首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourier transform ir spectra have been recorded for three 310‐helical and one α‐helical pentapeptides containing dehydrophenylalanine, in a thin solid film, in order to find marker bands for various secondary structures encountered in peptides containing dehydroaminoacids. The peptide solutions were deposited and dried as thin film on zinc selenide crystal surface. This convenient sampling method has provided reliable estimates of peptide secondary structure in solid state. Detailed vibrational assignments in the spectral region between 1200–1700 cm−1 are reported. In this region, peptide amide I, II, and III vibrations occur. Spectra–structure correlation has been presented based on the amide modes. Comparison of the ir spectra with available crystal structure data provides qualitative support for assignments of ir bands to 310‐helical structure and α‐helical structure in dehydrophenylalanine containing pentapeptides. Band frequency assignments for 310‐helical conformation are consistent for all three peptides. All the assignments agree closely with the theoretical predictions. The spectral differences between 310‐helical peptides and the α‐helical peptide have been highlighted. These findings demonstrate that a method based on ir spectroscopy can be developed for a useful approximation of three‐dimensional structure of dehydropeptides in solid state. © 1999 John Wiley & Sons, Inc. Biopoly 50: 595–601, 1999  相似文献   

2.
Model peptides based on -(Aib-Ala)(n)-, and (Aib)(n)-Leu-(Aib)(2) sequences, which have varying amounts of 3(10)-helical character, were studied by use of vibrational and electronic circular dichroism (VCD and ECD) and Fourier transform infrared (FTIR) absorption spectroscopies to test the correlation of spectral response and conformation. The data indicate that these peptides, starting from a length of about four to six residues, predominantly adopt a 3(10)-helical conformation at room temperature. The longest model peptides, depending on the series, may evidence some alpha-helical contribution to the spectra, while the shorter ones, with less than six residues, have much less order. The IR absorption spectra (as supported by theory) showed only small frequency changes between 3(10)- and alpha-helices. By contrast, solvent effects are a source of much bigger perturbations. The ECD results show that the intensity ratio for the approximately 222-nm to approximately 208-nm bands, while useful for distinguishing between these two helical types in some sequences, may have a narrower range of application than VCD. However, the VCD data presented here continue to support the proposed discrimination between alpha- and 3(10)-helices based on qualitative amide I and II bandshape differences. The present study shows the intensities of the 3(10)-helical amide I (peak-to-peak) to its amide II VCD to be of the same order and useful for discriminating them from alpha-helices, whose amide I dominates the amide II in intensity. This qualitative result is experimentally independent of the amount of alphaMe-substituted residues in the sequence. These experimental VCD results are consistent in detail with theoretical spectral simulations for Ac-(Ala)(8)-NH(2), Ac-(Aib-Ala)(4)-NH(2), and Ac-(Aib)(8)-NH(2) in 3(10)- and alpha-helical conformations.  相似文献   

3.
(Pro-Pro-Gly)10 [(PPG10)], a collagen-like polypeptide, forms a triple-helical, polyproline-II structure in aqueous solution at temperatures somewhat lower than physiological, with a melting temperature of 24.5 degrees C. In this article, we present circular dichroism spectra that demonstrate an increase of the melting temperature with the addition of increasing amounts of D2O to an H2O solution of (PPG)10, with the melting temperature reaching 40 degrees C in pure D2O. A thermodynamic analysis of the data demonstrates that this result is due to an increasing enthalpy of unfolding in D2O vs. H2O. To provide a theoretical explanation for this result, we have used a model for hydration of (PPG)10 that we developed previously, in which inter-chain water bridges are formed between sterically crowded waters and peptide bond carbonyls. Energy minimizations were performed upon this model using hydrogen bond parameters for water, and altered hydrogen bond parameters that reproduced the differences in carbonyl oxygen-water oxygen distances found in small-molecule crystal structures containing oxygen-oxygen hydrogen bonds between organic molecules and H2O or D2O. It was found that using hydrogen bond parameters that reproduced the distance typical of hydrogen bonds to D2O resulted in a significant lowering of the potential energy of hydrated (PPG)10. This lowering of the energy involved energetic terms that were only indirectly related to the altered hydrogen bond parameters, and were therefore not artifactual; the intra-(PPG10) energy, plus the water-(PPG10) van der Waals energy (not including hydrogen bond interactions), were lowered enough to qualitatively account for the lower enthalpy of the triple-helical conformation, relative to the unfolded state, in D2O vs. H2O. This result indicates that the geometry of the carbonyl-D2O hydrogen bonds allows formation of good hydrogen bonds without making as much of an energetic sacrifice from other factors as in the case of hydration by H2O.  相似文献   

