首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparisons were made of the systemic action of phorate, menazon and dimethoate on Aphis fabae Scop, and on the eggs of the aphidophagous Anthocoridae Anthocoris nemorum (L.) and A. confusus Reut., which are laid within plant tissue. Against 4th-instar apterous A. fabae the order of toxicity of the insecticides taken up by roots of the field bean Vicia faba L. was: menazon > dimethoate > phorate. Phorate concentrations needed to kill all A. fabae (10–15 ppm of wet weight of plant) killed most A. nemorum eggs but did not harm A. confusus eggs. Few A. nemorum eggs were killed by 15 ppm of menazon or 5 ppm of dimethoate. In the field a commercial in-row treatment of 1·5 lb/acre of phorate applied as granules in the seed drill of field beans sown in late April killed 86 % of eggs laid in June by overwintered A. nemorum and 30% of those laid in late July by second-generation females. Plants initially treated with 6 lb of in-row phorate per acre killed 74% of A. nemorum eggs in late July but did not harm A. confusus eggs. A. nemorum eggs laid in early June were unharmed by 1·5 lb/acre of in-row menazon. Of the A. nemorum eggs, 92–96% were inserted into the stipules and leaf margins of young bean plants, i.e. in the region (peripheral and distal part of the leaf) where most 32P from labelled phorate accumulates after root uptake. The egg-laying sites of A. nemorum in potatoes and brussels sprouts (edges of the leaves) and in oats (the leaf tips) are also where most of the 32P accumulates. In contrast, 98% of A. confusus eggs were laid in the stems, petioles and leaf midribs of field beans, where there was generally much less 32P from labelled phorate.  相似文献   

2.
Many insects have coevolved with certain angiosperm taxa to act as pollinators. However, the nectar and pollen from such flowers is also widely fed upon by other insects, including entomophagous species. Conservation biological control seeks to maximise the impact of these natural enemies on crop pests by enhancing availability of nectar and pollen-rich plants in agroecosystems. A risk with this approach is that pests may also benefit from the food resource. We show that the flowers of some plants (viz., buckwheat, Fagopyron esculentum Moench and dill, Anethum graveolens L.), and the extrafloral nectaries of faba bean (Vicia faba L.) benefit both Copidosoma koehleri Blanchard (Hymenoptera: Encyrtidae) and its host, the potato pest, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). In contrast, phacelia (Phacelia tanacetifolia Benth) and nasturtium (Tropaeoleum majus L.) benefited only the parasitoid. When adult moths of P. operculella were caged with flowers of phacelia or nasturtium, longevity of males and females, egg laying life, fecundity, average oviposition rate, and number of eggs in ovaries at death were no greater than in the control treatment with access to shoots without flowers plus water. All the foregoing measures were increased compared to the control when the moths were allowed access to dill, buckwheat or faba bean extrafloral nectaries. Such selectivity has the potential to make the use of floral resources in conservation biological control more strategic. We present morphometric and observational evidence to illustrate how such mechanisms may operate.  相似文献   

3.
The aphicides phorate, dimethoate and menazon were compared to elucidate the different pathways by which they can affect Anthocoris nymphs and their aphid prey.
When nymphs were caged in contact with deposits on bean leaves phorate and dimethoate had contact LC 50s of 20 and 3 μg/cm2 respectively to Anthocoris nemorum and 46 and 6 μg/cm2 to A. confusus. When the nymphs were confined on treated leaves on the opposite surface to the deposits, neither phorate nor dimethoate killed them. Menazon did not kill anthocorids at any dosage. All three aphicides killed over 50% of Acyrthosiphon pisum (Kalt.) on bean leaves at 1.6 μg/cm2 whether the aphids were on the treated or untreated surface.
Experiments with 35S-labelled phorate showed that anthocorids confined on phorate-treated bean plants, with or without insect food, accumulated the insecticide or its labelled derivatives. In field experiments in which A. nemorum were caged on plants treated with phorate, many were killed on young newly treated plants but not on older plants. A. confusus was relatively unaffected.
Anthocorids were reared from 2nd-instar nymphs to adults on aphids killed systemically with phorate, dimethoate or menazon without ill effects, despite evidence that 35S-labelled phorate was ingested from the aphids and excreted in the faeces.
In the field, fewer large A. nemorum nymphs were found in August in plots of tick beans treated with phorate granules at 6 lb/acre (6.7 kg/ha) when sown, than in plots treated at 1.5 lb/acre (1.7 kg/ha) with phorate or menazon or untreated plots.  相似文献   

