首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
全球陆地生态系统光合作用与呼吸作用的温度敏感性   总被引:3,自引:0,他引:3  
游桂莹  张志渊  张仁铎 《生态学报》2018,38(23):8392-8399
基于全球647套通量数据,定量分析了全球尺度下生态系统光合作用和呼吸作用的温度敏感性(Q10)随纬度、气候和植被的分布规律。结果表明:在全球尺度下,光合作用和呼吸过程的温度敏感性(Q10,G和Q10,R)都随纬度的升高而增加,其中Q10,G和Q10,R的均值分别为3.99±0.21和2.28±0.074。除热带多树草原、常绿落叶林外,Q10,G均大于Q10,R值。不同植被类型的温度敏感性存在显著性差异,表现为:针叶林阔叶林;落叶林常绿林,其中生态系统的季节性变异是造成差异的主要原因。当植被类型和纬度区域共同影响Q10值时,植被类型对Q10值的总变异贡献更大。气候类型对Q10,G和Q10,R都有显著影响。在气候带上,干旱带的Q10,G最小,而冷温带的Q10,G最高。不同气候类型下(除温带草原气候外)的Q10,G都大于Q10,R。在极端条件下,温度可能不在是主导因素,而水分对温度敏感性的影响不可忽略,今后的研究需要更多的关注生态系统温度敏感性对水分变化的响应。  相似文献   

2.
Soil microbial respiration is a critical component of the global carbon cycle, but it is uncertain how properties of microbes affect this process. Previous studies have noted a thermodynamic trade-off between the rate and efficiency of growth in heterotrophic organisms. Growth rate and yield determine the biomass-specific respiration rate of growing microbial populations, but these traits have not previously been used to scale from microbial communities to ecosystems. Here we report seasonal variation in microbial growth kinetics and temperature responses (Q10) in a coniferous forest soil, relate these properties to cultured and uncultured soil microbes, and model the effects of shifting growth kinetics on soil heterotrophic respiration (Rh). Soil microbial communities from under-snow had higher growth rates and lower growth yields than the summer and fall communities from exposed soils, causing higher biomass-specific respiration rates. Growth rate and yield were strongly negatively correlated. Based on experiments using specific growth inhibitors, bacteria had higher growth rates and lower yields than fungi, overall, suggesting a more important role for bacteria in determining Rh. The dominant bacteria from laboratory-incubated soil differed seasonally: faster-growing, cold-adapted Janthinobacterium species dominated in winter and slower-growing, mesophilic Burkholderia and Variovorax species dominated in summer. Modeled Rh was sensitive to microbial kinetics and Q10: a sixfold lower annual Rh resulted from using kinetic parameters from summer versus winter communities. Under the most realistic scenario using seasonally changing communities, the model estimated Rh at 22.67 mol m−2 year−1, or 47.0% of annual total ecosystem respiration (Re) for this forest.  相似文献   

3.
While substantial cold-season respiration has been documented in most arctic and alpine ecosystems in recent years, the significance of cold-season photosynthesis in these biomes is still believed to be small. In a mesic, subartic heath during both the cold and warm season, we measured in situ ecosystem respiration and photosynthesis with a chamber technique at ambient conditions and at artificially increased frequency of freeze–thaw (FT) cycles during fall and spring. We fitted the measured ecosystem exchange rates to respiration and photosynthesis models with R2-values ranging from 0.81 to 0.85. As expected, estimated cold-season (October, November, April and May) respiration was significant and accounted for at least 22% of the annual respiratory CO2 flux. More surprisingly, estimated photosynthesis during this period accounted for up to 19% of the annual gross CO2 uptake, suggesting that cold-season photosynthesis partly balanced the cold-season respiratory carbon losses and can be significant for the annual cycle of carbon. Still, during the full year the ecosystem was a significant net source of 120 ± 12 g C m−2 to the atmosphere. Neither respiration nor photosynthetic rates were much affected by the extra FT cycles, although the mean rate of net ecosystem loss decreased slightly, but significantly, in May. The results suggest only a small response of net carbon fluxes to increased frequency of FT cycles in this ecosystem.  相似文献   

