首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present work analyzed the function of lipid transfer particle (LTP) in the process of exporting diacylglycerol from larval Manduca sexta midgut cells to lipophorin. When midgut sacs, which had been prelabeled in vivo with [(3)H]oleic acid, were incubated in vitro with a lipophorin-containing medium, a significant amount of radiolabeled diacylglycerol was transferred to lipophorin. Negligible amounts of diacylglycerol were released into lipophorin-free medium. In contrast, lipid-labeled lipophorin did not transfer diacylglycerol to the midgut sacs. The transfer of diacylglycerol from the midgut sac to lipophorin was blocked by preincubation of midgut sacs with antibody against LTP. Diacylglycerol transfer was restored to control values by the addition of purified LTP to midgut sacs that had been treated with antibody against LTP. Under these conditions the amount of diacylglycerol transferred was a function of the LTP concentration. These are the first results showing that LTP is required to export diacylglycerol from the midgut to lipophorin.  相似文献   

2.
Using in vitro methods, we investigated the transfer of cholesterol from larval Manduca sexta midgut to the hemolymph lipoprotein, lipophorin, and the transfer of cholesterol from lipophorin to larval fat body. In the midgut, transfer of free cholesterol shows saturation kinetics, but the apparent Km is higher than the measured Kd for the midgut lipophorin-receptor complex. In addition, the transfer is unaffected by suramin, which binds to the receptor and inhibits lipophorin binding, and by antibodies to the lipid transfer particle, which is required for export of diacylglycerol from the midgut to lipophorin. In the fat body, transfer of free cholesterol also shows saturation kinetics, and the apparent Km is higher than the measured Kd for the fat body lipophorin-receptor complex. Suramin and anti-lipid transfer particle antibodies exert only a small (20%) inhibitory effect. In both tissues it seems that the most likely mode of cholesterol transfer is via aqueous diffusion, which is also an important mechanism in vertebrate cells. Based on these results, we propose that cholesterol homeostasis in larval M. sexta is maintained by a mass action mechanism in which cholesterol is freely transferred between lipophorin and tissues depending on the needs of the tissues. This simple mechanism is ideally suited to insects, which can neither make cholesterol nor internalize lipophorin, the two mechanisms that vertebrate cells use to control their cholesterol content.  相似文献   

3.
The pathway for the synthesis of diacylglycerol in larval Manduca sexta midgut was studied. Fifth instar larvae were fed with [9,10–3H]–oleic acid–labeled triolein and the incorporation of the label into lipid intermediates was analyzed as a function of time. The results showed that the triacylglycerol was hydrolyzed to fatty acids and glycerol in the midgut lumen. In midgut tissue, the labeled fatty acids were rapidly incorporated into phosphatidic acid, diacylglycerol and triacylglycerol, but no significant labeling of monoacylglycerol was observed. Dual-labeling experiments were performed in order to characterize the kinetics of diacylglycerol biosynthesis in the midgut, its incorporation into hemolymph lipophorin and its clearance from hemolymph. The results were best described by a model in which the rate-limiting step in diacylglycerol biosynthesis was the uptake of fatty acid from the lumen of the midgut. Once in the cell the fatty acid was rapidly incorporated in phosphatidic acid and diacylglycerol. Diacylglycerol was converted to triacylglycerol or exported into hemolymph. The interconversion of diacylglycerol and triacylglycerol was fairly rapid, suggesting that triacylglycerol serves as a reservoir from which diacylglycerol can be produced. This mechanism permits the cell to maintain a low steady-state concentration of diacylglycerol and yet efficiently absorb fatty acids from the lumen of the midgut.  相似文献   

4.
Lipophorin structure analyzed by in vitro treatment with lipases.   总被引:1,自引:0,他引:1  
Adult Manduca sexta high density lipophorin (HDLp-A) is composed of three apolipoproteins (apoLp-I, -II, and -III) and 52% lipid. The flight-specific low density lipophorin (LDLp) contains 62% lipid and is associated with several additional molecules of apoLp-III. The amount of phospholipid remains constant in lipophorin (140 mol/mol of lipophorin), while the diacylglycerol content varies between different lipophorin species (310 mol/mol HDLp up to 1160 mol/mol LDLp). Both lipophorin particles were enzymatically depleted of phospholipid or diacylglycerol by in vitro incubation with either phospholipase A2 or triacylglycerol lipase. Albumin was used to remove free fatty acids generated during the reaction. Treatment with phospholipase A2 removed all phospholipids (except sphingomyelin) and the resulting particles were stable. Triacylglycerol lipase hydrolyzed large fractions of diacylglycerol. The resulting particles were smaller in size, higher in density, and devoid of apoLp-III. The particles retained apoLp-I and -II and the other lipid components, including a substantial amount of diacylglycerol. Structural integrity of diacylglycerol-depleted lipophorin was confirmed by electron microscopical analysis. When treated with both phospholipase A2 and triacylglycerol lipase, lipophorin precipitated. From these results we conclude that: 1) all phospholipid and apoLp-III are located at the surface of lipophorin, whereas diacylglycerol is partitioned between the sublayers and the surface of the particle; 2) both diacylglycerol and phospholipid play a role in stabilizing lipophorin in the aqueous medium; and 3) lipophorin can be extensively unloaded and still retain its basic structure, a necessary feature for its function as a reusable lipid shuttle.  相似文献   

