首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Palmieri  R W Lee  M F Dunn 《Biochemistry》1988,27(9):3387-3397
1H Fourier transform NMR investigations of metal ion binding to insulin in 2H2O were undertaken as a function of pH* to determine the effects of metal ion coordination to the Glu(B13) site on the assembly and structure of the insulin hexamer. The C-2 histidyl regions of the 1H NMR spectra of insulin species containing respectively one Ca2+ and two Zn2+/hexamer and three Cd2+/hexamer have been assigned. Both the Cd2+ derivative (In)6(Cd2+)2Cd2+, where two of the Cd2+ ions are coordinated to the His(B10) sites and the remaining Cd2+ ion is coordinated to the Glu(B13) site [Sudmeier, J.L., Bell, S.J., Storm, M. C., & Dunn, M.F. (1981) Science (Washington, D.C.) 212, 560], and the Zn2+-Ca2+ derivative (In)6-(Zn2+)2Ca2+, where the two Zn2+ ions are coordinated to the His(B10) sites and Ca2+ ion is coordinated to the Glu(B13) site, give spectra in which the C-2 proton resonances of His(B10) are shifted upfield relative to metal-free insulin. Spectra of insulin solutions (3-20 mg/mL) containing a ratio of In:Zn2+ = 6:2 in the pH* region from 8.6 to 10 were found to contain signals both from metal-free insulin species and from the 2Zn-insulin hexamer, (In)6(Zn2+)2. The addition of either Ca2+ (in the ratio In:Zn2+:Ca2+ = 6:2:1) or 40 mM NaSCN was found to provide sufficient additional thermodynamic drive to bring about the nearly complete assembly of insulin hexamers. Cd2+ in the ratio In:Cd2+ = 6:3 also drives hexamer assembly to completion. We postulate that the additional thermodynamic drive provide by Ca2+ and CD2+ is due to coordination of these metal ions to the Glu(B13) carboxylates of the hexamer. At high pH*, this coordination neutralizes the repulsive Coulombic interactions between the six Glu(B13) carboxylates and forms metal ion "cross-links" across the dimer-dimer interfaces. Comparison of the aromatic regions of the 1H NMR spectra for (In)6(Zn2+)2 with (In)6(Zn2+)2Ca2+, (In)6(Cd2+)2Cd2+, and (In)6(Cd2+)2Ca2+ indicates that binding of either Ca2+ or Cd2+ to the Glu(B13) site induces a conformation change that perturbs the environments of the side chains of several of the aromatic residues in the insulin structure. Since these residues lie on the monomer-monomer and dimer-dimer subunit interfaces, we conclude that the conformation change includes small changes in the subunit interfaces that alter the microenvironments of the aromatic rings.  相似文献   

2.
Ultraviolet (UV) and infrared (IR) absorption and vibrational circular dichroism (VCD) spectroscopy were used to study conformational transitions in the double-stranded poly(rA). poly(rU) and its components-single-stranded poly(rA) and poly(rU) in buffer solution (pH 6.5) with 0.1M Na+ and different Mg2+ and Cd2+ (10(-6) to 10(-2) M) concentrations. Transitions were induced by elevated temperature that changed from 10 up to 96 degrees C. IR absorption and VCD spectra in the base-stretching region were obtained for duplex, triplex, and single-stranded forms of poly(rA) . poly(rU) at [Mg2+],[Cd2+]/[P] = 0.3. For single-stranded polynucleotides, the kind of conformational transition (ordering --> disordering --> compaction, aggregation) is conditioned by the dominating type of Me2+-polymer complex that in turn depends on the ion concentration range. The phase diagram obtained for poly(rA) . poly(rU) has a triple point ([Cd2+] approximately 10(-4)M) at which the helix-coil (2 --> 1) transition is replaced with a disproportion transition 2AU --> A2U + poly(rA) (2 --> 3) and the subsequent destruction of the triple helix (3 --> 1). The 2 --> 1 transitions occur in the narrow temperature interval of 2 degrees -5 degrees . Unlike 2 --> 1 and 3 --> 1 melting, the disproportion 2 --> 3 transition is a slightly cooperative one and observed over a wide temperature range. At [Me2+] approximately 10(-3) M, the temperature interval of A2U stability is not less than 20 degrees C. In the case of Cd2+, it increases with the rise of ion concentration due to the decrease of T(m) (2-->3). The T(m) (3-->1) value is practically unchanged up to [Cd2+] approximately 10(-3)M. Differences between diagrams for Mg(2+) and Cd2+ result from the various kinds of ion binding to poly(rA).poly-(rU) and poly(rA).  相似文献   