4.
A detailed comparison with the three-dimensional protein structure provides a stringent test of the models and parameters commonly used in determining the orientation of the alpha-helices from the linear dichroism of the infrared amide bands, particularly in membranes. The order parameters of the amide vibrational transition moments are calculated for the transmembrane alpha-helices of bacteriorhodopsin by using the crystal structure determined at a resolution of 1.55 A (PDB accession number 1C3W). The dependence on the angle delta(M) that the transition moment makes with the peptide carbonyl bond is fit by the expression ((3)/(2)S(alpha) cos(2) alpha)cos(2)(delta(M) + beta) - 1/2S(alpha), where S(alpha) (0.91) is the order parameter of the alpha-helices, alpha (13 degrees ) is the angle that the peptide plane makes with the helix axis, and beta (11 degrees ) is the angle that the peptide carbonyl bond makes with the projection of the helix axis on the peptide plane. This result is fully consistent with the model of nested axial distributions commonly used in interpreting infrared linear dichroism of proteins. Comparison with experimental infrared dichroic ratios for bacteriorhodopsin yields values of Theta(A) = 33 +/- 1 degree, Theta(I) = 39.5 +/- 1 degree, and Theta(II) = 70 +/- 2 degrees for the orientation of the transition moments of the amide A, amide I, and amide II bands, respectively, relative to the helix axis. These estimates are close to those found for model alpha-helical polypeptides, indicating that side-chain heterogeneity and slight helix imperfections are unlikely to affect the reliability of infrared measurements of helix orientations.  相似文献   

5.
A Dong  P Huang  W S Caughey 《Biochemistry》1990,29(13):3303-3308
Infrared spectra have been obtained for 12 globular proteins in aqueous solution at 20 degrees C. The proteins studied, which vary widely in the relative amounts of different secondary structures present, include myoglobin, hemoglobin, immunoglobulin G, concanavalin A, lysozyme, cytochrome c, alpha-chymotrypsin, trypsin, ribonuclease A, alcohol dehydrogenase, beta 2-microglobulin, and human class I major histocompatibility complex antigen A2. Criteria for evaluating how successfully the spectra due to liquid and gaseous water are subtracted from the observed spectrum in the amide I region were developed. Comparisons of second-derivative amide I spectra with available crystal structure data provide both qualitative and quantitative support for assignments of infrared bands to secondary structures. Band frequency assignments assigned to alpha-helix, beta-sheet, unordered, and turn structures are highly consistent among all proteins and agree closely with predictions from theory. alpha-Helix and unordered structures can each be assigned to only one band whereas multiple bands are associated with beta-sheets and turns. These findings demonstrate a method of analysis of second-derivative amide I spectra whereby the frequencies of bands due to different secondary structures can be obtained. Furthermore, the band intensities obtained provide a useful method for estimating the relative amounts of different structures.  相似文献   

6.
We describe here details of the hydrogen-deuterium (H/D) exchange behavior of the Alzheimer's peptide Abeta(1)(-)(40), while it is a resident in the amyloid fibril, as determined by high-resolution solution NMR. Kinetics of H/D exchange in Abeta(1)(-)(40) fibrils show that about half the backbone amide protons exchange during the first 25 h, while the other half remain unexchanged because of solvent inaccessibility and/or hydrogen-bonded structure. After such a treatment for 25 h with D(2)O, fibrils of (15)N-enriched Abeta were dissolved in a mixture of 95% dimethyl sulfoxide (DMSO) and 5% dichloroacetic acid (DCA) and successive heteronuclear (1)H-(15)N HSQC spectra were collected to identify the backbone amides that did not exchange in the fibril. These studies showed that the N and C termini of the peptide are accessible to the solvent in the fibril state and the backbone amides of these residues are readily exchanged with bulk deuterium. In contrast, the residues in the middle of the peptide (residues 16-36) are mostly protected, suggesting that that many of the residues in this segment of the peptide are involved in a beta structure in the fibril. Two residues, G25 and S26, exhibit readily exchangeable backbone amide protons and therefore may be located on a turn or a flexible part of the peptide. Overall, the data substantially supports current models for how the Abeta peptide folds when it engages in the amyloid fibril structure, while also addressing some discrepancies between models.  相似文献   