4.
1. Herbivores sometimes suppress plant defences. This study tested whether the presence of pea aphids (Acyrthosiphon pisum Harris) on broad bean (Vicia faba) led to decreased secretion of extrafloral nectar (EFN) which functions as an indirect plant defence against herbivores. 2. To determine effects of aphid infestation on EFN secretion, a comparison was done between EFN secretion in uninfested plants and that in plants infested by A. pisum and another aphid species (Aphis craccivora Koch). 3. When broad bean plants were infested by A. pisum, they secreted significantly smaller amounts of EFN than did uninfested plants and A. craccivora‐infested plants. There was no significant difference in EFN secretion between uninfested plants and A. craccivora‐infested plants. The number of extrafloral nectaries did not differ among the three treatments. 4. These results suggest that A. pisum reduced EFN production in broad bean plants.  相似文献   

5.
Herbivory pressure is an important ecological aspect to determine quantitative variation in plant defenses, such as the number of extrafloral nectaries (EFNs) and their nectar amount and quality. Extrafloral nectaries can attract ants, which can be considered a type of induced plant defense. Besides, plants tend to invest more in defense when they are more vulnerable to herbivores. Therefore, we aimed to elucidate if Stryphnodendron adstringens (Fabaceae), a common Cerrado tree species, when subjected to damage (by manual leaf cutting and experimental fire) would produce a greater number of EFNs and changes its nectar quality on newly produced leaves in comparison with plants not subjected to these treatments. Leaf damage was performed artificially directly on the plant branches and at the entire plant canopy (by means of scissors or fire events). Extrafloral nectary density was higher in new leaves produced after the treatment application (artificial herbivory and fire) in comparison with plants under control treatment. The amount of nectar was also higher under treatments in comparison with control, with a significant change on nectar quality in plants subjected to the treatments of artificial herbivory. The results provided support for the hypothesis that EFNs are an inducible defensive strategy in S. adstringens, confirming the existence of phenotypic plasticity given environmental pressures.  相似文献   

6.
Thousands of plant species throughout tropical and temperate zones secrete extrafloral nectar to attract ants, whose presence provides an indirect defense against herbivores. Extrafloral nectaries are located close to flowers and may modify competition between ants and pollinators. Here, we used Lima bean (Phaseolus lunatus L.) to study the plants interaction between ants and flower visitors and its consequences for plant fitness. To test these objectives, we carried out two field experiments in which we manipulated the presence of ants and nectar production via induction with jasmonic acid (JA). We then measured floral and extrafloral nectar production, the number of patrolling ants and flower visitors as well as specific plant fitness traits. Lima bean plants under JA induction produced more nectar in both extrafloral nectaries and flowers, attracted more ants and produced more flowers and seeds than non‐induced plants. Despite an increase in floral nectar in JA plants, application of this hormone had no significant effects on flower visitor attraction. Finally, ant presence did not result in a decrease in the number of visits, but our results suggest that ants could negatively affect pollination efficiency. In particular, JA‐induced plants without ants produced a greater number of seeds compared with the JA‐treated plants with ants.  相似文献   

7.
Adult parasitoid wasps can learn to recognize specific resource-based cues, making them adept at locating essential resources within their native habitats. However, relatively little is known about their ability to recognize the odors emitted by flowers and extra-floral nectar glands. A novel test arena mimicking the distribution of nectaries within an umbelliferous inflorescence was developed to measure and compare the responses of two eulophid wasps, Edovum puttleri and Pediobius foveolatus, to nectar-based odors. Although both parasitoid species were able to associate nectar location with the odors emitted by both real nectaries (dill flowers and snap bean stipules) and artificial nectars (1 M sucrose solution scented with banana or lemon food flavoring), the responses of inexperienced wasps to nectary odors differed. While inexperienced E. puttleri displayed little attraction to the odor of either dill flowers or snap bean stipules, inexperienced P. foveolatus displayed a strong attraction to odors of both types of nectaries. However, once it had experienced foraging on either dill or snap bean nectar, E. puttleri responded to those nectary odors as strongly as did P. foveolatus. The responsiveness of both wasp species to the odor of artificial nectar greatly increased after they foraged on sugar solution scented with either banana or lemon odor. That parasitoid wasp species can differ in their ability to recognize food-based cues is of fundamental and applied importance.  相似文献   

