首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pathway to amyloid fibril formation in proteins involves specific structural changes leading to the combination of misfolded intermediates into oligomeric assemblies. Recent NMR studies showed the presence of “turns” in amyloid peptides, indicating that turn formation may play an important role in the nucleation of the intramolecular folding and possible assembly of amyloid. Fully solvated all-atom molecular dynamics simulations were used to study the structure and dynamics of the apolipoprotein C-II peptide 56 to 76, associated with the formation of amyloid fibrils. The peptide populated an ensemble of turn structures, stabilized by hydrogen bonds and hydrophobic interactions enabling the formation of a strong hydrophobic core which may provide the conditions required to initiate aggregation. Two competing mechanisms discussed in the literature were observed. This has implications in understanding the mechanism of amyloid formation in not only apoC-II and its fragments, but also in other amyloidogenic peptides.  相似文献   

2.
Amyloid formation via supramolecular peptide assemblies   总被引:2,自引:0,他引:2  
Moore RA  Hayes SF  Fischer ER  Priola SA 《Biochemistry》2007,46(24):7079-7087
Amyloid fibrils have been classically defined as linear, nonbranched polymeric proteins with a cross beta-sheet structure and the ability to alter the optical properties of the amyloid-specific dye Congo Red. Mounting evidence suggests that soluble oligomeric peptide assemblies approximately 2-20 nm in diameter are critical intermediates in amyloid formation. Using a pathogenic prion protein peptide comprised of residues 23-144, we demonstrate that, under quiescent but not agitated conditions, much larger globular assemblies up to 1 mum in diameter are made. These globules precede fibril formation and directly interact with growing fibril bundles. Fibrils made via these large spherical peptide assemblies displayed a remarkable diversity of ultrastructural features. Fibrillization of the Abeta1-40 peptide under similar conditions yielded similar results, suggesting a mechanism of general amyloid formation that can proceed through intermediates much larger than those previously described. Our data suggest that simply changing the physical microenvironment can profoundly influence the mechanism of amyloid formation and yield fibrils with novel ultrastructural properties.  相似文献   

3.
The deposition of beta-2-microglobulin (beta2m) as amyloid fibers results in debilitating complications for renal failure patients who are treated by hemodialysis. In vitro, wild-type beta2m can be converted to amyloid under physiological conditions by exposure to biomedically relevant concentrations of Cu(2+). In this work, we have made comparative measurements of the structural and oligomeric changes in beta2m at time points preceding fibrillogenesis. Our results show Cu(2+) mediates the formation of a monomeric, activated state followed by the formation of a discrete dimeric intermediate. The dimeric intermediates then assemble into tetra- and hexameric forms which display little additional oligomerization on the time scales of their own formation (<1 h). Amyloid fiber formation progresses from these intermediate states but on much longer time scales (>1 week). Although Cu(2+) is necessary for the generation and stabilization of these intermediates, it is not required for the stability of mature amyloid fibers. This suggests that Cu(2+) acts as an initiating factor of amyloidosis by inducing oligomer formation. (1)H NMR and near-UV circular dichroism are used to establish that oligomeric intermediates are native-like in structure. The native-like structure and discrete oligomeric size of beta2m amyloid intermediates suggest that this protein forms fibrils by structural domain swapping.  相似文献   

4.
It is important to understand the Amyloid fibril formation in view of numerous medical and biochemical aspects. Structural determination of amyloid fibril has been extensively studied using electron microscopy. Subsequently, solid state NMR spectroscopy has been realized to be the most important means to determine not only microscopic molecular structure but also macroscopic molecular packing. Molecular structure of amyloid fibril was first predicted to be parallel beta-sheet structure, and subsequently, was further refined for Abeta(1-40) to be cross beta-sheet with double layered in register parallel beta-sheet structure by using solid state NMR spectroscopy. On the other hand, anti-parallel beta-sheet structure has been reported to short fragments of Abeta-amyloid and other amyloid forming peptides. Kinetic study of amyloid fibril formation has been studied using a variety of methods, and two-step autocatalytic reaction mechanism used to explain fibril formation. Recently, stable intermediates or proto-fibrils have been observed by electron microscope (EM) images. Some of the intermediates have the same microscopic structure as the matured fibril and subsequently change to matured fibrils. Another important study on amyloid fibril formation is determination of the interaction with lipid membranes, since amyloid peptide are cleaved from amyloid precursor proteins in the membrane interface, and it is reported that amyloid lipid interaction is related to the cytotoxicity. Finally it is discussed how amyloid fibril formation can be inhibited. Firstly, properly designed compounds are reported to have inhibition ability of amyloid fibril formation by interacting with amyloid peptide. Secondly, it is revealed that site directed mutation can inhibit amyloid fibril formation. These inhibitors were developed by knowing the fibril structure determined by solid state NMR.  相似文献   