7.
Infrared spectroscopy in the interval from 1800 to 1300 cm-1 has been used to investigate the secondary structure and the hydrogen/deuterium exchange behavior of bacteriorhodopsin and bovine rhodopsin in their respective native membranes. The amide I' and amide II' regions from spectra of membrane suspensions in D2O were decomposed into constituent bands by use of a curve-fitting procedure. The amide I' bands could be fit with a minimum of three theoretical components having peak positions at 1664, 1638, and 1625 cm-1 for bacteriorhodopsin and 1657, 1639, and 1625 cm-1 for rhodopsin. For both of these membrane proteins, the amide I' spectrum suggests that alpha-helix is the predominant form of peptide chain secondary structure, but that a substantial amount of beta-sheet conformation is present as well. The shape of the amide I' band was pH-sensitive for photoreceptor membranes, but not for purple membrane, indicating that membrane-bound rhodopsin undergoes a conformation change at acidic pH. Peptide hydrogen exchange of bacteriorhodopsin and rhodopsin was monitored by observing the change in the ratio of integrated absorbance (Aamide II'/Aamide I') during the interval from 1.5 to 25 h after membranes were introduced into buffered D2O. The fraction of peptide groups in a very slowly exchanging secondary structure was estimated to be 0.71 for bacteriorhodopsin at pD 7. The corresponding fraction in vertebrate rhodopsin was estimated to be less than or equal to 0.60. These findings are discussed in relationship to previous studies of hydrogen exchange behavior and to structural models for both proteins.  相似文献   

8.
The high-affinity interaction between protein kinase inhibitor (PKI)(6-22)amide(Thr6-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr-Gly- Arg-Arg-Asn- Ala-Ile22-NH2) and the catalytic subunit of cAMP-dependent protein kinase requires both the N-terminal Thr6 to Ile11 sequence of the inhibitor peptide and its C-terminal pseudosubstrate site comprised of Arg15 to Ile22. Small angle X-ray scattering data indicate that PKI(6-22)amide has a compact, rather than extended, structure in solution (Reed J et al., 1989, Biochem J 264:371-380). CD spectroscopic analysis of the PKI peptide led to the suggestion that a beta-turn structure might be located in the -Ala12-Ser-Gly-Arg15-connecting sequence in the middle of the molecule (Reed J, Kinzel V, Cheng HC, Walsh DA, 1987, Biochemistry 26:7641-7647). To investigate this possibility further, conformationally constrained and flexible analogs of PKI(6-22)amide were synthesized and used to study the structure-function relationships of this central portion of the inhibitor. (Des12-14)PKI(6-22) amide exhibited over a 200-fold loss in inhibitory activity. Replacement of the omitted -Ala12-Ser-Gly14-sequence with aminocaprylic acid yielded an analog that regained more than 90% of the lost binding energy. The D-alanine14 PKI analog was as potent as the parent peptide, whereas the beta-alanine14 and the sarcosine14 analogs were only 10-fold less active. Several peptides that promoted a beta-turn structure at residues 12-15 showed about 200-fold decreases in inhibitory activity. Two constrained analogs that could not assume a beta-turn conformation were only 30-fold less potent than PKI(6-22)amide. Thus, the structure of the central connecting portion of the PKI peptide, encompassing residues 12-15, greatly influences its ability to effectively bind to and inhibit the catalytic subunit. We conclude, however, that a formal beta-turn at this position is not required and is actually detrimental for a high-affinity interaction of PKI(6-22)amide with the enzyme. These results are interpreted in light of the Fourier-transform infrared spectra of the peptide analogs and the crystal structure of the peptide bound at the active site of the protein kinase (Knighton DR et al., 1991b, Science 253:414-420).  相似文献   