8.
9.
Vetches (Vicia spp.) were studied in the San Francisco Bay Area of California in the spring of 1978. The stipular nectaries of the vetches are visited by the Argentine ant, Iridomyrmex humilis Mayr. The nectaries were removed to exclude ants in controlled experiments to determine if these ants protect the vetches from herbivores or seed predators. Plants with excised nectaries suffered substantially greater damage to their foliage than control plants, indicating that ants protect the foliage. There was no indication that ants protect the vetches from seed predators, but fruit set was substantially lower in plants with excised nectaries. Analysis of sugar and amino acid composition of extrafloral nectar served as a basis for feeding tests with Argentine ants by using artificial nectar solutions. Ants preferred sucrose and glucose solutions over fructose. They showed no preference for any one sugar mixture over another, nor did they exhibit differential recruitment to artificial nectar solutions containing only sugars or sugars and amino acids.  相似文献   

10.
Variation in nectar chemistry among plants, flowers, or individual nectaries of a given species has been only rarely explored, yet it is an essential aspect to our understanding of how pollinator-mediated selection might act on nectar traits. This paper describes variation in nectar sugar composition in a population of the perennial herb Helleborus foetidus (Ranunculaceae) and dissects it into components due to variation among plants, flowers of the same plant, and nectaries of the same flower. The proportions of sucrose, glucose, and fructose in single-nectary nectar samples collected at two times in the flowering season were determined using high performance liquid chromatography (HPLC). Sugar composition varied extensively among nectaries, and nearly all combinations of individual sugars were recorded. Population-wide variance was mainly accounted for by variation among flowers of the same plant (56% of total), nectaries of the same flower (30%), and only minimally by differences among plants (14%). In absolute terms, intraplant variation was similar to or greater than that ordinarily reported in interspecific comparisons. Results suggest that the prevailing notion of intraspecific constancy in nectar sugar composition may be unwarranted for some species and that more elaborate nectar sampling designs are required to detect and appropriately account for extensive within-plant variance. Within-plant variation in nectar sugar composition will limit the ability of pollinators to exert selection on nectar chemistry in H. foetidus and may be advantageous to plants by reducing the number of flowers visited per foraging bout by variance-sensitive, risk-averse pollinators.  相似文献   

11.
Floral nectaries are closely associated with biotic pollination, and the nectar produced by corolla nectaries is generally enclosed in floral structures. Although some Swertia spp. (Gentianaceae), including S. bimaculata, evolved a peculiar form of corolla nectaries (known as “gland patches”) arranged in a conspicuous ring on the rotate corolla and that completely expose their nectar, little is known about the pollination of these plants. Two hypotheses were made concerning the possible effects of gland patches: visual attraction and visitor manipulation. The floral traits, mating system, and insect pollination of S. bimaculata were examined, and the pollination effects of gland patches were evaluated. A comparative study was made using Swertia kouitchensis, a species with fimbriate nectaries. Swertia bimaculata flowers were protandrous, with obvious stamen movement leading to herkogamy in the female phase and to a significant reduction in nectary–anther distance. The species is strongly entomophilous and facultatively xenogamous. The daily reward provided per flower decreased significantly after the male phase. The most effective pollinators were large dipterans, and the visiting proportion of Diptera was significantly higher in S. bimaculata than in S. kouitchensis. Most visitors performed “circling behavior” in S. bimaculata flowers. Removing or blocking the nectaries caused no reduction in visiting frequency but a significant reduction in visit duration, interrupting the circling behavior. The circling behavior was encouraged by nectar abundance and promoted pollen dispersal. Visitor species with small body size had little chance to contact the anthers or stigma, revealing a filtration effect exerted by the floral design. These results rejected the “visual attraction” hypothesis and supported the “visitor manipulation” hypothesis. The nectary whorl within a flower acted like a ring‐shaped track that urged nectar foragers to circle on the corolla, making pollination in S. bimaculata flowers more orderly and selective than that in classically generalist flowers.  相似文献   