5.
It is important to understand the Amyloid fibril formation in view of numerous medical and biochemical aspects. Structural determination of amyloid fibril has been extensively studied using electron microscopy. Subsequently, solid state NMR spectroscopy has been realized to be the most important means to determine not only microscopic molecular structure but also macroscopic molecular packing. Molecular structure of amyloid fibril was first predicted to be parallel β-sheet structure, and subsequently, was further refined for Aβ(1-40) to be cross β-sheet with double layered in register parallel β-sheet structure by using solid state NMR spectroscopy. On the other hand, anti-parallel β-sheet structure has been reported to short fragments of Aβ-amyloid and other amyloid forming peptides. Kinetic study of amyloid fibril formation has been studied using a variety of methods, and two-step autocatalytic reaction mechanism used to explain fibril formation. Recently, stable intermediates or proto-fibrils have been observed by electron microscope (EM) images. Some of the intermediates have the same microscopic structure as the matured fibril and subsequently change to matured fibrils. Another important study on amyloid fibril formation is determination of the interaction with lipid membranes, since amyloid peptide are cleaved from amyloid precursor proteins in the membrane interface, and it is reported that amyloid lipid interaction is related to the cytotoxicity. Finally it is discussed how amyloid fibril formation can be inhibited. Firstly, properly designed compounds are reported to have inhibition ability of amyloid fibril formation by interacting with amyloid peptide. Secondly, it is revealed that site directed mutation can inhibit amyloid fibril formation. These inhibitors were developed by knowing the fibril structure determined by solid state NMR.  相似文献   

6.
The misfolding and self-assembly of proteins into amyloid fibrils that occurs in several debilitating and age-related diseases is affected by common components of amyloid deposits, notably lipids and lipid complexes. We have examined the effect of the short-chain phospholipids, dihexanoylphosphatidylcholine (DHPC) and dihexanoylphosphatidylserine (DHPS), on amyloid fibril formation by human apolipoprotein C-II (apoC-II). Micellar DHPC and DHPS strongly inhibited apoC-II fibril formation, whereas submicellar levels of these lipids accelerated apoC-II fibril formation to a similar degree. These results indicate that the net negative charge on DHPS, compared with the neutrally charged DHPC, is not critical for either the inhibition or activation process. We also investigated the mechanism for the submicellar, lipid-induced activation of fibril formation. Emission data for fluorescently labeled apoC-II indicated that DHPC and DHPS stimulate the early formation and accumulation of oligomeric species. Sedimentation velocity and equilibrium experiments using a new fluorescence detection system identified a discrete lipid-induced tetramer formed at low apoC-II concentrations in the absence of significant fibril formation. Seeding experiments showed that this tetramer was on the fibril-forming pathway. Fluorescence resonance energy transfer experiments established that this tetramer forms rapidly and is stabilized by submicellar, but not micellar, concentrations of DHPC and DHPS. Several recent studies show that oligomeric intermediates in amyloid fibril formation are toxic. Our results indicate that lipids promote on-pathway intermediates of apoC-II fibril assembly and that the accumulation of a discrete tetrameric intermediate depends on the molecular state of the lipid.  相似文献   