3.
F D Coffman  M F Dunn 《Biochemistry》1988,27(16):6179-6187
An insulin hexamer containing one B10-bound Co(III) ion and one unoccupied B10 site has been synthesized. The properties of the monosubstituted hexamer show that occupancy of only one B10 site by Co3+ is sufficient to stabilize the hexameric form under the conditions of pH and concentration used in these studies. The experimentally determined, second-order rate constants for the binding of Zn2+ and Co2+ to the unoccupied B10 site are consistent with literature rate constants for the rate of association of these divalent metal ions with similar small molecule ligands. These findings indicate that the rate-limiting steps for Zn2+ and Co2+ binding involve the removal of the first aqua ligand. The rate constant for the binding of Cd2+ is significantly lower than the literature values for small molecule chelators, which suggests that some other protein-related process is rate-limiting for Cd2+ binding to the unoccupied, preformed B10 site. The kinetics of the assembly of insulin in the presence of limiting metal ion provides strong evidence indicating that the B13 site of the tetramer species can bind Zn2+, Cd2+, or Ca2+ prior to hexamer formation and that such binding assists hexamer formation. Both the tetramer and the hexamer B13 sites were found to exhibit similar affinities for Zn2+ and Cd2+ (Kd congruent to 9 microM), whereas the tetramer B13 sites bind Ca2+ much more weakly (Kd congruent to 1 mM for tetramer vs 83 microM for hexamer). The second-order rate constants estimated for the association of Zn2+ and Cd2+ to the tetrameric site indicate that the loss of the first inner-sphere aqua ligand is the rate-limiting step for binding.  相似文献   

4.
N C Kaarsholm  H C Ko  M F Dunn 《Biochemistry》1989,28(10):4427-4435
The chromophoric divalent metal ion chelators 4-(2-pyridylazo)resorcinol (PAR) and 2,2',2"-terpyridine (terpy) are used as kinetic and spectroscopic probes to investigate in solution the SCN- -induced conformational transformations of the insulin, proinsulin, and miniproinsulin hexamers (miniproinsulin is a proinsulin analogue wherein the C-chain is replaced by a dipeptide cross-link between Gly-A1 and Ala-B30). Herein we designate the 2Zn and 4Zn crystal forms of the hexamer as the T6 and T3R3 conformations, respectively. For all three proteins, addition of SCN- reduces the rate of sequestering and removal of zinc ion by chelator. The effect of SCN- on the rate of this process saturates at the same concentration (30 mM) known to induce the T6 to T3R3 transformation in the insulin crystal. Under both T6 and T3R3 conditions, the critical stoichiometry for high-affinity interaction between Zn2+ and each of the three proteins is shown to be 2 mol of Zn2+/mol of protein hexamer. Consequently, we confirm the finding that off-axial coordination of Zn2+ via His-B10 and His-B5 residues is of minor importance for the SCN- -induced conformation change in solution [Renscheidt, H., Strassburger, W., Glatter, U., Wollmer, A., Dodson, G. G., & Mercola, D. A. (1984) Eur. J. Biochem. 142, 7-14]. Under T6 conditions, the kinetics of the reactions between insulin, proinsulin, and miniproinsulin and a variable excess of terpy are similar and biphasic.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Wrzesinski J  Ciesiolka J 《Biochemistry》2005,44(16):6257-6268
Studies on RNA motifs capable of binding metal ions have largely focused on Mg(2+)-specific motifs, therefore information concerning interactions of other metal ions with RNA is still very limited. Application of the in vitro selection approach allowed us to isolate two RNA aptamers that bind Co(2+) ions. Structural analysis of their secondary structures revealed the presence of two motifs, loop E and "kissing" loop complex, commonly occurring in RNA molecules. The Co(2+)-induced cleavage method was used for identification of Co(2+)-binding sites after the determination of the optimal cleavage conditions. In the aptamers, Co(2+) ions seem to bind to N7 atoms of purines, inducing cleavage of the adjacent phosphodiester bonds, similarly as is the case with yeast tRNA(Phe). Although the in vitro selection experiment was carried out in the presence of Co(2+) ions only, the aptamers displayed broader metal ions specificity. This was shown by inhibition of Co(2+)-induced cleavages in the presence of the following transition metal ions: Zn(2+), Cd(2+), Ni(2+), and Co(NH(3))(6)(3+) complex. On the other hand, alkaline metal ions such as Mg(2+), Ca(2+), Sr(2+), and Ba(2+) affected Co(2+)-induced cleavages only slightly. Multiple metal ions specificity of Co(2+)-binding sites has also been reported for other in vitro selected or natural RNAs. Among many factors that influence metal specificity of the Co(2+)-binding pocket, chemical properties of metal ions, such as their hardness as well as the structure of the coordination site, seem to be particularly important.  相似文献   