5.
The pathway for the synthesis of diacylglycerol in larval Manduca sexta midgut was studied. Fifth instar larvae were fed with [9,10–3H]–oleic acid–labeled triolein and the incorporation of the label into lipid intermediates was analyzed as a function of time. The results showed that the triacylglycerol was hydrolyzed to fatty acids and glycerol in the midgut lumen. In midgut tissue, the labeled fatty acids were rapidly incorporated into phosphatidic acid, diacylglycerol and triacylglycerol, but no significant labeling of monoacylglycerol was observed. Dual-labeling experiments were performed in order to characterize the kinetics of diacylglycerol biosynthesis in the midgut, its incorporation into hemolymph lipophorin and its clearance from hemolymph. The results were best described by a model in which the rate-limiting step in diacylglycerol biosynthesis was the uptake of fatty acid from the lumen of the midgut. Once in the cell the fatty acid was rapidly incorporated in phosphatidic acid and diacylglycerol. Diacylglycerol was converted to triacylglycerol or exported into hemolymph. The interconversion of diacylglycerol and triacylglycerol was fairly rapid, suggesting that triacylglycerol serves as a reservoir from which diacylglycerol can be produced. This mechanism permits the cell to maintain a low steady-state concentration of diacylglycerol and yet efficiently absorb fatty acids from the lumen of the midgut.  相似文献   

6.
Lipid transport in the hemolymph of Manduca sexta is facilitated by a high density lipophorin in the resting adult insect (HDLp-A, d approximately 1.109 g/ml) and by a low density lipophorin during flight (LDLp, d approximately 1.060 g/ml). Lipophorin presumably shuttles different lipids between sites of uptake or storage, and sites of utilization. In order to shuttle lipid, a lipid-depleted lipophorin should be able to reload with lipid. To test this hypothesis, we used HDLp-A particles that were artificially depleted of either phospholipid (d approximately 1.118 g/ml) or diacylglycerol (d approximately 1.187 g/ml) and subsequently radiolabeled in their protein moiety. Upon injection into adult moths, both particles shifted their density to that of native HDLp-A, indicating lipid loading. Also, upon subsequent injection of adipokinetic hormone, both particles shifted to a lower density (d approximately 1.060 g/ml) indicating diacylglycerol loading and conversion to LDLp. Both phospholipid and diacylglycerol loading were also studied using an in vitro system. The lipid-depleted particles were incubated with fat body that had been radiolabeled in either the phospholipid or the triacylglycerol fraction. Transfer of radiolabeled phospholipid and diacylglycerol from fat body to lipophorin was observed. During diacylglycerol loading, apoLp-III associated with lipophorin, whereas phospholipid loading occurred in the absence of apoLp-III. The results show the ability of lipid-depleted lipophorins to reload with lipid and therefore reaffirm the role of lipophorin as a reusable lipid shuttle.  相似文献   

7.
Lipophorin, the main lipoprotein in the circulation of the insects, cycles among peripheral tissues to exchange its lipid cargo at the plasma membrane of target cells, without synthesis or degradation of its apolipoprotein matrix. Currently, there are few characterized candidates supporting the functioning of the docking mechanism of lipophorin-mediated lipid transfer. In this work we combined ligand blotting assays and tandem mass spectrometry to characterize proteins with the property to bind lipophorin at the midgut membrane of Panstrongylus megistus, a vector of Chagas' disease. We further evaluated the role of lipophorin binding proteins in the transfer of lipids between the midgut and lipophorin. The β subunit of the ATP synthase complex (β-ATPase) was identified as a lipophorin binding protein. β-ATPase was detected in enriched midgut membrane preparations free of mitochondria. It was shown that β-ATPase partially co-localizes with lipophorin at the plasma membrane of isolated enterocytes and in the sub-epithelial region of the midgut tissue. The interaction of endogenous lipophorin and β-ATPase was also demonstrated by co-immunoprecipitation assays. Blocking of β-ATPase significantly diminished the binding of lipophorin to the isolated enterocytes and to the midgut tissue. In vivo assays injecting the β-ATPase antibody significantly reduced the transfer of [3H]-diacylglycerol from the midgut to the hemolymph in insects fed with [9,10-3H]-oleic acid, supporting the involvement of lipophorin-β-ATPase association in the transfer of lipids. In addition, the β-ATPase antibody partially impaired the transfer of fatty acids from lipophorin to the midgut, a less important route of lipid delivery to this tissue. Taken together, the findings strongly suggest that β-ATPase plays a role as a docking lipophorin receptor at the midgut of P. megistus.  相似文献   