7.
Inhibition of amyloidosis using low-molecular-weight heparins   总被引:2,自引:0,他引:2  
BACKGROUND: Amyloid diseases are characterized by the tissue deposition of extracellular proteinaceous material, which results in organ dysfunction and death. Colocalization of heparan sulfate (HS) proteoglycans to amyloid deposits suggests that they may be an early event in amyloid formation and play an important role in fibril formation. Structural analysis has demonstrated that HS interacts with amyloidogenic proteins resulting in structural changes that allow for an increase in beta-sheet content, possibly enhancing fibrillogenesis. Recent studies have shown that small-molecule anionic sulfonates or sulfates can arrest inflammation-associated (AA) amyloid induction. MATERIALS AND METHODS: In the present study, we examine the effect of low-molecular-weight heparins (LMWHs) on the development of amyloid in the mouse model of AA amyloid. In addition, in vitro fibril formation assays were performed to determine the effect of LMWHs on fibrillogenesis. RESULTS: Injection of mice with clinically relevant doses of LMWHs (enoxaparin and dalteparin) demonstrated a reduction in AA amyloid deposition. These compounds were capable of arresting the progression of AA amyloid and eventually resulting in regression of the amyloid deposits. In vitro analysis indicated that LMWHs prevented AA and Abeta peptide fibril formation by impeding the structural changes necessary for fibril formation. CONCLUSIONS: Our findings suggest that the LMWHs may provide beneficial effects against the development of amyloidoses, including Alzheimer's disease.  相似文献   

8.
Hill SE  Miti T  Richmond T  Muschol M 《PloS one》2011,6(4):e18171
Formation of large protein fibrils with a characteristic cross β-sheet architecture is the key indicator for a wide variety of systemic and neurodegenerative amyloid diseases. Recent experiments have strongly implicated oligomeric intermediates, transiently formed during fibril assembly, as critical contributors to cellular toxicity in amyloid diseases. At the same time, amyloid fibril assembly can proceed along different assembly pathways that might or might not involve such oligomeric intermediates. Elucidating the mechanisms that determine whether fibril formation proceeds along non-oligomeric or oligomeric pathways, therefore, is important not just for understanding amyloid fibril assembly at the molecular level but also for developing new targets for intervening with fibril formation. We have investigated fibril formation by hen egg white lysozyme, an enzyme for which human variants underlie non-neuropathic amyloidosis. Using a combination of static and dynamic light scattering, atomic force microscopy and circular dichroism, we find that amyloidogenic lysozyme monomers switch between three different assembly pathways: from monomeric to oligomeric fibril assembly and, eventually, disordered precipitation as the ionic strength of the solution increases. Fibril assembly only occurred under conditions of net repulsion among the amyloidogenic monomers while net attraction caused precipitation. The transition from monomeric to oligomeric fibril assembly, in turn, occurred as salt-mediated charge screening reduced repulsion among individual charged residues on the same monomer. We suggest a model of amyloid fibril formation in which repulsive charge interactions are a prerequisite for ordered fibril assembly. Furthermore, the spatial extent of non-specific charge screening selects between monomeric and oligomeric assembly pathways by affecting which subset of denatured states can form suitable intermolecular bonds and by altering the energetic and entropic requirements for the initial intermediates emerging along the monomeric vs. oligomeric assembly path.  相似文献   

9.
The specific functional structure of natural proteins is determined by the way in which amino acids are sequentially connected in the polypeptide. The tight sequence/structure relationship governing protein folding does not seem to apply to amyloid fibril formation because many proteins without any sequence relationship have been shown to assemble into very similar β-sheet-enriched structures. Here, we have characterized the aggregation kinetics, seeding ability, morphology, conformation, stability, and toxicity of amyloid fibrils formed by a 20-residue domain of the islet amyloid polypeptide (IAPP), as well as of a backward and scrambled version of this peptide. The three IAPP peptides readily aggregate into ordered, β-sheet-enriched, amyloid-like fibrils. However, the mechanism of formation and the structural and functional properties of aggregates formed from these three peptides are different in such a way that they do not cross-seed each other despite sharing a common amino acid composition. The results confirm that, as for globular proteins, highly specific polypeptide sequential traits govern the assembly pathway, final fine structure, and cytotoxic properties of amyloid conformations.  相似文献   