6.
Metal ion binding to the insulin hexamer has been investigated by crystallographic analysis. Cadmium, lead, and metal-free hexamers have been refined to R values of 0.181, 0.172, and 0.172, against data of 1.9-, 2.5-, and 2.5-A resolution, respectively. These structures have been compared with each other and with the isomorphous two-zinc insulin. The structure of the metal-free hexamer shows that the His(B10) imidazole rings are arranged in a preformed site that binds a water molecule and is poised for Zn2+ coordination. The structure of the cadmium derivative shows that the binding of Cd2+ at the center of the hexamer is unusual. There are three symmetry-related sites located within 2.7 A of each other, and this position is evidently one-third occupied. It is also shown that the coordinating B13 glutamate side chains of this derivative have two partially occupied conformations. One of these conformations is two-thirds occupied and is very similar to that seen in two-zinc insulin. The other, one-third-occupied conformation, is seen to coordinate the one-third-occupied metal ion. The binding of Ca2+ to insulin is assumed to be essentially identical with that of Cd2+. Thus, we conclude that the Ca2+ binding site in the insulin hexamer is unlike that of any other known calcium binding protein. The crystal structures reported herein explain how binding of metal ions stabilizes the insulin hexamer. The role of metal ions in hexamer assembly and dissociation is discussed.  相似文献   

7.
Changes in [Mg2+] in a millimolar range have a significant inverse effect on the Ca2+- (or Sr2+)activated tension generation of skeletal muscle fibers. Single frog (Rana pipiens) semitendinosus muscle fibers were "skinned" (sarcolemma removed) and contracted isometrically in bathing solutions of varying [Ca2+] or [Sr2+] and [Mg2+] but a constant pH, [MgATP2-], [K+], [CP2-], [CPK], and ionic strength. Ca2+- (or Sr2+- )activated steady-state tensions were recorded for three [Mg2+]'s: 5 X 10(-5)M, 1 X 10(-3) M, and 2 X 10(-3) M; and these tensions were expressed as the percentages of maximum tension generation of the fibers for the same [Mg2+]. Maximum tension was not affected by [Mg2+] within Ca2+-activating or Sr2+-activating sets of solutions; however, the submaximum Ca2+-(or Sr2+)activated tension is strongly affected in an inverse fashion by increasing [Mg2+]. Mg2+ behaves as a competitive inhibitor of Ca2+ and also affects the degree of cooperativity in the system. At [Mg2+] = 5 X 10(-5)M the shape of tension versus [Ca2+] (or [Sr2+]) curve showed evidence of cooperativity of Ca2+ (or Sr2+) binding or activation of the contractile system. As [Mg2+] increased, the apparent affinity for Ca2+ or Sr2+ and cooperativity of the contractile system declined. The effect on cooperativity suggests that as [Mg2+] decreases a threshold for Ca2+ activation appears.  相似文献   