9.
Sivakumar V  Wang R  Hastings G 《Biochemistry》2005,44(6):1880-1893
Time-resolved step-scan Fourier transform infrared (FTIR) difference spectroscopy, with 5 mus time resolution, has been used to produce P700(+)A(1)(-)/P700A(1) FTIR difference spectra in intact photosystem I particles from Synechococcus sp. 7002 and Synechocystis sp. 6803 at 77 K. Corresponding spectra were also obtained for fully deuterated photosystem I particles from Synechococcus sp. 7002 as well as fully (15)N- and (13)C-labeled photosystem I particles from Synechocystis sp. 6803. Static P700(+)/P700 FTIR difference spectra at 77 K were also obtained for all of the unlabeled and labeled photosystem I particles. From the time-resolved and static FTIR difference spectra, A(1)(-)/A(1) FTIR difference spectra were constructed. The A(1)(-)/A(1) FTIR difference spectra obtained for unlabeled trimeric photosystem I particles from both cyanobacterial strains are very similar. There are some mode frequency differences in spectra obtained for monomeric and trimeric PS I particles. However, the spectra can be interpreted in an identical manner, with the proposed band assignments being compatible with all of the data obtained for labeled and unlabeled photosystem I particles. In A(1)(-)/A(1) FTIR difference spectra obtained for unlabeled photosystem I particles, negative bands are observed at 1559 and 1549-1546 cm(-)(1). These bands are assigned to amide II protein vibrations, as they downshift approximately 86 cm(-)(1) upon deuteration and approximately 13 cm(-)(1) upon (15)N labeling. Difference band features at 1674-1677(+) and 1666(-) cm(-)(1) display isotope-induced shifts that are consistent with these bands being due to amide I protein vibrations. The observed amide modes suggest alteration of the protein backbone (possibly in the vicinity of A(1)) upon A(1) reduction. A difference band at 1754(+)/1748(-) cm(-)(1) is observed in unlabeled spectra from both strains. The frequency of this difference band, as well as the observed isotope-induced shifts, indicate that this difference band is due to a 13(3) ester carbonyl group of chlorophyll a species, most likely the A(0) chlorophyll a molecule that is in close proximity to A(1). Thus A(1) reduction perturbs A(0), probably via a long-range electrostatic interaction. A negative band is observed at 1693 cm(-)(1). The isotope shifts associated with this band are consistent with this band being due to the 13(1) keto carbonyl group of chlorophyll a, again, most likely the 13(1) keto carbonyl group of the A(0) chlorophyll a that is close to A(1). Semiquinone anion bands are resolved at approximately 1495(+) and approximately 1414(+) cm(-)(1) in the A(1)(-)/A(1) FTIR difference spectra for photosystem I particles from both cyanobacterial strains. The isotope-induced shifts of these bands could suggest that the 1495(+) and 1414(+) cm(-)(1) bands are due to C-O and C-C modes of A(1)(-), respectively.  相似文献   

10.
Simulated ir absorption and vibrational CD (VCD) spectra of four alanine-based octapeptides, each having its main chain constrained to a different secondary structure conformation, were analyzed and compared with experimental results for several different peptides. The octapeptide simulations were based on transfer of property tensors from a series of ab initio calculations for a short L-alanine based segment containing 3 peptide bonds with relative straight phi, psi angles fixed to those appropriate for alpha-helix, 3(10)-helix, ProII-like helix, and beta-sheet-like strand. The tripeptide force field (FF) and atomic polar tensors were obtained with density functional theory techniques at the BPW91/6-31G** level and the atomic axial tensor at the mixed BPW91/6-31G**/HF/6-31G level. Allowing for frequency correction due to the FF limitations, the octapeptide results obtained are qualitatively consistent with experimental observations for ir and VCD spectra of polypeptides and oligopeptides in established conformations. In all cases, the correct VCD sign patterns for the amide I and II bands were predicted, but the intensities did have some variation from the experimental patterns. Predicted VCD changes upon deuteration of either the peptide or side-chains as well as for (13)C isotopic labeling of the amide C=O at specific sites in the peptide chain were computed for analysis of experimental observations. A combination of theoretical modeling with experimental data for labeled compounds leads both to enhanced resolution of component transitions and added conformational applicability of the VCD spectra.  相似文献   