12.
 The dynamics and abundance of nectar secretion as well as sugar productivity were studied in flowers of brown mustard (Brassica juncea) cv. Małopolska and white mustard (Sinapis alba) cv. Borowska. Moreover, floral nectaries were examined under LM and SEM. In both cultivars lateral and median pairs of nectaries secreted nectar. However, differences were found in morphology and activity of these pairs. The lateral nectaries produced more nectar than the median ones. Nectar secretion started at loose bud and peaked during anther dehiscence. Average amount of nectarsecreted by 100 flowers of cv. Małopolska and cv. Borowska were 119.9 mg and 134 mg. Mean concentration of nectar was 26.7% and 23.4%, respectively. One hundred flowers of cv. Małopolska and cv. Borowska secreted 28.4 mg and 24.9 mg of sugars in nectar. Estimated sugar productivity per 1 ha of crop was 65.5 kg and 71.2 kg, respectively. Received August 28, 2002; accepted November 2, 2002 Published online: June 2, 2003  相似文献   

13.
The structure of perigonal nectaries, nectar production and carbohydrate composition were compared at various stages in the lifespan of the flower of Fritillaria meleagris L. The six nectaries each occupied a groove that is located 2–4 mm above the tepal base. The average nectary measured 11.0 mm long and 1.0–1.2 mm wide. The structure of nectaries situated on both inner and outer tepal whorls was identical, and at anthesis they were equally accessible to potential pollinators. However, secretion from nectaries associated with inner tepals tended to exceed that produced by nectaries located on the outer tepals. On average, regardless of flower stage, one flower secreted 10.87 ± 12.98 mg of nectar (mean and SD; N = 182). The nectar concentration ranged between 3 and 75%, with average concentration of sugars exceeding 50%. Both nectar production and concentration were dependent on the stage of anthesis, with the highest scores being recorded during full anthesis (21.75 ± 16.08 mg; 70.5%, mass and concentration, respectively) and the lowest at the end of anthesis (1.32 ± 2.69 mg; 16.9%, mass and concentration, respectively). A decline in both mass of nectar secreted and nectar concentration during the final stage of anthesis indicates nectar resorption. Nectar was composed of sucrose, glucose and fructose in approx. equal quantities, and its composition did not change significantly during subsequent stages of flowering. The nectaries comprised a single-layered secretory epidermis and several layers of subepidermal parenchyma. The nectariferous cells did not accumulate starch during any of the investigated stages. The nectary was supplied with one large and several smaller vascular bundles comprising xylem and phloem. Transport of assimilates and nectar secretion by protoplasts of secretory cells (and probably also nectar resorption) were facilitated by cell wall ingrowths present on the tangential walls of epidermal cells and subepidermal parenchyma. Epidermal cells lacked stomata. Nectar passed across the cell wall and through the cuticle which was clearly perforated with pores.  相似文献   

14.
Abstract.
  • 1 The role that amino acids in extrafloral nectars play in attracting ants to plants was investigated. Workers from laboratory colonies of Solenopsis invicta Buren and S.geminafa (F). (Formicidae) fed from artificial nectaries containing mimics of the extrafloral nectar of Passiflora menispermifoh and P.caerulea; P.menispermifoh nectar contains higher levels of amino acids (1347.3 pdml) than does the nectar of P.currulea (125.2 μm /ml).
  • 2 When sugar-only and sugar—amino acid nectar mimics were presented simultaneously, more S.invicta workers were counted at sugar—amino acid nectar mimics than at sugar-only nectars. S.geminatu did not discriminate between the two nectars.
  • 3 When the two Pamiflora L. nectar mimics were presented simultaneously, S.invicta and S.geminata workers were more abundant at the nectaries containing high levels of amino acids (P.menispermifolia HBK mimic) than at the nectaries containing low levels of amino acids (P.cuerulea L. mimic).
  • 4 The behaviour shown by S.invicta and S.gerninata suggests that plants with high levels of amino acids in their extrafloral nectars attract more ant protectors and might suffer less herbivory than plants producing nectars with low levels of amino acids. If so, ants may favour, over evolutionary time, plants that produce nectars with high levels of amino acids.
  • 5 Day-to-day variability in ant behaviour was considerable even among laboratory colonies maintained on the same diet in similar environmental conditions. This variability will reduce the selective impact that ants have on plants and may help to explain why most ant-plant interactions are facultative.
  相似文献   