8.
As a means for probing the microenvironment of zinc in the insulin hexamer and to investigate the effects of calcium ion on the assembly and the structure of the two-zinc insulin hexamer, the thermodynamics and kinetics of the reaction between the chromophoric divalent metal ion chelator 4-(2-pyridylazo)resorcinol (PAR) and zinc-insulin have been investigated over a wide range of conditions. For [PAR]0 much greater than [Zn2+]0 and [Zn2+]/[In] less than or equal to 0.33, the reaction leads to the sequestering and ultimate removal of all of the insulin-bound Zn2+; for [Zn2+]0 much greater than [PAR]0, two stable ternary complexes are formed where Zn2+ has ligands derived from PAR as well as from hexameric insulin. For [Zn2+]/[In] ratios below 0.33, the equilibrium distribution between the two ternary complexes is dependent on the [Zn2+]/[In] ratio. One of the complexes is assigned to the monoanion of PAR coordinated to Zn2+ that resides in a His-B10 site. The other complex is proposed to involve the coordination of (PAR)Zn to the site formed by the alpha-NH2 group of Phe-B1 and the gamma-carboxylate ion of Glu-A17 across the dimer-dimer interface on the surface of the hexamer. With either PAR or zinc-insulin in large excess, the kinetics of the PAR optical density changes are remarkably similar and biphasic. The faster step is first order in PAR and first order in insulin-bound Zn2+ (k congruent to 3 X 10(3) M-1 s-1) and involves the formation of an intermediate in which PAR is coordinated to insulin-bound zinc at the His-B10 site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Inorganic lead ion in micromolar concentrations inhibits Electrophorus electroplax microsomal (Na+ + K+)-adenosine triphosphatase ((Na+ + K+)-ATPase) and K+-p-nitrophenylphosphatase (NPPase). Under the same conditions, the same concentrations of PbCl2 that inhibit ATPase activity also stimulate the phosphorylation of electroplax microsomes in the absence of added Na+. Enzyme activity is protected from inhibition by increasing concentrations of microsomes, ATP, and other metal ion chelators. The kinetics follow the pattern of a reversible noncompetitive inhibitor. No kinetic evidence is elicited for interactions of Pb2+ with Na+, K+, Mg2+, ATP, or p-nitrophenylphosphate. Na+- ATPase, in the absence of K+, and (Na+ + K+)-NPPase activity at low [K+] are also inhibited. ATP inhibition of NPPase is not reversed by Pb2+. The calculated concentrations of free [Pb2+] that produce 50% inhibition are similar for ATPase and NPPase activities. Pb2+ may act at a single independent binding site to produce both stimulation of the kinase and inhibition of the phosphatase activities.  相似文献   

10.
Purified calcineurin phosphatase is converted upon incubation in millimolar Ni2+ or Mn2+ to an active form by association with these metal activators. The bound metal ion is not dissociable from calcineurin by dialysis or gel filtration, but can be released upon prolonged incubation of the enzyme with Ca2+/calmodulin or chelating agents (Pallen, C.J., and Wang, J.H. (1986) J. Biol. Chem. 261, 16115-16120). The present study has been undertaken to test the possibility that calcineurin in brain may contain tightly bound Ni2+ or Mn2+. A monoclonal antibody (VA1) immunoaffinity matrix was prepared and shown to affect specific precipitation of calcineurin from crude bovine brain extract. Using [3H]-, [63Ni2+]-, and [54Mn2+]calcineurin added to the extract as radioactive tracer, it was found that up to 80% of the calcineurin could be immunoprecipitated, and that more than 50% of the originally bound metal ions could be detected in the immunoprecipitate. When samples of calcineurin immunoprecipitated from brain extracts were analyzed by atomic absorption spectroscopy, Ni2+ and Mn2+ were not detected, whereas, Zn2+, a constitutive metal of calcineurin (King, M. M., and Huang, C. Y. (1984) J. Biol. Chem. 259, 8847-8856) was found in the expected amount. The result suggests that calcineurin in brain does not contain tightly associated Ni2+ or Mn2+.  相似文献   

11.
The effects of Cd2+ on the hyperpolarization-activated K(+)-mediated current called IAB (Araque, A., and W. Buno. 1994. Journal of Neuroscience. 14:399-408.) were studied under two-electrode voltage- clamp in opener muscle fibers of the crayfish Procambarus clarkii. IAB was reversibly reduced by extracellular Cd2+ in a concentration- dependent manner, obeying the Hill equation with IC50 = 0.452 +/- 0.045 mM and a Hill coefficient of 1 (determined from the maximal chord conductance of IAB). Cd2+ decreased the IAB conductance (GAB) and shifted its voltage dependence towards hyperpolarized potentials in a similar degree, without affecting the slope of the voltage dependence. The IAB activation time constant increased, whereas the IAB deactivation time constant was not modified by Cd2+. The IAB equilibrium potential (EAB) was unmodified by Cd2+, indicating that the selective permeability of IAB channels was not altered. IAB was unaffected by intracellular Cd2+. The Cd(2+)-regulation of IAB did not depend on [K+]o, and the effects of [K+]o on IAB were unchanged by Cd2+, indicating that Cd2+ did not compete with K+. Therefore, Cd2+ probably bound to a different site to that involved in the K+ permeability pathway. We conclude that Cd2+ affected the gating of IAB channels, interfering with their opening but not with their closing mechanism. The results can be explained by a kinetic model in which the binding of Cd2+ to the IAB channels would stabilize the gating apparatus at its resting position, increasing the energy barrier for the transition from the closed to the open channel states.  相似文献   

