首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferrous ion-induced generation of single and multiple strand breaks in the DNA plasmid pBR322 induces the formation of two new plasmid forms with altered electrophoretic mobility. The yield of these plasmid forms, the circular relaxed and the linear forms, depended on the applied Fe2+ concentration. This property was independent of the presence of hydrogen peroxide in the incubation mixture indicating the lack of Fenton chemistry to explain the DNA degradation. The removal of dioxygen or the presence of superoxide dismutase diminished partially the yield of ferrous ion-induced DNA plasmid degradation, while catalase was without any effect. Autoxidation of divalent iron as followed by the formation of a coloured iron-phenanthroline complex was enhanced in a concentration-dependent manner by phosphate and bicarbonate and very efficiently using a mixture of 0.15 M NaCl, 1.2 mM phosphate, 23.8 mM bicarbonate, pH 7.4, that concentrations correspond closely to the intracellular values of buffer components. Thus, the formation of a yet unknown reactive species from Fe2+, and dioxygen, that is complexed to buffer components especially phosphate and its contribution in DNA plasmid degradation is more likely than the often cited formation of hydroxyl radicals in result of the Fenton reaction from Fe2+ and hydrogen peroxide. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

2.
Phenanthroline and bipyridine, strong chelators of iron, protect DNA from single-strand break formation by H2O2 in human fibroblasts. This fact strongly supports the concept that these DNA single-strand breaks are produced by hydroxyl radicals generated by a Fenton-like reaction between intracellular Fe2+ and H2O2: H2O2 + Fe2+----Fe3+ + OH- + OH: Corroborating this idea is the fact that thiourea, an effective OH radical scavenger, prevents the formation of DNA single-strand breaks by H2O2 in nuclei from human fibroblasts. The copper chelator diethyldithiocarbamate, a strong inhibitor of superoxide dismutase, greatly enhances the in vivo production of DNA single-strand breaks by H2O in fibroblasts. This supports the idea that Fe3+ is reduced to Fe2+ by superoxide ion: O divided by 2 + Fe3+----O2 + Fe2+; and therefore that the sum of this reaction and the Fenton reaction, namely the so-called Haber-Weiss reaction, H2O2 + O divided by 2----O2 + OH- + OH; represents the mode whereby OH radical is produced from H2O2 in the cell. EDTA completely protects DNA from single-strand break formation in nuclei. The chelator therefore removes iron from the chromatin, and although the Fe-EDTA complex formed is capable of reacting with H2O2, the OH radical generated under these conditions is not close enough to hit DNA. Therefore iron complexed to chromatin functions as catalyst for the Haber-Weiss reaction in vivo, similarly to the role played by Fe-chelates in vitro.  相似文献   

3.
In this study we investigated the induction and rejoining of DNA single-strand breaks (SSBs) produced by H2O2 in the repair-deficient EM9 mutant Chinese hamster ovary (CHO) cell line. The effect of the poly(ADP-ribose)-transferase inhibitor 3-aminobenzamide (3-ABA) on SSB-rejoining and on cell killing was also evaluated. Results were compared with those obtained previously with the parent cell line (AA8). Cells were treated with H2O2 on ice for 1 h, after which they were either harvested or allowed to repair their damage at 37 degrees C either in the presence or absence of 3-ABA (5 mM). The cells were then assayed either for survival using a colony-forming assay or for their level of DNA SSBs using alkaline elution. EM9 cells were somewhat more sensitive than AA8 cells to the cytotoxic effects of H2O2. However, because the repair mutant showed slightly lower levels of DNA SSBs than did its parental cell line, this sensitivity could not be explained on the basis of alterations in initial damage. The rejoining of the H2O2-induced DNA SSBs followed exponential kinetics in both cell lines; however, EM9 cells rejoined these breaks at a slower rate (t1/2 of 10 min) than did AA8 cells (t1/2 of 5 min). The increased sensitivity of the EM9 cells therefore appears to correlate with a reduced ability to remove these lesions from their DNA. As previously demonstrated for the AA8 cells, 3-ABA treatment resulted in both a retardation of the removal of H2O2-induced DNA SSBs and potentiation of cytotoxicity in the EM9 cells. However, the degree of these effects were similar for both AA8 and EM9 cells. These data provide further evidence that the cytotoxic effects of low concentrations of H2O2 are mediated by damage to DNA, and suggest that the rate at which DNA SSBs are rejoined is important for cell survival.  相似文献   