4.
高寒矮嵩草草甸冬季CO2释放特征   总被引:1,自引:0,他引:1  
吴琴  胡启武  曹广民  李东 《生态学报》2011,31(18):5107-5112
冬季碳排放在高寒草地年内碳平衡中占有重要位置。为探讨高寒草地冬季碳排放特征及温度敏感性,于2003-2005年在中国科学院海北高寒草甸生态系统研究站,利用密闭箱-气相色谱法连续观测了高寒矮嵩草草甸2个冬季的生态系统、土壤呼吸通量特征。结果表明:1)高寒矮嵩草草甸冬季生态系统呼吸、土壤呼吸均具有明显的日变化和季节变化规律,温度是其主要的控制因子,能够解释44%以上的呼吸速率变异。2)冬季生态系统呼吸与土壤呼吸速率在统计上没有显著差异,土壤呼吸占生态系统呼吸的比例高达85%以上。3)2003-2004年冬季生态系统呼吸、土壤呼吸的Q10值分别为1.53,1.38;2004-2005年冬季生态系统呼吸与土壤呼吸的Q10值为1.86,1.68,2个冬季生态系统呼吸的Q10值均高于土壤呼吸。4)未发现高寒矮嵩草草甸冷冬年份的Q10值高于暖冬年份以及冬季的Q10值高于生长季。  相似文献   

5.
树干呼吸(E_s)是森林生态系统碳循环过程的重要组成部分,深入理解树干呼吸过程对未来气候变暖的响应及反馈机制有助于更加精确地估算森林生态系统碳储量。为揭示毛白杨树干呼吸及其温度敏感性的昼夜变化和季节动态规律,利用Li-Cor6400便携式光合作用测定系统及其配套使用的土壤呼吸测量气室(LI-6400-09)对冀南平原区毛白杨的树干呼吸和树干温度实施为期1年的连续监测。结果表明:(1)在生长季,毛白杨树干呼吸与树干温度之间在晚上呈现正相关的关系(R~2=0.88);相反,两者在白天为负相关的关系(R~2=0.96)。(2)整个观测期内,毛白杨树干呼吸和树干温度均呈现"钟形"的变化曲线,树干呼吸与树干温度之间存在着较好的指数函数关系(R~2=0.93),且树干呼吸的温度敏感性系数(Q_(10))为2.62;不同季节毛白杨树干呼吸的Q_(10)存在差异,生长季的Q_(10)(1.95)明显低于非生长季(3.00),表明生长呼吸和维持呼吸对温度的响应也并不相同。(3)温度矫正后的毛白杨树干呼吸(R_(15))在昼夜和季节尺度上均存在明显的变异,即夜晚的R_(15)显著高于白天(P0.01),生长季的R_(15)明显高于非生长季(P0.05);树干可溶性糖含量与生长季的R_(15)存在较好的相关性(R~2=0.52),而非生长季的R_(15)却主要受到树干淀粉含量的影响。研究结果表明,在生长季,毛白杨树干呼吸的在日变化主要受到温度的影响,而在季节尺度上Q_(10)的变异则与树干呼吸中维持呼吸所占比例及树干中非结构性碳水化合物(可溶性糖和淀粉)的含量及类型紧密相关。  相似文献   