12.
An increase in concentration of cytosolic Ca2+ ([Ca2+]i) is associated with an accelerated influx of 45Ca2+ when cultured RBL-2H3 cells are stimulated with either antigen or analogs of adenosine although these agents act via different receptors and coupling proteins (Ali, H., Cunha-Melo, J.R., Saul, W.F., and Beaven, M.A. (1990) J. Biol. Chem. 265, 745-753). The same mechanism probably operates for basal Ca2+ influx in unstimulated cells and for the accelerated influx in stimulated cells. This influx had the following characteristics. 1) It was decreased when cells were depolarized with high external K+; 2) it was blocked by other cations (La3+ greater than Zn2+ greater than Cd2+ greater than Mn2 = Co2+ greater than Ba2+ greater than Ni2+ greater than Sr2+) either by competing with Ca2+ at external sites (e.g. La3+ or Zn2+) or by co-passage into the cell (e.g. Mn2+ or Sr2+); and 3) the inhibition of influx by K+ and the metal ions had exactly the same characteristics whether cells were stimulated or unstimulated even though influx rates were different. The dependence of various cellular responses on influx of Ca2+ was demonstrated as follows. The stimulated influx of Ca2+, rise in [Ca2+]i, and secretion, could be blocked in a concentration-dependent manner by increasing the concentration of La3+, but concentrations of La3+ (greater than 20 microM) that suppressed influx to below basal rates of influx markedly suppressed the hydrolysis of inositol phospholipids (levels of inositol 1,4,5-trisphosphate were unaffected). Some metal ions, e.g. Mn2+ and Sr2+, however, supported the stimulated hydrolysis of inositol phospholipid and some secretion in the absence of Ca2+. Thus a basal rate of influx of Ca2+ was required for the full activation of inositol phospholipid hydrolysis, but in addition an accelerated influx was necessary for exocytosis.  相似文献   

13.
We report changes in the cytosolic Ca2+ concentration ([Ca2+]i) of single rat osteoclasts in response to Ca2+ receptor activation by micromolar concentrations of the transition metal cations, Cd2+ and Ni2+. The extracellular application of Cd2+ or Ni2+ resulted in a concentration-dependent elevation of cytosolic [Ca2+]. Each monophasic [Ca2+]i response consisted of an initial rapid rise of [Ca2+]i to a peak value followed by an exponential decay. Prior application of Cd2+ or Ni2+ induced refractoriness to a second application of the same cation. The results confirm the existence of a divalent cation-sensitive site on the osteoclast showing features of concentration-dependent activation and use-dependent inactivation.  相似文献   

14.
Muallem S  Wilkie TM 《Cell calcium》1999,26(5):173-180
Polarized cells signal in a polarized manner. This is exemplified in the patterns of [Ca2+]i waves and [Ca2+]i oscillations evoked by stimulation of G protein-coupled receptors in these cells. Organization of Ca(2+)-signaling complexes in cellular microdomains, with the aid of scaffolding proteins, is likely to have a major role in shaping G protein-coupled [Ca2+]i signal pathways. In epithelial cells, these domains coincide with sites of [Ca2+]i-wave initiation and local [Ca2+]i oscillations. Cellular microdomains enriched with Ca(2+)-signaling proteins have been found in several cell types. Microdomains organize communication between Ca(2+)-signaling proteins in the plasma membrane and internal Ca2+ stores in the endoplasmic reticulum through the interaction between the IP3 receptors in the endoplasmic reticulum and Ca(2+)-influx channels in the plasma membrane. Ca2+ signaling appears to be controlled within the receptor complex by the regulators of G protein-signaling (RGS) proteins. Three domains in RGS4 and related RGS proteins contribute important regulatory features. The RGS domain accelerates GTP hydrolysis on the G alpha subunit to uncouple receptor stimulation from IP3 production; the C-terminus may mediate interaction with accessory proteins in the complex; and the N-terminus acts in a receptor-selective manner to confer regulatory specificity. Hence, RGS proteins have both catalytic and scaffolding function in Ca2+ signaling. Organization of Ca(2+)-signaling proteins into complexes within microdomains is likely to play a prominent role in the localized control of [Ca2+]i and in [Ca2+]i oscillations.  相似文献   