15.
  • Research into the influence of stress factors, such as drought, different temperatures and/or varied light conditions, on plants due to climate changes is becoming increasingly important. Epiphytes, like many species of the Bromeliaceae, are particularly affected by this, but little is known about impacts on nectar composition and nectary metabolism.
  • We investigated the influence of drought, different temperatures and light–dark regimes on nectar and nectaries of the epiphytic bromeliad species, Aechmea fasciata, and also the influence of drought with the terrestrial bromeliad, Billbergia nutans. The content of sugars, amino acids and ions in nectar and nectaries was analysed using HPLC. In addition, the starch content and the activities of different invertases in nectaries were determined.
  • Compositions of nectar and nectaries were hardly influenced, neither by light nor dark, nor by different temperatures. In contrast, drought revealed changes in nectar volumes and nectar sugar compositions in the epiphytic bromeliad as well as in the terrestrial bromeliad. In both species, the sucrose‐to‐hexose ratio in nectar decreased considerably during the drought period. These changes in nectar sugar composition do not correlate with changes in the nectaries. The total sugar, amino acid and ion concentrations remained constant in nectar as well as in nectaries during the drought period.
  • Changes in nectar composition or in the production of floral pollinator rewards are likely to affect plant–pollinator interactions. It remains questionable how far the adaptations of the bromeliads to drought and diverse light or temperature conditions are still sufficient.
  相似文献   

16.
The study of phenotypic plasticity in host choice behavior is crucial to predict evolutionary patterns of insect–plant interactions. The presence of sufficient variation in plasticity may facilitate host race formation and sympatric speciation. In this study, 13 Aphis fabae Scopoli genotypes reared both on broad bean and nasturtium exhibited statistically significant genotypic variability in host selection behavior. Some genotypes displayed increase in preference and acceptance in a novel host plant through generations. There are also strong conditioning effects of nasturtium as nasturtium reared genotypes are more willing to choose nasturtium over broad bean while broad bean reared genotypes do not show differences in choosing between the two host plants. There are also positive relationships between fitness and host choice behavior particularly for nasturtium. Results of the study supported the hypothesis that phenotypic plasticity in host choice behavior may be one of the major determinants of the evolutionary trajectory of a parasitic species, such as aphids.  相似文献   

17.
BACKGROUND AND AIMS: Intra-specific variation in nectar chemistry under natural conditions has been only rarely explored, yet it is an essential aspect of our understanding of how pollinator-mediated selection might act on nectar traits. This paper examines intra-specific variation in nectar sugar composition in field and glasshouse plants of the bumblebee-pollinated perennial herbs Aquilegia vulgaris subsp. vulgaris and Aquilegia pyrenaica subsp. cazorlensis (Ranunculaceae). The aims of the study are to assess the generality of extreme intra-plant variation in nectar sugar composition recently reported for other species in the field, and gaining insight on the possible mechanisms involved. METHODS: The proportions of glucose, fructose and sucrose in single-nectary nectar samples collected from field and glasshouse plants were determined using high performance liquid chromatography. A hierarchical variance partition was used to dissect total variance into components due to variation among plants, flowers within plants, and nectaries within flowers. KEY RESULTS: Nectar of the two species was mostly sucrose-dominated, but composition varied widely in the field, ranging from sucrose-only to fructose-dominated. Most intra-specific variance was due to differences among nectaries of the same flower, and flowers of the same plant. The high intra-plant variation in sugar composition exhibited by field plants vanished in the glasshouse, where nectar composition emerged as a remarkably constant feature across plants, flowers and nectaries. CONCLUSIONS: In addition to corroborating the results of previous studies documenting extreme intra-plant variation in nectar sugar composition in the field, this study suggests that such variation may ultimately be caused by biotic factors operating on the nectar in the field but not in the glasshouse. Pollinator visitation and pollinator-borne yeasts are suggested as likely causal agents.  相似文献   