11.
G protein-coupled receptor signaling involves productive interaction between agonist-activated receptor and G protein. We have used Fourier-transform infrared difference spectroscopy to examine the interaction between the active Meta II state of the visual pigment rhodopsin with a peptide analogue corresponding to the C terminus of the alpha-subunit of the G protein transducin. Formation of the receptor-peptide complex evokes a spectral signature consisting of conformationally sensitive amide I and amide II difference bands. In order to distinguish between amide backbone contributions of the peptide and of the receptor moiety to the vibrational spectra, we employed complete (13)C,(15)N-labeling of the peptide. This isotopic labeling downshifts selectively the bands of the peptide, which can thus be extracted. Our results show that formation of the complex between the activated Meta II receptor state and the peptide is accompanied by structural changes of the peptide, and of the receptor, indicating that the conformation of the Meta II.peptide complex is different from that of Meta II. This result implies that the activated receptor state has conformational flexibility. Binding of the peptide to the activated receptor state stabilizes a substate that deviates from that stabilized only by the agonist.  相似文献   

12.
The infrared amide I band of collagens (rat and cod skin) and related compounds (polyproline, polyglycine, and polytripeptides) was studied. Assignment of amide I-band components for polyproline II and polytripeptides (Gly-Pro-Pro)n and (Gly-Pro-Gly)n in the solid state and water solution was made. Three amide I components observed in the polypeptide spectra were attributed to three different peptide CO groups in each triplet. On the basis of this assignment, the interpretation of the amide I multicomponent structure in collagen and isomorphous oligo- and polypeptides was attempted. The ordering of intra- and intermolecular hydrogen bonds involving peptide CO groups in collagen and related compounds was discussed.  相似文献   

13.
PKI(6-22)amide is a 17 residue peptide corresponding to the active portion of the heat-stable inhibitor of cAMP-dependent protein kinase. The peptide is a potent (Ki = 1.6 nM), competitive inhibitor of the enzyme. The photoreactive peptide analog (4-azidophenylalanine10)PKI(6-22)amide was synthesized in both its non-radiolabeled and tritiated forms by chemical modification of precursor peptides that were prepared by stepwise solid-phase synthesis. (4-Amino[3,5-3H]phenylalanine10)PKI(6-22)amide, the precursor for the radiolabeled arylazide peptide, was obtained by catalytic reduction of the corresponding peptide containing the 3,5-diiodo-4-aminophenylalanine residue at position 10. The purified PKI peptides were analyzed by HPLC, amino acid analysis, and u.v. spectra. In the dark, (4-azidophenylalanine10)PKI(6-22)amide inhibited the catalytic subunit of cAMP-dependent protein kinase with a Ki value of 2.8 nM. The photoreactivity of the arylazide peptide was demonstrated by time-dependent u.v. spectral changes on exposure to light. Photolysis of the catalytic subunit (4-azido[3,5-3H]phenylalanine10)PKI(6-22)amide complex resulted in specific covalent labeling of the enzyme. The data indicate that this peptide is a useful photoaffinity labeling reagent for the active site of the protein kinase.  相似文献   

14.
The molecular conformations of salmon calcitonin in aqueous solution have been investigated by exploiting the different influences of excitonic coupling on the amide I band profile in the isotropic and anisotropic Raman, FTIR, and vibrational circular dichroism spectra of a polypeptide. The N-terminal loop, caused by a disulfide bridge between cysteines at positions 1 and 7, was modeled by performing a conformational search by molecular mechanics calculations. The remaining part of the peptide chain was modeled as a mixture of three sequences containing different fractions of residues adopting poly-l-proline II (PPII), extended beta-strand, and alpha-helix-like conformations. This yielded an excellent reproduction of the experimentally observed amide I' band profiles. A comparison with recent data on the beta-amyloid fragment Abeta(1)(-)(28) revealed a lower PPII content and more conformational heterogeneity for calcitonin. Thus, our results underscore the notion that individual structural propensities of amino acid residues give rise to structural differences between the unfolded states of even long peptide chains, at variance with expectations based on a random or statistical coil model.  相似文献   