6.
Predictions of warming and drying in the Mediterranean and other regions require quantifying of such effects on ecosystem carbon dynamics and respiration. Long‐term effects can only be obtained from forests in which seasonal drought is a regular feature. We carried out measurements in a semiarid Pinus halepensis (Aleppo pine) forest of aboveground respiration rates of foliage, Rf, and stem, Rt over 3 years. Component respiration combined with ongoing biometric, net CO2 flux [net ecosystem productivity (NEP)] and soil respiration measurements were scaled to the ecosystem level to estimate gross and net primary productivity (GPP, NPP) and carbon‐use efficiency (CUE=NPP/GPP) using 6 years data. GPP, NPP and NEP were, on average, 880, 350 and 211 g C m?2 yr?1, respectively. The above ground respiration made up half of total ecosystem respiration but CUE remained high at 0.4. Large seasonal variations in both Rf and Rt were not consistently correlated with seasonal temperature trends. Seasonal adjustments of respiration were observed in both the normalized rate (R20) and short‐term temperature sensitivity (Q10), resulting in low respiration rates during the hot, dry period. Rf in fully developed needles was highest over winter–spring, and foliage R20 was correlated with photosynthesis over the year. Needle growth occurred over summer, with respiration rates in developing needles higher than the fully developed foliage at most times. Rt showed a distinct seasonal maximum in May irrespective of year, which was not correlated to the winter stem growth, but could be associated with phenological drivers such as carbohydrate re‐mobilization and cambial activity. We show that in a semiarid pine forest photosynthesis and stem growth peak in (wet) winter and leaf growth in (dry) summer, and associated adjustments of component respiration, dominated by those in R20, minimize annual respiratory losses. This is likely a key for maintaining high CUE and ecosystem productivity similar to much wetter sites, and could lead to different predictions of the effect of warming and drying climate on productivity of pine forests than based on short‐term droughts.  相似文献   

7.
Wang J  Sha L Q  Li J Z  Feng Z L 《农业工程》2008,28(8):3574-3583
Soil carbon stored on the Tibetan Plateau appears to be stable under current temperature, but it may be sensitive to global warming. In addition, different grazing systems may alter carbon emission from subalpine meadow ecosystems in this region. Using a chamber-closed dynamic technique, we measured ecosystem respiration (ER) and soil respiration (SR) rates with an infrared gas analyzer on a perennial grazing meadow (PM) and a seasonal grazing meadow (SM) of Shangri-La in the Hengduan Mountain area. Both PM and SM showed strong unimodal seasonal variations, with the highest rates in July and the lowest in January. Significant diurnal variations in respiration were also observed on PM, affected mainly by air and soil temperatures, with the highest rates at 14:00 and the lowest before dawn. Both ER and SR rates were higher on PM than on SM from June to October, suggesting that the higher grazing pressure on PM increased respiration rates on subalpine meadows. The exponential model F = aebT<,/sup> of soil temperature (T) explained the variation in respiration better than the model of soil moisture (W) (R2 = 0.50–0.78, P < 0.0001), while the multiple model F = aebT<,/sup>Wc gave better simulations than did single-factor models (R2 = 0.56–0.89, P < 0.0001). Soil respiration was the major component of ER, accounting for 63.0%–92.7% and 47.5%–96.4% of ER on PM and SM, respectively. Aboveground plant respiration varied with grass growth. During the peak growing season, total ecosystem respiration may be dominated by this above-ground component. Long-term (annual) Q10 values were about twice as large as short-term (one day) Q10. Q10 at different time scales may be controlled by different ecological processes. The SM had a lower long-term Q10 than did the PM, suggesting that under increased temperature, soil carbon may be more stable with reduced grazing pressure.  相似文献   