4.
Homologous recombination is vital to repair fatal DNA damage during DNA replication. However, very little is known about the substrates or repair pathways for homologous recombination in mammalian cells. Here, we have compared the recombination products produced spontaneously with those produced following induction of DNA double-strand breaks (DSBs) with the I-SceI restriction endonuclease or after stalling or collapsing replication forks following treatment with thymidine or camptothecin, respectively. We show that each lesion produces different spectra of recombinants, suggesting differential use of homologous recombination pathways in repair of these lesions. The spontaneous spectrum most resembled the spectra produced at collapsed replication forks formed when a replication fork runs into camptothecin-stabilized DNA single-strand breaks (SSBs) within the topoisomerase I cleavage complex. We found that camptothecin-induced DSBs and the resulting recombination repair require replication, showing that a collapsed fork is the substrate for camptothecin-induced recombination. An SSB repair-defective cell line, EM9 with an XRCC1 mutation, has an increased number of spontaneous gammaH2Ax and RAD51 foci, suggesting that endogenous SSBs collapse replication forks, triggering recombination repair. Furthermore, we show that gammaH2Ax, DSBs, and RAD51 foci are synergistically induced in EM9 cells with camptothecin, suggesting that lack of SSB repair in EM9 causes more collapsed forks and more recombination repair. Furthermore, our results suggest that two-ended DSBs are rare substrates for spontaneous homologous recombination in a mammalian fibroblast cell line. Interestingly, all spectra showed evidence of multiple homologous recombination events in 8 to 16% of clones. However, there was no increase in homologous recombination genomewide in these clones nor were the events dependent on each other; rather, we suggest that a first homologous recombination event frequently triggers a second event at the same locus in mammalian cells.  相似文献   

5.
J M Gutteridge 《FEBS letters》1984,172(2):245-249
Iron salts stimulate lipid peroxidation by decomposing lipid peroxides to produce alkoxyl and peroxyl radicals which initiate further oxidation. In aqueous solution ferrous salts produce OH. radicals, a reactive species able to abstract hydrogen atoms from unsaturated fatty acids, and so can initiate lipid peroxidation. When iron salts are added to lipids, containing variable amounts of lipid peroxide, the former reaction is favoured and OH. radicals contribute little to the observed rate of peroxidation. When iron is complexed with EDTA, however, lipid peroxide decomposition is prevented, but the complex reacts with hydrogen peroxide to form OH. radicals which are seen to initiate lipid peroxidation. Superoxide radicals appear to play an important part in reducing the iron complex.  相似文献   

6.
7.
Vanadyl ion (+4 oxidation state) has been shown to be an effective agent for chemoprotection of cancers in animals. For understanding the mechanism, distribution of vanadium was studied. More vanadium was found to accumulate in the nuclei of the liver of rats when it was given as vanadyl sulfate than when it was given as sodium vanadate (+5 oxidation state). The reactivity of vanadyl ion with DNA was investigated by the DNA cleavage technique and the reaction mechanism by ESR spectroscopy. Incubation of double-strand DNA with vanadyl ion and hydrogen peroxide resulted in marked concentration- and pH-dependent DNA cleavage. Studies by the ESR spin-trap method demonstrated that hydroxyl radicals are generated during the reactions of vanadyl ion with hydrogen peroxide. Thus the antineoplastic action of vanadyl ion is proposed to be due to DNA cleavage by hydroxyl radicals generated in the cells.  相似文献   

8.
DNA damage and cytogenetic effects of ionizing radiation were investigated in Chinese hamster ovary (CHO) cells and unstimulated human peripheral blood lymphocytes. DNA damage and repair were analysed by alkaline elution under conditions that predominantly measured DNA single-strand breaks (ssb). X-radiation (2.5 Gy) induced ssb in both CHO cells and unstimulated lymphocytes, and the breaks were repaired within 30 and 90 min, respectively. This rapid repair was delayed by the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide (3AB). The cytogenetic effects of the 3AB-induced delay in DNA repair were examined by analysing sister chromatid exchange (SCE) frequency in CHO cells and fragmentation of prematurely condensed chromosomes (PCC) in unstimulated human lymphocytes after 2.5 Gy of X-rays. Although 3AB delayed the rejoining of DNA ssb, this delay did not result in increased cytogenetic damage manifested as either SCE or fragmentation of PCC. These results indicate that the rapidly rejoining DNA ssb are not important in the production of chromosome damage.  相似文献   

9.
Rejoining of single-strand breaks of DNA in cultured mammalian cells   总被引:5,自引:0,他引:5  
  相似文献   

10.
The formation of hydroxyl radical (OH·) from the oxidation of glutathione, ascorbic acid, NADPH, hydroquinone, catechol, and riboflavin by hydrogen peroxide was studied using a range of enzymes and copper and iron complexes as possible catalysts. Copper-1,10-phenanthroline appears to catalyze the production of OH· from hydrogen peroxide without superoxide radical being formed as an intermediate, and without the involvement of a catalyzed Haber-Weiss (Fenton) reaction. Superoxide radical is involved, however, in the Cu2+ -catalyzed decomposition of hydrogen peroxide, and in the oxidation of glutathione by atmospheric oxygen. For this latter oxidation, copper-4,7-dimethyl-1,10-phenanthroline was found to be a much more effective catalyst than the copper complex of 1,10-phenanthroline, which is normally used. Mechanisms for these reactions are proposed, and the toxicological significance of the ability of a variety of biological reductants to provide a prolific source of OH· when oxidized by hydrogen peroxide is discussed.  相似文献   