15.
The molecular conformation of the alkaline proteinase of Aspergillus sojae in aqueous solution was investigated by the optical rotatory dispersion, Cotton effects, infra-red absorption spectra (amide I and V bands), ultraviolet difference spectra, etc. It is concluded that; (1) there are about 10 to 15% of the α-helix and a small amount of the β-structure in the enzyme molecule, but most parts of the peptide chain are present as the disordered structure; (2) the enzyme molecule is compactly folded even in the disordered parts; and (3) the two tryptophan residues involved in the peptide chain are burried in the interior of the molecule.  相似文献   

16.
The hydrolysis of glycylglycine (GylGly), glycyl-L-leucine (GlyLeu), L-leucylglycine (LeuGly) and glycyl-DL-serine (GlySer) promoted by a copper(II)- cis, cis-1,3,5-triaminocyclohexane complex [Cu(II)TACH] was investigated at 70 degrees C and pH 7-10, using HPLC. The observed pseudo-first-order rate constants (k(obs)) and rate enhancing factors (REF) were as follows: 4.1x10(-3 )h(-1)(REF=23) for GylGly, 1.6x10(-3 )h(-1)(REF=21) for GlyLeu, 5.1x10(-3 )h(-1)(REF=64) for LeuGly and 9.2x10(-2 )h(-1)(REF=47) for GlySer [pH 8.1, dipeptide 2 mM, copper(II) 2 mM and TACH 2 mM]. Based on the pH dependence and dipeptide concentration dependence of the initial rates and speciation of the Cu(II)-TACH-dipeptide system at 25 degrees C and I=0.1, the reactions proceed via the formation of a ternary complex [Cu(TACH)(dipeptide)](+) as an intermediate followed by OH(-)-dependent and OH(-)-independent paths to give amino acid(s). GylGly, GlyLeu and LeuGly preferred the OH(-)-dependent path, while GlySer preferred the OH(-)-independent path. The latter can be explained by the intramolecular attack of the amide carbonyl group coordinated with its oxygen atom by the OH group in the serine residue. The X-ray crystal structure of [Cu(TACH)(GlyGly)]BPh(4).MeOH confirmed that GlyGly coordinates to copper(II) ion with its terminal amino N and amide O atoms. The crystal structures of [Cu(TACH)(Gly)]BPh(4) and [Cu(2)(TACH)(2)(OH)(2)](ClO(4))(2).NaClO(4).H(2)O are also reported.  相似文献   

17.
Bivalent peptidic thrombin inhibitors consisting of an N-terminal d-cyclohexylalanine-Pro-N(alpha)(Me)Arg active-site fragment, a flexible polyglycine linker, and a C-terminal hirugen-like segment directed towards the fibrinogen recognition exosite inhibit thrombin with K(i) values in the picomolar range, remaining stable in buffered solution at pH 7.8 for at least 15 hours. In order to investigate the structural basis of this increased stability, the most potent of these inhibitors, I-11 (K(i)=37pM), containing an N(alpha)(Me)Arg-Thr bond, was crystallized in complex with human alpha-thrombin. X-ray data were collected to 1.8A resolution and the crystal structure of this complex was determined. The Fourier map displays clear electron density for the N-terminal fragment and for the exosite binding segment. It indicates, however, that in agreement with Edman sequencing, the peptide had been cleaved in the crystal, presumably due to the long incubation time of 14 days needed for crystallization and data collection. The N(alpha)(Me) group is directed toward the carbonyl oxygen atom of Ser214, pushing the Ser195 O(gamma) atom out of its normal site. This structure suggests that upon thrombin binding, the scissile peptide bond of the intact peptide and the Ser195 O(gamma) are separated from each other, impairing the nucleophilic attack of the Ser195 O(gamma) toward the N(alpha)(Me)Arg carbonyl group. In the time-scale of two weeks, however, cleavage geometries favoured by the crystal allow catalysis at a slow rate.  相似文献   