8.
Acclimation of photosynthesis and respiration in shoots and ecosystem carbon dioxide fluxes to rising atmospheric carbon dioxide concentration (C a ) was studied in a brackish wetland. Open top chambers were used to create test atmospheres of normal ambient and elevated C a (=normal ambient + 34 Pa CO2) over mono-specific stands of the C3 sedge Scirpus olneyi, the dominant C3 species in the wetland ecosystem, throughout each growing season since April of 1987. Acclimation of photosynthesis and respiration were evaluated by measurements of gas exchange in excised shoots. The impact of elevated C a on the accumulation of carbon in the ecosystem was determined by ecosystem gas exchange measurements made using the open top chamber as a cuvette.Elevated C a increased carbohydrate and reduced Rubisco and soluble protein concentrations as well as photosynthetic capacity(A) and dark respiration (R d ; dry weight basis) in excised shoots and canopies (leaf area area basis) of Scirpus olneyi. Nevertheless, the rate of photosynthesis was stimulated 53% in shoots and 30% in canopies growing in elevated C a compared to normal ambient concentration. Elevated C a inhibited R d measured in excised shoots (–19 to –40%) and in seasonally integrated ecosystem respiration (R e ; –36 to –57%). Growth of shoots in elevated C a was stimulated 14–21%, but this effect was not statistically significant at peak standing biomass in midseason. Although the effect of elevated C a on growth of shoots was relatively small, the combined effect of increased number of shoots and stimulation of photosynthesis produced a 30% stimulation in seasonally integrated gross primary production (GPP). The stimulation of photosynthesis and inhibition of respiration by elevated C a increased net ecosystem production (NEP=GPP–R e ) 59% in 1993 and 50% in 1994. While this study consistently showed that elevated C a produced a significant increase in NEP, we have not identified a correspondingly large pool of carbon below ground.  相似文献   

9.
Sacks WJ  Schimel DS  Monson RK 《Oecologia》2007,151(1):54-68
Fundamental questions exist about the effects of climate on terrestrial net ecosystem CO2 exchange (NEE), despite a rapidly growing body of flux observations. One strategy to clarify ecosystem climate–carbon interactions is to partition NEE into its component fluxes, gross ecosystem CO2 exchange (GEE) and ecosystem respiration (R E), and evaluate the responses to climate of each component flux. We separated observed NEE into optimized estimates of GEE and R E using an ecosystem process model combined with 6 years of continuous flux data from the Niwot Ridge AmeriFlux site. In order to gain further insight into the processes underlying NEE, we partitioned R E into its components: heterotrophic (R H) and autotrophic (R A) respiration. We were successful in separating GEE and R E, but less successful in accurately partitioning R E into R A and R H. Our failure in the latter was due to a lack of adequate contrasts in the assimilated data set to distinguish between R A and R H. We performed most model runs at a twice-daily time step. Optimizing on daily-aggregated data severely degraded the model’s ability to separate GEE and R E. However, we gained little benefit from using a half-hourly time step. The model-data fusion showed that most of the interannual variability in NEE was due to variability in GEE, and not R E. In contrast to several previous studies in other ecosystems, we found that longer growing seasons at Niwot Ridge were correlated with less net CO2 uptake, due to a decrease of available snow-melt water during the late springtime photosynthetic period. Warmer springtime temperatures resulted in increased net CO2 uptake only if adequate moisture was available; when warmer springtime conditions led into mid-summer drought, the annual net uptake declined.  相似文献   

10.
生态系统碳循环过程对水分响应的研究已成为全球变化关注的焦点问题之一。基于长白山温带针阔混交林与千烟洲亚热带人工针叶林观测站2003—2009年生长季的碳通量(NEE)和气象观测数据,综合考虑水分对光合、呼吸作用的影响,构建不同的NEE模型,并应用模型数据融合方法优化模型参数、遴选最适模型,系统分析了水分因子对不同森林生态系统碳循环的影响。结果表明:(1)优化后的模型参数均能被NEE实测数据较好约束。长白山生长季的光合、呼吸参数值均高于千烟洲,未考虑空气饱和水汽压差(VPD)的模型高估了千烟洲温度敏感性参数(Q10)值、低估了千烟洲基础呼吸速率参数(BR)值;(2)仅考虑VPD对光合作用影响的模型是长白山生长季碳通量模拟的最优模型,但模拟精度提高不显著。不同模型间碳通量组分模拟结果差异较小;(3)考虑VPD和土壤含水量对光合、呼吸作用共同影响的模型是千烟洲生长季碳通量模拟的最优模型,并且显著提高了模拟精度。未考虑水分的模型在生长季高估了总生态系统生产力(GEP)总量2.0%(21.85 g C/m~2),同时更大幅度地高估了生态系统呼吸(RE)总量4.4%(38.02 g C/m~2),从而导致NEE总量低估于实测值7.8%(18.55 g C/m~2)。  相似文献   