11.
Ambient air particulate matter 2.5 (PM2.5) contains many harmful components that can enter the circulatory system and produce reactive oxygen species (ROS) in body. Oxidative stress and DNA damage induced by ROS may affect any cellular macromolecule and lead to DNA double-strand breaks (DSBs). Flavonoids, widely distributed in some herbs and berries, have been proved having anti-oxidative or anti-cancer efficacy. In this study, we investigated whether Flavone, a kind of flavonoids, can protect human bronchial epithelial cells (HBE) from DSBs caused by PM2.5 and how this function is probably implemented. We found that cells exposed to PM2.5 obviously induced viability inhibition, DNA damage and part of apoptosis. However, Flavone treatment prior to PM2.5 apparently improved cell viability, and mitigated the formation of 8-hydroxy-2-deoxyguanosine, the expression of DNA damage-relative protein and cell apoptosis. Our studies demonstrated that PM2.5 induced oxidative DSBs while Flavone ameliorated the DNA damage and increased cell viability probably through influencing DNA repair mechanism of cells.  相似文献   

12.
Liu X  Lu J  Liu S 《Mutation research》1999,440(1):109-117
Chromium(VI) compounds and cigarette smoke are known human carcinogens. We found that K2Cr2O7 and cigarette smoke solution synergistically induced DNA single-strand breaks (0.23+/-0.04 breaks per DNA molecule) in pUC118 plasmid DNA. K2Cr2O7 alone or cigarette smoke solution alone induced much less strand breaks (0.03+/-0.01 or 0.07+/-0.02 breaks per DNA molecule, respectively). The synergistic effect was prevented by catalase and by hydroxyl radical scavengers such as deferoxamine, dimethylsulfoxide, d-mannitol, and Tris, but not by superoxide dismutase. Ascorbic acid enhanced the synergism. Glutathione inhibited strand breakage only at high concentrations. Electron spin resonance (ESR) studies using a hydroxyl radical trap demonstrated that hydroxyl radicals were generated when DNA was incubated with K2Cr2O7 and cigarette smoke solution. Hydroxyl radical adduct decreased dose-dependently when strand breakage was prevented by catalase, deferoxamine, dimethylsulfoxide, d-mannitol or Tris, but not significantly by superoxide dismutase. We also used ESR spectroscopy to study the effects of different concentration of ascorbic acid and glutathione. The results showed that hydroxyl radical, which is proposed as a main carcinogenic mechanism for both chromium(VI) compounds and cigarette smoke solution was mainly responsible for the DNA breaks they induced.  相似文献   

13.
Preirradiation of Chinese hamster cells with low-level UV-light does not influence the efficiency of repair of gamma-radiation-induced DNA single-strand breaks. With fractionated gamma-irradiation, cycloheximide delivered during the interval between the two fractions reduces the number of DNA breaks (compared to that in cells affected by the same nonfractionated dose). The data obtained indicate the presence of an inducible component of repair of DNA single-strand breaks in gamma-irradiated Chinese hamster cells.  相似文献   

14.
The radiation-sensitive mutant M10 of mouse lymphoma L5178Y cells was examined for its ability to rejoin DNA single-strand breaks induced by gamma-rays. The alkaline sucrose gradient sedimentation analysis revealed that M10 cells repaired single-strand breaks but simultaneously produced increasing amounts of small DNA fragments with time of postirradiation incubation, something which was not observed in L5178Y cells. Since small fragments did not appear in M10 cells irradiated at room temperature, DNA fragmentation may result from cold treatment during irradiation followed by incubation at 37 degrees C. This indicates that the cold susceptibility is characteristic of M10 cells and is not related to radiation sensitivity of this mutant. This conclusion is supported by the finding that no DNA degradation takes place after cold treatment with a subsequent incubation in the other radiosensitive mutant LX830 that belongs to the same complementation group as M10.  相似文献   

15.
1. A mixture of NADH and phenazine methosulphate hydroxylates aromatic compounds at acidic pH values. 2. Hydroxylation is inhibited by catalase and by scavengers of the hydroxyl radical (-OH) but not by superoxide dismutase. 3. It is concluded that neither O2 leads to nor HO2- is sufficiently reactive to hydroxylate aromatic rings.  相似文献   