18.
The control of Aphis fabae Scop, on spring-sown field beans (Vicia faba L.)   总被引:1,自引:0,他引:1  
Disulfoton or phorate granules or demeton-S-methyl, menazon and vamidothion sprays, applied once in early June as preventive treatments before heavy aphid colonies developed, gave good control of Aphis fabae Scop, on field beans. Phosalone gave relatively poor results and DDT was ineffective. Applications in June to crops sown in February and early March were made with minimal wheel damage to the crop and are known to be less harmful to bees than sprays at flowering time. Eradicant treatments with demeton-S-methyl and dimethoate sprays or with disulfoton or phorate granules on heavily infested plants during flowering were also effective, but menazon was less satisfactory. These eradicant sprays are likely to be harmful to bees, and wheel damage in late June reduced yield by 1–2 cwt/acre (125–250 kg/ha). Peak populations of 3000 aphids/plant in early July reduced yield by 6 cwt/acre (750 kg/ha) in one trial.  相似文献   

19.
Most predators and parasitoids feed on plant-provided food (nectar, pollen) or engage in herbivory during at least part of their life stages. Plant feeding by these insects plays an important role in driving predator-herbivore dynamics. Thus, understanding the effects of plant feeding on omnivores could be an important element in improving biological control strategies. The mirid Macrolophus pygmaeus is an omnivorous heteropteran predator of whitefly and other pests. Unlike other predators that need to seek out accessible nectar to meet their carbohydrate requirements, mirid bugs can access the plant's carbohydrate resources by feeding directly on plant tissues. Leaf and stem feeding could be seen as a nutritional surrogate that allows mirids to become independent of nectar availability. However, to date feeding experiments have not yet considered nectar feeding by these mirid predators. In this study we demonstrate that M. pygmaeus survival is prolonged on broad bean plants featuring extrafloral nectar as compared to broad bean with extrafloral nectaries removed, irrespective of the presence of cattail pollen. Survival on extrafloral nectar was comparable to the survival by individuals kept on broad bean provided with eggs of Ephestia kuehniella as prey. Also, a greater proportion of mirid females laid eggs when extrafloral nectar was available as compared to those confined on nectariless plants without supplemental food.  相似文献   

20.
Nectar-carbohydrate production and composition were investigated by high-performance liquid chromatography and enzymology in nine species from five tribes of the Brassicaceae. In six species (Arabidopsis thaliana (L.) Heynh., Brassica napus L., B. rapa L., Lobularia maritima (L.) Desv., Raphanus sativus L., Sinapis arvensis L.) that produced nectar from both lateral nectaries (associated with the short stamens) and median nectaries (outside the long stamens), on average 95% of the total nectar carbohydrate was collected from the lateral ones. Nectar from these glands possessed a higher glucose/fructose ratio (usually 1.0–1.2) than that from the median nectaries (0.2–0.9) within the same flower. Comparatively little sucrose was detected in any nectar samples except from Matthiola bicornus (Sibth. et Sm.) DC., which possessed lateral nectaries only and produced a sucrose-dominant exudate. The anatomy of the nectarial tissue in nectar-secreting flowers of six species, Hesperis matronalis L., L. maritima, M. bicornus, R. sativus, S. arvensis, and Sisymbrium loeselii L., was studied by light and scanning-electron microscopy. Phloem alone supplied the nectaries. However, in accordance with their overall nectar-carbohydrate production, the lateral glands received relatively rich quantities of phloem that penetrated far into the glandular tissue, whereas median glands were supplied with phloem that often barely innervated them. All nectarial tissue possessed modified stomata (with the exception of the median glands of S. loeselii, which did not produce nectar); further evidence was gathered to indicate that these structures do not regulate nectar flow by guard-cell movements. The numbers of modified stomata per gland showed no relation to nectar-carbohydrate production. Taken together, the data on nectar biochemistry and nectary anatomy indicate the existence of two distinct nectary types in those Brassicacean species that possess both lateral and median nectaries, regardless of whether nectarial tissue is united around the entire receptacle or not. It is proposed that the term “nectarium” be used to represent collectively the multiple nectaries that can be found in individual flowers. Received: 21 July 1997 / Accepted: 19 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号