11.
武夷山不同林龄甜槠林土壤呼吸特征及影响因素   总被引:1,自引:0,他引:1  
为揭示中亚热带常绿阔叶林群落优势种一甜槠天然林不同林龄林下土壤呼吸(Soil respiration,RS)差异及影响因素,采用LI-8100开路式土壤碳通量系统对武夷山自然保护区不同林龄(18、36、54、72 a)天然甜槠林进行了1年的野外原位测定。结果表明:(1)不同林龄甜槠林RS季节动态呈现明显的单峰趋势,林龄对冬季RS影响并不显著(P>0.05),秋季18 a甜槠林RS与其他3种林龄差异显著(P<0.05),林龄对土壤含水率的季节变化没有显著影响(P>0.05);(2)不同林龄甜槠林5 cm深土壤温度与RS拟合R2明显高于土壤含水率与RS拟合R2,随着林龄增大,RS温度敏感性指数Q10值呈上升趋势,依次为1.551、1.589、1.640、1.664,且54、72 a甜槠林RS温度敏感性指数Q10值显著高于18、36 a(P<0.05);(3)土壤含水率与5 cm深土壤温度共同解释了RS变异的86%—90.3%;0—60 cm土层根系生物量与5 cm深土壤温度共同解释了RS变异的88.3%—91.8%,由此可见,生物因子与非生物因子双因素拟合可以更好地解释不同林龄RS差异。在对未来森林植被土壤呼吸及碳汇功能进行研究时,应在考虑林龄及季节差异的基础上,加强对生物因子的测定。  相似文献   

12.
Base Cation Cycling in a Pristine Watershed of the Canadian Boreal Forest   总被引:1,自引:0,他引:1  
In forest ecosystems the single largest respiratory flux influencing net ecosystem productivity (NEP) is the total soil CO2 efflux; however, it is difficult to make measurements of this flux that are accurate at the ecosystem scale. We examined patterns of soil CO2 efflux using five different methods: auto-chambers, portable gas analyzers, eddy covariance along and two models parameterized with the observed data. The relation between soil temperature and soil moisture with soil CO2 effluxes are also investigated, both inter-annually and seasonally, using these observations/results. Soil respiration rates (R soil) are greatest during the growing season when soil temperatures are between 15 and 25 °C, but some soil CO2 efflux occurs throughout the year. Measured soil respiration was sensitive to soil temperature, particularly during the spring and fall. All measurement methods produced similar annual estimates. Depending on the time of the year, the eddy covariance (flux tower) estimate for ecosystem respiration is similar to or slightly lower than estimates of annual soil CO2 efflux from the other methods. As the eddy covariance estimate includes foliar and stem respiration which the other methods do not; it was expected to be larger (perhaps 15–30%). The auto-chamber system continuously measuring soil CO2 efflux rates provides a level of temporal resolution that permits investigation of short- to longer term influences of factors on these efflux rates. The expense of building and maintaining an auto chamber system may not be necessary for those researchers interested in estimating R soil annually, but auto-chambers do allow the capture of data from all seasons needed for model parameterization.  相似文献   

13.
Elevated CO2 enhances carbon uptake of a plant stand, but the magnitude of the increase varies among growth stages. We studied the relative contribution of structural and physiological factors to the CO2 effect on the carbon balance during stand development. Stands of an annual herb Chenopodium album were established in open-top chambers at ambient and elevated CO2 concentrations (370 and 700 μmol mol−1). Plant biomass growth, canopy structural traits (leaf area, leaf nitrogen distribution, and light gradient in the canopy), and physiological characteristics (leaf photosynthesis and respiration of organs) were studied through the growing season. CO2 exchange of the stand was estimated with a canopy photosynthesis model. Rates of light-saturated photosynthesis and dark respiration of leaves as related with nitrogen content per unit leaf area and time-dependent reduction in specific respiration rates of stems and roots were incorporated into the model. Daily canopy carbon balance, calculated as an integration of leaf photosynthesis minus stem and root respiration, well explained biomass growth determined by harvests (r 2 = 0.98). The increase of canopy photosynthesis with elevated CO2 was 80% at an early stage and decreased to 55% at flowering. Sensitivity analyses suggested that an alteration in leaf photosynthetic traits enhanced canopy photosynthesis by 40–60% throughout the experiment period, whereas altered canopy structure contributed to the increase at the early stage only. Thus, both physiological and structural factors are involved in the increase of carbon balance and growth rate of C. album stands at elevated CO2. However, their contributions were not constant, but changed with stand development.  相似文献   