15.
16.
We investigated spatiotemporal changes in cytoplasmic free Ca2+ concentration ([Ca2+]i) in norepinephrine (NE)-stimulated and fura-2-loaded individual H-35 rat hepatoma cells, using digital imaging microscopy and high time-resolution microspectrofluorometry. Application of NE (5 x 10(-6) M) resulted in an initial transient increase in [Ca2+]i, followed by a small sustained [Ca2+]i plateau above the pre-stimulation level. The initial peak and the small sustained plateau originated from intracellular stores and the extracellular space, respectively. The initial transient evoked by NE was totally blocked by phentolamine, an alpha-adrenergic antagonist, but was not blocked by either pre-incubation with nominally Ca(2+)-free medium or by pre-treatment of cells with La3+. On the other hand, the sustained plateau was eliminated by Ca(2+)-free medium or La3+. Therefore, H-35 cells have a Ca(2+)-signaling pathway which is activated via alpha-adrenergic receptors. Mn2+ entered the cytosol after NE stimulation, as shown by quenching of fura-2. This indicates that H-35 hepatoma cells possess Mn(2+)-permeable Ca2+ channels at the plasma membrane. In addition, the Ca2+ efflux pattern from H-35 cells to the extracellular space during NE stimulation was visualized by digital imaging microscopy when free fura-2 was equilibrated between the cells and the extracellular space. The efflux of Ca2+ from H-35 begins between the initial [Ca2+]i transient and the sustained [Ca2+]i plateau.  相似文献   

17.
Theoretical expression for the rate of decay of delta pH across vesicular membrane due to carrier-mediated ion transports, 1/tau, has been modified taking note of carrier states (such as mon- and mon-H-M+) for which the translocation rate constants in the membrane are small. The rates of delta pH decay due to monensin-mediated H+ and M+ transports (M+ = Na+, K+, Li+) observed in our experiments in the pH range 6-8, and [M+] range 50-250 mM at 25 degrees C have been analysed with the help of this expression. delta pH across soybean phospholipid vesicular membranes were created by temperature jump in our experiments. The following could be inferred from our studies. (a) At low pH (approximately 6) 1/tau in a medium of Na+ is greater than that in a medium of K+. In contrast with this, at higher pH (approximately 7.5) 1/tau is greater in a medium of K+. Such contradictory observations could be understood with the help of our equation and the parameters determined in this work. The relative concentrations of the rate-limiting species (mon-H, mon-K, and mon-Li at Ph approximately 7 in vesicle solutions having Na+, K+ and Li+, respectively) can explain such behaviours. (b) The proton dissociation constant KH for mon-H in the lipid medium (pKH approximately 6.55) is larger than the reported KH in methanol. (c) The concentrations of mon- and mon-H-Na+ are not negligible under the conditions of our experiments. The latter species cause a [Na+]-dependent inhibition of ion transports. (d) The relative magnitudes of metal ion dissociation constants KHM (approximately 0.05 M) for mon-H-Na+ and KM (approximately 0.03 M) for mon-Na suggest that the carboxyl group involved in the protonation may not be dominantly involved in the metal ion complexation. (e) The estimates of KM (approximately 0.03 M for Na+, 0.5 M for K+ and 2.2 M for Li+) follow the ionophore selectivity order. (f) The rate constants k1 and k2 for the translocations of mon-H and mon-M (M+ = Na+, K+ and Li+) are similar in magnitude (approximately 9 x 10(3) s-1) and are higher than that for nig-H and nig-M (approximately 6 x 10(3) s-1) which can be expected from the relative molecular sizes of the ion carriers.  相似文献   