16.
The formation of single-strand breaks in intracellular DNA by x-rays   总被引:4,自引:0,他引:4  
  相似文献   

17.
The metal-independent production of hydroxyl radicals (*OH) from H(2)O(2) and tetrachloro-1,4-benzoquinone (TCBQ), a carcinogenic metabolite of the widely used wood-preservative pentachlorophenol, was studied by electron spin resonance methods. When incubated with the spin trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO), TCBQ and H(2)O(2) produced the DMPO/*OH adduct. The formation of DMPO/*OH was markedly inhibited by the *OH scavenging agents dimethyl sulfoxide (DMSO), ethanol, formate, and azide, with the concomitant formation of the characteristic DMPO spin trapping adducts with *CH(3), *CH(CH(3))OH, *COO(-), and *N(3), respectively. The formation of DMPO/*OH and DMPO/*CH(3) from TCBQ and H(2)O(2) in the absence and presence, respectively, of DMSO was inhibited by the trihydroxamate compound desferrioxamine, accompanied by the formation of the desferrioxamine-nitroxide radical. In contrast, DMPO/*OH and DMPO/*CH(3) formation from TCBQ and H(2)O(2) was not affected by the nonhydroxamate iron chelators bathophenanthroline disulfonate, ferrozine, and ferene, as well as the copper-specific chelator bathocuproine disulfonate. A comparative study with ferrous iron and H(2)O(2), the classic Fenton system, strongly supports our conclusion that *OH is produced by TCBQ and H(2)O(2) through a metal-independent mechanism. Metal-independent production of *OH from H(2)O(2) was also observed with several other halogenated quinones.  相似文献   

18.
In an attempt to elucidate the mechanism whereby primary hepatocytes, but not liver S9 homogenates, generate immunosupprssive metabolites of dimethylnitrosamine (DMN), the production of DNA single-strand breaks (SSB) in unstimulated splenocytes was investigated with alkaline-elution analysis. Both hepatocytes and S9 homogenates induced SSB in cultured splenocytes by DMN - minimum detectable doses with the two metabolic activation systems (MAS) were 1 microM and 5 mM, respectively. DNA elution profiles were linear in splenocytes co-cultured with DMN and hepatocytes and convex in splenocytes incubated with DMN and S9 homogenates. Aminoacetonitrile (AAN; 10 mM), a DMN demethylase inhibitor, reversed SSB in splenocytes when incubated with either MAS. Addition of exogenous calf-thymus DNA to the hepatocyte co-culture medium did not affect the production of SSB. Rocking the hepatocyte-splenocyte cultures changed the elution profile from linear to convex. All of these treatments have been previously shown to block the immunosuppression by DMN in the hepatocyte co-culture system. These results indicate that the immunosuppression by DMN is not related to DNA damage, as measured by the production of SSB, and suggest that the metabolism of DMN to intermediates capable of producing genotoxicity and immunotoxicity may be qualitatively and/or quantitatively different.  相似文献   

19.
The method presented is based on the alkaline elution procedure for the determination of DNA single-stand (ss) breaks developed by Kohn and on the principles of DNA quantification after binding with the dye Hoechst 33258. In the present study, modification of the alkaline elution procedure with regard to the elution solution volume was performed. The influences of the DNA strandedness, the ethylenediaminetetraacetate/tetraethylammonium hydroxide denaturation and elution solution presence, the DNA solution pH, the dye amount, and the incubation time for the formation of the dye-ssDNA complex on the DNA fluorometric quantification were also studied. The modified DNA alkaline elution procedure followed by the optimized fluorometric determination of the ssDNA was applied on liver tissue from both untreated and treated (N-nitroso-N-methylurea- administered) Wistar rats. The criteria for the selection of the appropriate estimator and statistical analysis of the obtained results are also presented. The method of the DNA alkaline elution followed by fluorometric determination of ssDNA as modified and evaluated is an accurate and reliable approach for the determination of in vivo induced ssDNA strand breaks.  相似文献   

20.
Levels of DNA single-strand break were assayed in brain cells from rats acutely exposed to low-intensity 2450 MHz microwaves using an alkaline microgel electrophoresis method. Immediately after 2 h of exposure to pulsed (2 μs width, 500 pulses/s) microwaves, no significant effect was observed, whereas a dose rate-dependent [0.6 and 1.2 W/kg whole body specific absorption rate (SAR)] increase in DNA single-strand breaks was found in brain cells of rats at 4 h postexposure. Furthermore, in rats exposed for 2 h to continuous-wave 2450 MHz microwaves (SAR 1.2 W/kg), increases in brain cell DNA single-strand breaks were observed immediately as well as at 4 h postexposure. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号