14.
量化森林土壤呼吸及其组分对温度的响应对准确评估未来气候变化背景下陆地生态系统的碳平衡极其重要。该文通过对神农架海拔梯度上常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶林以及亚高山针叶林4种典型森林土壤呼吸的研究发现: 4种森林类型的年平均土壤呼吸速率和年平均异养呼吸速率分别为1.63、1.79、1.74、1.35 μmol CO2·m-2·s-1和1.13、1.12、1.12、0.80 μmol CO2·m-2·s-1。该地区的土壤呼吸及其组分呈现出明显的季节动态, 夏季最高, 冬季最低。4种森林类型中, 阔叶林的土壤呼吸显著高于针叶林, 但阔叶林之间的土壤呼吸差异不显著。土壤温度是影响土壤呼吸及其组分的主要因素, 二者呈显著的指数关系; 土壤含水量与土壤呼吸之间没有显著的相关关系。4种典型森林土壤呼吸的Q10值分别为2.38、2.68、2.99和4.24, 随海拔的升高土壤呼吸对温度的敏感性增强, Q10值随海拔的升高而增加。  相似文献   

15.
该研究采用红外气体分析法(IRGA)于2013年3–12月原位测定了北京市东升八家郊野公园中2个主要阔叶树种(槐(Sophora japonica)、旱柳(Salix matsudana))3个高度上的枝干呼吸(Rw)日进程,旨在量化Rw的种间差异,探索种内Rw及其温度敏感系数(Q10)的时间动态和垂直分布格局。研究结果显示:(1)Rw在不同树种之间差异明显,相同月份(4月份除外)槐Rw是旱柳的1.12(7月)–1.79倍(5月)。两树种枝干表面CO2通量速率均表现出明显的单峰型季节变化,峰值分别出现在7月((5.13±0.24)μmol·m–2·s–1)和8月((3.85±0.17)μmol·m–2·s–1)。同一树种在生长月份内的平均呼吸水平显著高于非生长季,但其Q10值季节变化趋势与之相反。(2)RW随测量高度的增加而升高,并在3个高度上表现出不同的日变化规律:其中,树干基部及胸高位置为单峰格局,而一级分枝处的呼吸速率在一天内存在两个峰值,中间出现短暂的"午休"现象。温度是造成一天内呼吸变化的主要原因。此外,顶部Rw及其对温度的敏感程度明显高于基部。温度本身和Q10值差异可在一定程度上解释RW的垂直梯度变化。(3)在生长月份,单位体积木质组织的日累积呼吸速率(mmol·m–3·d–1)与受测部位直径倒数(D–1)呈极显著正相关关系。单位面积(μmol·m–2·s–1)可准确表达两树种在生长期间的RW水平,能合理有效地比较不同个体的呼吸差异及同一个体的时空变异。这些结果表明,采用局部通量法上推至树木整体呼吸时,应全面考虑Rw的时、空变异规律,并选择恰当的表达单位,以减小估测误差。  相似文献   