18.
In studies about the effects of heavy metals on intracellular Ca2+, the use of fluorescent probes is debated, as metal cations are known to affect the probe signal. In this study, spectrofluorimetric experiments in free solution, using Fluo-3 and Fura-2, showed that Zn2+ and Cd2+ enhanced the probe signal, Cu2+ quenched it, and Hg2+ had no effect. Addition of GSH prevented most of these effects, suggesting the occurrence of a similar protective role in living cells. Digital imaging of living mussel haemocytes loaded with Fura-2/AM or Fluo-3/AM showed that Hg2+, Cu2+ and Cd2+ induced a rise in probe fluorescence, whereas up to 200 microM Zn2+ had no effect. In particular, Cd2+ produced the strongest probe signal rise in free solution, but the lowest fluorescence increase in cells. Probe calibration yielded [Ca2+]i values characteristic of resting levels in control and Zn2+-exposed cells, and, as expected, indicated Ca2+ homeostasis impairment in cells exposed to Cd2+, Cu2+ and Hg2+. Our results show that Ca2+ probe responses to heavy metals in living cells are completely different from those obtained in free solution, indicating that fluorescent probes can be a suitable tool to record the effects of heavy metals on [Ca2+]i.  相似文献   

19.
The sulfhydryl reagent thimerosal at concentrations 5-100 microM has been found to induce a variety of changes in ion transport in rat thymocytes. In particular, [Ca2+]i increases about 10-fold from the basal level. The [Ca2+]i response to thimerosal displays a two-stage time course, with the main [Ca2+]i rise during the second stage. Evidence has been obtained for the depletion of intracellular Ca2+ pools in thimerosal-treated cells, however, Ca2+ mobilization from intracellular stores does not contribute significantly into [Ca2+]i rise. Thimerosal elicits permeability not only for Ca2+, but also for Mn2+ and Ni2+, which is Ca(2+)-dependent. We failed to get any evidence on thimerosal-induced inhibition of the plasma membrane Ca(2+)-ATPase. The induction of Ca2+ influx, rather than inhibition of Ca(2+)-ATPase, accounts for the disturbance of [Ca2+]i homeostasis in thimerosal-treated cells. Thimerosal also elicits changes in monovalent ion fluxes resulting in marked depolarization. The latter seems unrelated to the changes in [Ca2+]i and is suggested to be mediated both by increased permeability for Na+ and a decreased one for K+. Thimerosal significantly stimulates AA release from thymocytes. Evidence has been presented that AA metabolite(s), probably, LO product(s), may mediate the changes in the transport of mono- and divalent cations elicited by the sulfhydryl reagent. Prolonged treatment of thymocytes with thimerosal resulted in cell death.  相似文献   

20.
We have undertaken a detailed study of the mechanisms of maintenance of intracellular Ca2+ homeostasis in human polymorphonuclear neutrophils (PMN) and its implications for phagocytosis and IgG Fc receptor (FcR) signaling. When PMN were incubated in Ca(2+)-free medium, cytoplasmic calcium concentration ([Ca2+]i) was markedly depressed and intracellular stores were depleted of calcium. [Ca2+]i in these depleted cells increased within 1 min when PMN were placed in medium containing Ca2+ and then decreased to a level close to the normal basal [Ca2+]i, replenishing the intracellular Ca2+ pools. LaCl3 prevented entry of Ca2+ into Ca(2+)-depleted PMN, but the calcium channel blockers nifedipine, diltiazem, and verapamil did not. Nifedipine and diltiazem but not verapamil inhibited the movement of Ca2+ from cytosol to intracellular stores. Nifedipine and diltiazem inhibited the normal increase in [Ca2+]i from aggregated IgG binding to FcR and also prevented formyl-methionyl-leucyl-phenyl-alanine (fMLP)-induced [Ca2+]i rise. Verapamil had no effect on either an fMLP- or IgG-mediated increase in [Ca2+]i. Consistent with this, nifedipine and diltiazem inhibited fMLP-stimulated phagocytosis (which is dependent on an increase in [Ca2+]i) when PMN had repleted intracellular stores. In contrast, LaCl3 inhibited fMLP-stimulated ingestion only in PMN which had intracellular store depleted. None of these compounds had any effect on phorbol dibutyrate-stimulated ingestion (which is independent of a [Ca2+]i rise). In summary, these data show that Ca2+ is in rapid equilibrium between intracellular and extracellular compartments in PMN. Exchange of cytoplasmic Ca2+ with the extracellular space is inhibited by LaCl3, while exchange of Ca2+ between the cytosol and intracellular stores is inhibited by the dihydropyridine nifedipine and the benzothiazepine diltiazem. These data suggest that these drugs, which are known to regulate some plasma membrane Ca2+ channels in excitable cells, can also regulate Ca2+ release from intracellular stores in PMN and that this regulation may have significant effects on PMN function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号