10.
Amyloid fibrils are insoluble mainly beta-sheet aggregates of proteins or peptides. The multi-step process of amyloid aggregation is one of the major research topics in structural biology and biophysics because of its relevance in protein misfolding diseases like Alzheimer's, Parkinson's, Creutzfeld-Jacob's, and type II diabetes. Yet, the detailed mechanism of oligomer formation and the influence of protein stability on the aggregation kinetics are still matters of debate. Here a coarse-grained model of an amphipathic polypeptide, characterized by a free energy profile with distinct amyloid-competent (i.e. beta-prone) and amyloid-protected states, is used to investigate the kinetics of aggregation and the pathways of fibril formation. The simulation results suggest that by simply increasing the relative stability of the beta-prone state of the polypeptide, disordered aggregation changes into fibrillogenesis with the presence of oligomeric on-pathway intermediates, and finally without intermediates in the case of a very stable beta-prone state. The minimal-size aggregate able to form a fibril is generated by collisions of oligomers or monomers for polypeptides with unstable or stable beta-prone state, respectively. The simulation results provide a basis for understanding the wide range of amyloid-aggregation mechanisms observed in peptides and proteins. Moreover, they allow us to interpret at a molecular level the much faster kinetics of assembly of a recently discovered functional amyloid with respect to the very slow pathological aggregation.  相似文献   

11.
Ferreira N  Saraiva MJ  Almeida MR 《FEBS letters》2011,585(15):2424-2430
Several natural polyphenols with potent inhibitory effects on amyloid fibril formation have been reported. Herein, we studied modulation of transthyretin (TTR) fibrillogenesis by selected polyphenols. We demonstrate that both curcumin and nordihydroguaiaretic acid (NDGA) bind to TTR and stabilize the TTR tetramer. However, while NDGA slightly reduced TTR aggregation, curcumin strongly suppressed TTR amyloid fibril formation by generating small "off-pathway" oligomers and EGCG maintained most of the protein in a non-aggregated soluble form. This indicates alternative mechanisms of action supported by the occurrence of different non-toxic intermediates. Moreover, EGCG and curcumin efficiently disaggregated pre-formed TTR amyloid fibrils. Our studies, together with the safe toxicological profile of these phytochemicals may guide a novel pharmacotherapy for TTR-related amyloidosis targeting different steps in fibrillogenesis.  相似文献   

12.
Oligomeric intermediates are non-fibrillar polypeptide assemblies that occur during amyloid fibril formation and that are thought to underlie the aetiology of amyloid diseases, such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Focusing primarily on the oligomeric states formed from Alzheimer's disease β-amyloid (Aβ) peptide, this review will make references to other polypeptide systems, highlighting common principles or sequence-specific differences. The covered topics include the structural properties and polymorphism of oligomers, the biophysical mechanism of peptide self-assembly and its role for pathogenicity in amyloid disease. Oligomer-dependent toxicity mechanisms will be explained along with recently emerging possibilities of interference.  相似文献   

13.
A variety of peptides and peptide derivatives have been constructed using the “β-sheet core segment” of amyloid proteins as inhibitors of amyloidogenic fibrillation. A novel all-d-amino-acid from hIAPP β-sheet core segment (hIAPP 22–27) is demonstrated to inhibit hIAPP fibril formation efficiently both at the phospholipid membrane and in bulk solution. The inhibitor terminates hIAPP aggregation to the α-helical oligomeric intermediates at the membrane surface, whereas it stops the aggregation at the stage of β-sheet oligomeric intermediates in bulk solution. This is the first evidence that the inhibition mechanism of the inhibitor at membrane surface is significantly different from that in bulk solution.  相似文献   