16.
The eddy covariance (EC) technique is used to measure the net ecosystem exchange (NEE) of CO2 between ecosystems and the atmosphere, offering a unique opportunity to study ecosystem responses to climate change. NEE is the difference between the total CO2 release due to all respiration processes (RECO), and the gross carbon uptake by photosynthesis (GPP). These two gross CO2 fluxes are derived from EC measurements by applying partitioning methods that rely on physiologically based functional relationships with a limited number of environmental drivers. However, the partitioning methods applied in the global FLUXNET network of EC observations do not account for the multiple co‐acting factors that modulate GPP and RECO flux dynamics. To overcome this limitation, we developed a hybrid data‐driven approach based on combined neural networks (NNC‐part). NNC‐part incorporates process knowledge by introducing a photosynthetic response based on the light‐use efficiency (LUE) concept, and uses a comprehensive dataset of soil and micrometeorological variables as fluxes drivers. We applied the method to 36 sites from the FLUXNET2015 dataset and found a high consistency in the results with those derived from other standard partitioning methods for both GPP (R2 > .94) and RECO (R2 > .8). High consistency was also found for (a) the diurnal and seasonal patterns of fluxes and (b) the ecosystem functional responses. NNC‐part performed more realistic than the traditional methods for predicting additional patterns of gross CO2 fluxes, such as: (a) the GPP response to VPD, (b) direct effects of air temperature on GPP dynamics, (c) hysteresis in the diel cycle of gross CO2 fluxes, (d) the sensitivity of LUE to the diffuse to direct radiation ratio, and (e) the post rain respiration pulse after a long dry period. In conclusion, NNC‐part is a valid data‐driven approach to provide GPP and RECO estimates and complementary to the existing partitioning methods.  相似文献   

17.
We warmed the top soil of a mature coniferous forest stand by means of heating cables on control and trenched plots within 24 h by 10°C at 1 cm soil depth (9°C at 5 cm depth) and measured the effect on the autotrophic (RA) and heterotrophic (RH) component of total soil CO2 efflux (RS). The short time frame of warming enabled us to exclude confounding fluctuations in soil moisture and carbon (C) flow from the canopy. The results of the field study were backed up by a lab soil incubation experiment. During the first 12 h of warming, RA strongly responded to soil warming; The Q 10 values were 5.61 and 6.29 for 1 and 5 cm soil depth temperature. The Q 10 values for RA were almost twice as high as the Q 10 values of RH (3.04 and 3.53). Q 10 values above 5 are above reasonable plant physiological values for root respiration. We see interactions of roots, mycorrhizae and heterotrophic microbes, combined with fast substrate supply to the rhizosphere as an explanation for the high short-term temperature response of RA. When calculated over the whole duration (24 h) of the field soil-warming experiment, temperature sensitivities of RA and RH were similar (no significant difference at P < 0.05); Q 10 values were 3.16 and 3.96 for RA and 2.94 and 3.35 for RH calculated with soil temperatures at 1 and 5 cm soil depth, respectively. Laboratory incubation showed that different soil moisture contents of trenched and control plots affected rates of RH, but did not affect the temperature sensitivity of RH. We conclude that a single parameter is sufficient to describe the temperature sensitivity of RS in soil C models which operate on larger temporal and spatial scales. The strong short-term response of RA may be of relevance in soils suspected to experience increasingly strong diurnal temperature variations.  相似文献   

18.
Gross photosynthesis and respiration rates of leaves at different canopy heights in a Rhizophora stylosa Griff. stand were measured monthly over 1 year at Manko Wetland, Okinawa Island, Japan, which is the northern limit of its distribution. The light-saturated net photosynthesis rate for the leaves at the top of the canopy showed a maximum value of 17 μmol CO2 m−2 s−1 in warm season and a minimum value of 6 μmol CO2 m−2 s−1 in cold season. The light-saturated gross photosynthesis and dark respiration rates of the leaves existing at the top of the canopy were 2−7 times and 3–16 times, respectively, those of leaves at the bottom of the canopy throughout the year. The light compensation point of leaves showed maximum and minimum peaks in warm season and cold season, respectively. The annual canopy gross photosynthesis, foliage respiration, and surplus production were estimated as 117, 49, and 68 t CO2 ha−1 year−1, respectively. The energy efficiency of the annual canopy gross photosynthesis was 2.5%. The gross primary production GPP fell near the regression curve of GPP on the product of leaf area index and warmth index, the regression curve which was established for forests in the Western Pacific with humid climates.  相似文献   