18.
Isotope-edited infrared spectroscopy has the ability to probe the segmental properties of long biopolymers. In this work, we have compared the infrared spectra of a model helical peptide ((12)C) Ac-W-(E-A-A-A-R)(6)-A-NH(2), described originally by Merutka et al. (Biochemistry 1991;30:4245-4248) and three derivatives that are (13)C labeled at the backbone carbonyl of alanines. The locations of six isotopically labeled alanines are at the N-terminal, C-terminal, and the middle two repeating units of the peptide. Variation in temperature from 1 degrees to 91 degrees C transformed the peptides from predominantly helical to predominantly disordered state. Amplitude and position of the infrared amide I' absorption bands from (12)C- and (13)C-labeled segments provided information about the helical content. Temperature dependence of infrared spectra was used to estimate segmental stability. As a control measure of overall peptide stability and helicity (independent of labeling), the temperature dependence of circular dichroism spectra in the far-UV range at identical conditions (temperature and solvent) as infrared spectra was measured. The results indicate that the central quarter of the 32 amino acids helix has the maximal helicity and stability. The midpoint of the melting curve of the central quarter of the helix is 5.4 +/- 0.8 degrees C higher than that of the termini. The N-terminal third of the helix is more helical and is 2.0 +/- 1.4 degrees C more stable than the C-terminus.  相似文献   

19.
T Heimburg  J Schünemann  K Weber  N Geisler 《Biochemistry》1999,38(39):12727-12734
Coiled coils of different order were investigated using infrared (IR) spectroscopy. Recently, we demonstrated that dimeric coiled coils display unique vibrational spectra with at least three separable bands instead of only one band of a classical alpha-helix in the amide I region.This was attributed to a distortion of the helical structure by the supercoil bending, giving rise to bands that are not observed in the undistorted helix. Here, we investigated coiled coils forming trimers, tetramers, and pentamers. These higher order coiled coils, in general, possess larger superhelical pitches, resulting in a smaller helical distortion. We found that all coiled coils studied, including the native dimeric GCN4 leucine zipper and its variants leading to parallel trimers and tetramers as well as the rod portions of fibritin (parallel trimer), alpha-actinin (antiparallel spectrin type trimer), and COMP (parallel pentamer), displayed the typical three band pattern of the coiled coil amide I spectra. However, the separation of these three bands and their positional deviation from the classical alpha-helical band position was correlated to the extent of the helical distortion as reflected by the pitch values of the supercoils. The most pronounced spectral anomaly was found for the tropomyosin dimer with a reported helical pitch of 137 A, whereas the smallest spectral distortion was found for the pentameric COMP complex and the tetrameric leucine zipper mutant, both with a pitch of about 205 A.  相似文献   

20.
ATR-FTIR spectroscopy in combination with electrochemistry has been applied to the redox centers of Yarrowia lipolytica complex I. The redox spectra show broad similarities with previously published data on Escherichia coli complex I and with new data here on bovine complex I. The spectra are dominated by amide I/II protein backbone changes. Comparisons with redox IR spectra of small model ferredoxins demonstrate that these amide I/II changes arise primarily from characteristic structural changes local to the iron-sulfur centers, rather than from global structural alterations as has been suggested previously. Bands arising from the substrate ubiquinone were evident, as was a characteristic 1405 cm(-)(1) band of the reduced form of the FMN cofactor. Other signals are likely to arise from perturbations or protonation changes of a carboxylic amino acid, histidine, and possibly several other specific amino acids. Redox difference spectra of center N2, together with substrate ubiquinone, were isolated from those of the other iron-sulfur centers by selective redox potentiometry. Its redox-linked amide I/II changes were typical of those in other 4Fe-4S iron sulfur proteins. Contrary to published data on bacterial complex I, no center N2 redox-linked protonation changes of carboxylic amino acids or tyrosine were evident, and other residues that could provide its redox-linked protonation site are discussed. Features of the substrate ubiquinone associated with the center N2 spectrum were particularly clear, with firm assignments possible for bands from both oxidized and reduced forms. This is the first report of IR properties of ubiquinone in complex I, and the data could be used to estimate a stoichiometry of 0.2-0.4 per complex I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号