14.
The self-assembly of proteins into stable, fibrillar aggregates is a general property of polypeptides most notably associated with degenerative diseases termed amyloidoses. These nano- to micrometer scale structures are formed predominantly of β-sheets that self-assemble by a nucleation-dependent mechanism. The rate-limiting step of assembly involves stabilization of high-energy intermediates in a kinetic step termed nucleation. Determination of the structural characteristics of these high-energy intermediates has been elusive, as its members are the least populated states on the assembly pathway. Using a peptide derived from diabetes-related amyloid, we use electron paramagnetic resonance (EPR) spectroscopy and disulfide crosslinking to show that fibers are composed of parallel, in-register β-sheets. Kinetic studies are then used to infer the structural elements of the pre-nucleation intermediates. Notably, stabilization of this ensemble is shown to depend on the number but not the position of amide side chains within the primary sequence. Additionally, fiber formation is accelerated by constructs that mimic the intra-sheet structure of the fiber. Our data suggest that pre-nucleation intermediates sample intra- β-sheet structure and place bounds on the possible nucleation mechanisms for fiber assembly. Understanding the nucleation of fibrillogenesis is critical so that this process can be prevented in disease and productively controlled by design.  相似文献   

15.
The amyloidoses are a heterogeneous group of diseases, which are characterized by the local or systemic deposition of amyloid. At the root of these diseases are changes in protein conformation where normal innocuous proteins transform into insoluble amyloid fibrils and deposit in tissues. The amyloid fibrils of Alzheimer's disease are composed of the Abeta peptide and deposit in the form of senile plaques. Neurodegeneration surrounds the amyloid deposits, indicating that neurotoxic substances are produced during the deposition process. Whether the neurotoxic species is the amyloid fibril or a fibril precursor is a current area of active research. This review focuses on advancements made in elucidating the molecular structures of the Abeta amyloid fibril and alternate aggregation products of the Abeta peptide formed during fibrillogenesis.  相似文献   

16.
Abeta(1-40) is one of the main components of the fibrils found in amyloid plaques, a hallmark of brains affected by Alzheimer's disease. It is known that prior to the formation of amyloid fibrils in which the peptide adopts a well-ordered intermolecular beta-sheet structure, peptide monomers associate forming low and high molecular weight oligomers. These oligomers have been previously described in electron microscopy, AFM, and exclusion chromatography studies. Their specific secondary structures however, have not yet been well established. A major problem when comparing aggregation and secondary structure determinations in concentration-dependent processes such as amyloid aggregation is the different concentration range required in each type of experiment. In the present study we used the dye Thioflavin T (ThT), Fourier-transform infrared spectroscopy, and electron microscopy in order to structurally characterize the different aggregated species which form during the Abeta(1-40) fibril formation process. A unique sample containing 90microM peptide was used. The results show that oligomeric species which form during the lag phase of the aggregation kinetics are a mixture of unordered, helical, and intermolecular non-fibrillar beta-structures. The number of oligomers and the amount of non-fibrillar beta-structures grows throughout the lag phase and during the elongation phase these non-fibrillar beta-structures are transformed into fibrillar (amyloid) beta-structures, formed by association of high molecular weight intermediates.  相似文献   

17.
We have examined a series of overlapping peptide fragments from the 8-20 region of human islet amyloid polypeptide (IAPP) with the objective of defining the smallest fibril-forming domain. Peptide fragments corresponding to LANFLV (residues 12-17) and FLVHSS (residues 15-20) were strong enhancers of beta-sheet transition and fibril formation. Negative stain electron microscopy illustrated the ability of these peptide fragments to form fibrils independently when incubated alone in solution. Circular dichroism analysis revealed that when full-length human IAPP was incubated in the presence of these two fragments, fibrillogenesis was accelerated. While the two fragments, LANFLV and FLVHSS, were able to enhance the recruitment of additional IAPP molecules during fibril formation, the "seeding" activity of these peptides had no effect on altering IAPP-induced cytotoxcity as determined by cell culture studies. Therefore, this study has identified two internal IAPP peptide fragments within the 8-20 domain that may have a role in enhancing the folding and aggregation of human IAPP. These fragments are the smallest sequences identified, within the 8-20 region of hIAPP, that can independently form fibrils, and that can interact with IAPP to assemble into fibrils with characteristics similar as those formed by human IAPP alone.  相似文献   