19.
作为森林生态系统的第二大碳通量,土壤呼吸在全球碳循环和气候变化中发挥着重要作用。通过探究土壤呼吸对间伐和改变凋落物的响应规律以及响应之间的联系,能够为准确评价森林碳循环提供依据。针对不同强度(对照、轻度、中度、重度)间伐后的华北落叶松人工林,2016年5月至10月采用LI-8100土壤碳通量测量系统对其原状、凋落物去除、凋落物加倍的土壤呼吸进行观测。结果表明:土壤呼吸在生长季的8月份达到最高值,呈现出明显的季节动态。不同林分间伐处理下,中度间伐显著促进了土壤呼吸,使平均土壤呼吸速率升高了15.66%,轻度间伐和重度间伐对土壤呼吸的影响不显著;不同凋落物处理下,去除凋落物使平均土壤呼吸速率降低了40.16%,加倍凋落物使平均土壤呼吸速率升高了16.06%。中度间伐使土壤呼吸生长季通量增加了55.06 g C/m~2;去除凋落物使土壤呼吸生长季通量减少了153.48 g C/m~2,加倍凋落物使土壤呼吸生长季通量增加了79.87 g C/m~2。土壤呼吸速率与土壤温度呈显著指数相关,而与土壤湿度无显著相关。不同林分间伐处理下,土壤呼吸的温度敏感性指数(Q10)为2.36—3.46,轻度间伐下Q10值最高;凋落物去除和加倍均降低了土壤呼吸的温度敏感性。土壤温湿度对土壤呼吸存在着显著影响,能够解释土壤呼吸28.7%—62.3%的季节变化。研究结果表明间伐和凋落物处理对华北落叶松人工林土壤CO_2释放的影响表现出一定的交互作用,中度间伐和加倍凋落物的交互作用对土壤呼吸的促进作用显著大于单一因子。可见,间伐作业通过改变土壤微环境和凋落物量,对土壤呼吸以及森林生态系统碳循环产生着重要影响。  相似文献   

20.
We used estimates of autotrophic respiration (RA), net primary productivity (NPP) and soil CO2 evolution (Sff), to develop component carbon budgets for 12‐year‐old loblolly pine plantations during the fifth year of a fertilization and irrigation experiment. Annual carbon use in RA was 7.5, 9.0, 15.0, and 15.1 Mg C ha?1 in control (C), irrigated (I), fertilized (F) and irrigated and fertilized (IF) treatments, respectively. Foliage, fine root and perennial woody tissue (stem, branch, coarse and taproot) respiration accounted for, respectively, 37%, 24%, and 39% of RA in C and I treatments and 38%, 12% and 50% of RA in F and IF treatments. Annual gross primary production (GPP=NPP+RA) ranged from 13.1 to 26.6 Mg C ha?1. The I, F, and IF treatments resulted in a 21, 94, and 103% increase in GPP, respectively, compared to the C treatment. Despite large treatment differences in NPP, RA, and carbon allocation, carbon use efficiency (CUE=NPP/GPP) averaged 0.42 and was unaffected by manipulating site resources. Ecosystem respiration (RE), the sum of Sff, and above ground RA, ranged from 12.8 to 20.2 Mg C ha?1 yr?1. Sff contributed the largest proportion of RE, but the relative importance of Sff decreased from 0.63 in C treatments to 0.47 in IF treatments because of increased aboveground RA. Aboveground woody tissue RA was 15% of RE in C and I treatments compared to 25% of RE in F and IF treatments. Net ecosystem productivity (NEP=GPP‐RE) was roughly 0 in the C and I treatments and 6.4 Mg C ha?1 yr?1 in F and IF treatments, indicating that non‐fertilized treatments were neither a source nor a sink for atmospheric carbon while fertilized treatments were carbon sinks. In these young stands, NEP is tightly linked to NPP; increased ecosystem carbon storage results mainly from an increase in foliage and perennial woody biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号