high concentrations of salts, detergents, and various organic solvents. Its activity toward starch was independent of calcium ions. The Km and Vmax of recombinant AmyM for soluble starch were 6.61 mg ml−1 and 44,301.5 μmol min−1 mg−1, respectively. End product analysis showed that maltohexaose accounted for 59.4% of the maltooligosaccharides produced. These characteristics indicate that AmyM has great potential in industrial applications.  相似文献   

16.
The cytoplasm and the vacuole were isolated from internodal cells of Chara corallina by using the intracellular perfusion technique, and their buffer capacities (βi) were determined from the titration curves. The pH of the isolated vacuolar sap was 5.19 ± 0.029 (mean ± standard error). At this pH, βi was minimal and amounted to 0.933 ± 0.11 millimoles H+/pH unit/liter vacuolar sap. The pH of isolated cytoplasm was 7.22 ± 0.028. βi was minimal in this pH region and amounted to 14.2 ± 0.80 millimoles H+/pH unit/liter cytoplasm. When 1% (volume/volume) Triton X-100 was added to the cytoplasmic solution to permeabilize the subcellular organelles, the cytoplasmic pH increased to 7.32 ± 0.026, where βi was 20.35 ± 2.66 millimoles H+/pH unit/liter cytoplasm. This shows that alkaline subcellular compartments exist in the cytoplasm and also that the cytoplasmic pH before adding Triton X-100 may represent the cytosolic pH. These data indicate that the pH values of the cytoplasm and the vacuole are regulated at the values where the βi values are minimal. This suggests that ATP- and inorganic pyrophosphate-dependent H+ pumps in the plasma membrane and the tonoplast could efficiently regulate the pH of both cytoplasm and vacuole in Chara internodal cells.  相似文献   

17.
A thermostable amylase, possibly a β-amylase from Thermoactinomyces sp. no. 2 isolated from soil, is reported. The enzyme was purified 36-fold by acetone precipitation, ion-exchange chromatography, and Sephadex G-200 gel filtration, and the molecular weight was estimated at 31,600. The enzyme was characterized by demonstration of optimum activity at 60°C and pH 7 and by retention of 70% activity at 70°C (30 min). It was stimulated by Mn2+ and Fe2+ but strongly inhibited by Hg2+. Maltose was the only detectable product of hydrolysis of starches and was quantitatively highest in plantain starch hydrolysate.  相似文献   

18.
This paper examines the synergistic action of carbon dioxide and nisin on Listeria monocytogenes Scott A wild-type and nisin-resistant (Nisr) cells grown in broth at 4°C. Carbon dioxide extended the lag phase and decreased the specific growth rate of both strains, but to a greater degree in the Nisr cells. Wild-type cells grown in 100% CO2 were two to five times longer than cells grown in air. Nisin (2.5 μg/ml) did not decrease the viability of Nisr cells but for wild-type cells caused an immediate 2-log reduction of viability when they were grown in air and a 4-log reduction when they were grown in 100% CO2. There was a quantifiable synergistic action between nisin and CO2 in the wild-type strain. The MIC of nisin for the wild-type strain grown in the presence of 2.5 μg of nisin per ml increased from 3.1 to 12.5 μg/ml over 35 days, but this increase was markedly delayed for cultures in CO2. This synergism between nisin and CO2 was examined mechanistically by following the leakage of carboxyfluorescein (CF) from listerial liposomes. Carbon dioxide enhanced nisin-induced CF leakage, indicating that the synergistic action of CO2 and nisin occurs at the cytoplasmic membrane. Liposomes made from cells grown in a CO2 atmosphere were even more sensitive to nisin action. Liposomes made from cells grown at 4°C were dramatically more nisin sensitive than were liposomes derived from cells grown at 30°C. Cells grown in the presence of 100% CO2 and those grown at 4°C had a greater proportion of short-chain fatty acids. The synergistic action of nisin and CO2 is consistent with a model where membrane fluidity plays a role in the efficiency of nisin action.  相似文献   

19.
The possible involvement of potato (Solanum tuberosum L.) starch-branching enzyme I (PSBE-I) in the in vivo synthesis of phosphorylated amylopectin was investigated in in vitro experiments with isolated PSBE-I using 33P-labeled phosphorylated and 3H end-labeled nonphosphorylated α(1→4)glucans as the substrates. From these radiolabeled substrates PSBE-I was shown to catalyze the formation of dual-labeled (3H/33P) phosphorylated branched polysaccharides with an average degree of polymerization of 80 to 85. The relatively high molecular mass indicated that the product was the result of multiple chain-transfer reactions. The presence of α(1→6) branch points was documented by isoamylase treatment and anion-exchange chromatography. Although the initial steps of the in vivo mechanism responsible for phosphorylation of potato starch remains elusive, the present study demonstrates that the enzyme machinery available in potato has the ability to incorporate phosphorylated α(1→4)glucans into neutral polysaccharides in an interchain catalytic reaction. Potato mini tubers synthesized phosphorylated starch from exogenously supplied 33PO43− and [U-14C]Glc at rates 4 times higher than those previously obtained using tubers from fully grown potato plants. This system was more reproducible compared with soil-grown tubers and was therefore used for preparation of 33P-labeled phosphorylated α(1→4)glucan chains.  相似文献   

20.
Membrane-associated lipoxygenase from green tomato (Lycopersicon esculentum L. cv Caruso) fruit has been purified 49-fold to a specific activity of 8.3 μmol·min−1·mg−1 of protein by solubilization of microsomal membranes with Triton X-100, followed by anion- exchange and size-exclusion chromatography. The apparent molecular mass of the enzyme was estimated to be 97 and 102 kD by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size-exclusion chromatography, respectively. The purified membrane lipoxygenase preparation consisted of a single major band following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which cross-reacts with immunoserum raised against soluble soybean lipoxygenase 1. It has a pH optimum of 6.5, an apparent Km of 6.2 μm, and Vmax of 103. μmol·min−1·mg−1 of protein with linoleic acid as substrate. Corresponding values for the partially purified soluble lipoxygenase from tomato are 3.8 μm and 1.3 μmol·min−1·mg−1 of protein, respectively. Thus, the membrane-associated enzyme is kinetically distinguishable from its soluble counterpart. Sucrose density gradient fractionation of the isolated membranes indicated that the membrane-associated lipoxygenase sediments with thylakoids. A lipoxygenase band with a corresponding apparent mol wt of 97,000 was identified immunologically in sodium dodecyl sulfate-polyacrylamide gel electrophoresis-resolved proteins of purified thylakoids prepared from intact chloroplasts isolated from tomato leaves and fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号