18.
Transthyretin (TTR) is a plasma homotetrameric protein associated with senile systemic amyloidosis and familial amyloidotic polyneuropathy. In theses cases, TTR dissociation and misfolding induces the formation of amyloidogenic intermediates that assemble into toxic oligomeric species and lead to the formation of fibrils present in amyloid deposits. The four TTR monomers associate around a central hydrophobic channel where two thyroxine molecules can bind simultaneously. In each thyroxine binding site there are three pairs of symmetry related halogen binding pockets which can accommodate the four iodine substituents of thyroxine. A number of structurally diverse small molecules that bind to the TTR channel increasing the protein stability and thereafter inhibiting amyloid fibrillogenesis have been tested. In order to take advantage of the high propensity to interactions between iodine substituents and the TTR channel we have identified two iodinated derivatives of salicylic acid, 5-iodosalicylic acid and 3,5-diiodosalicylic acid, available commercially. We report in this paper the relative binding affinities of salicylic acid and the two iodinated derivatives and the crystal structure of TTR complexed with 3,5-diiodosalicylic acid, to elucidate the higher binding affinity of this compound towards TTR.  相似文献   

19.
Pathogenesis, diagnosis and treatment of systemic amyloidosis   总被引:9,自引:0,他引:9  
Amyloidosis is a disorder of protein folding in which normally soluble proteins are deposited as abnormal, insoluble fibrils that disrupt tissue structure and cause disease. Although about 20 different unrelated proteins can form amyloid fibrils in vivo, all such fibrils share a common cross-beta core structure. Some natural wild-type proteins are inherently amyloidogenic, form fibrils and cause amyloidosis in old age or if present for long periods at abnormally high concentration. Other amyloidogenic proteins are acquired or inherited variants, containing amino-acid substitutions that render them unstable so that they populate partly unfolded states under physiological conditions, and these intermediates then aggregate in the stable amyloid fold. In addition to the fibrils, amyloid deposits always contain the non-fibrillar pentraxin plasma protein, serum amyloid P component (SAP), because it undergoes specific calcium-dependent binding to amyloid fibrils. SAP contributes to amyloidogenesis, probably by stabilizing amyloid fibrils and retarding their clearance. Radiolabelled SAP is an extremely useful, safe, specific, non-invasive, quantitative tracer for scintigraphic imaging of systemic amyloid deposits. Its use has demonstrated that elimination of the supply of amyloid fibril precursor proteins leads to regression of amyloid deposits with clinical benefit. Current treatment of amyloidosis comprises careful maintenance of impaired organ function, replacement of end-stage organ failure by dialysis or transplantation, and vigorous efforts to control underlying conditions responsible for production of fibril precursors. New approaches under development include drugs for stabilization of the native fold of precursor proteins, inhibition of fibrillogenesis, reversion of the amyloid to the native fold, and dissociation of SAP to accelerate amyloid fibril clearance in vivo.  相似文献   

20.
Inhibition of amyloid fibrillogenesis and toxicity by a peptide chaperone   总被引:1,自引:0,他引:1  
Aggregation of proteins in tissues is associated with several diseases, including Alzheimer's disease. It is characterized by the accumulation of amyloid beta peptide (Abeta) in the extracellular spaces of the brain cells, resulting in neuronal death and other pathological changes. alpha-Crystallin, a small heat-shock protein in lens, and a peptide chaperone having the functional site sequence DFVIFLDVKHFSPEDLTVK of alphaA-crystallin may inhibit Abeta fibrillogenesis and toxicity. The peptide chaperone (mini-alphaA-crystallin), having an Abeta interacting domain and a complex solubilizing domain, was shown in previous studies to prevent aggregation of several proteins under denaturing conditions. In this in vitro study, using transmission electron microscopy and thioflavin T binding assay, we show that mini-alphaA-crystallin arrests the fibril formation of Abeta peptides. Mini-alphaA-crystallin also suppresses the toxic action of Abeta on rat pheochromocytoma (PC 12) cells. The wide chaperoning capability of the peptide and its ability to inhibit amyloid fibril formation and suppress toxicity suggest that mini-alphaA-crystallin may serve as a universal chaperone in controlling diseases of protein aggregation, including Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号