8.
The role of Manduca sexta lipid transfer particle (LTP) in the transport of lipid from fat body to lipophorin was investigated in vitro. Fat body that contained radiolabeled lipid was incubated with either high density lipophorin or low density lipophorin, and it was shown that lipid was transferred from fat body to lipophorins. The transfer of diacylglycerol was blocked by preincubating fat body with LTP antibody. Furthermore, transfer was restored by the addition of LTP, indicating that LTP promotes the transfer of lipid from fat body to lipophorins. Using lipophorins radio-labeled in their lipid moiety, transfer of lipid from lipophorin to fat body was demonstrated. This transfer was not mediated by LTP. The adipokinetic hormone induced diacylglycerol mobilization from the fat body and the concomitant interconversion of high density lipophorin to low density lipophorin were performed in vitro and were shown to require the presence of LTP.  相似文献   

9.
alpha-Cyclodextrins are water-soluble cyclic hexamers of glucose units with hydrophobic cavities capable of solubilizing lipophiles. Incubating alpha-cyclodextrin with high density lipophorin from Manduca sexta or Bombyx mori resulted in a cloudy, turbid solution. Centrifugation separated a pale yellowish precipitate. Thin-layer chromatography analysis of the lipid extract of the precipitate showed that the major lipid was diacylglycerol, while KBr density gradient analysis of the supernatant demonstrated the presence of a lipid-depleted very high density lipophorin. Transfer of diacylglycerol from lipophorin to cyclodextrin was specific to alpha-cyclodextrin and was not observed with beta- or gamma-cyclodextrins. pH had no effect on diacylglycerol transfer to alpha-cyclodextrin. However, the transfer was strongly dependent on the concentration of alpha-cyclodextrin and temperature. Increasing the concentration of alpha-cyclodextrin in the incubation mixture was associated with the formation of increasingly higher density lipophorins. Thus, at 20, 30, and 40 mm alpha-cyclodextrin, the density of B. mori lipophorin increased from 1.107 g/ml to 1.123, 1. 148, and 1.181 g/ml, respectively. At concentrations greater than 40 mm, alpha-cyclodextrin had no further effect on the density of lipophorin. alpha-Cyclodextrin removed at most 83;-87% of the diacylglycerol present in lipophorin. Temperature played an important role in altering the amount of diacylglycerols transferred to alpha-cyclodextrin. At 30 mm alpha-cyclodextrin, the amount of diacylglycerol transferred at different temperatures was 50% at 4 degrees C, 41% at 15 degrees C, 20% at 28 degrees C, and less than 3% at 37 degrees C. We propose that diacylglycerol transfers to alpha-cyclodextrin via an aqueous diffusion pathway and that the driving force for the transfer is the formation of an insoluble alpha-cyclodextrin-diacylglycerol complex.  相似文献   

10.
Lipophorin binding to the midgut of Manduca sexta larvae was characterized in a midgut membrane preparation, using iodinated larval high-density lipophorin ((125)I-HDLp-L). The iodination procedure did not change the affinity of the preparation for lipophorin. In the presence of increasing concentrations of membrane protein, corresponding increases in lipophorin binding were observed. The time-course of lipophorin binding to the membranes was affected by the lipophorin concentration in the medium, and at a low lipoprotein concentration, a longer time was required for equilibrium to be reached. The specific binding of lipophorin to the midgut membrane was a saturable process with a K(d) = 1.5+/-0.2x10(-7) M and a maximal binding capacity = 127+/-17 ng lipophorin/microg of membrane protein. Binding did not depend on calcium, was maximal around pH 5.5, was strongly inhibited by an increase in the ionic strength, and abolished by suramin. However, suramin did not completely displace lipophorin that was previously bound to the membrane preparation. The lipid content of the lipophorin did not significantly affect the affinity of the membrane preparation for lipoprotein.  相似文献   

11.
Lipophorin is a major lipoprotein that transports lipids in insects. In Rhodnius prolixus, it transports lipids from midgut and fat body to the oocytes. Analysis by thin‐layer chromatography and densitometry identified the major lipid classes present in the lipoprotein as diacylglycerol, hydrocarbons, cholesterol, and phospholipids (PLs), mainly phosphatidylethanolamine and phosphatidylcholine. The effect of preincubation at elevated temperatures on lipophorin capacity to deliver or receive lipids was studied. Transfer of PLs to the ovaries was only inhibited after preincubation of lipophorin at temperatures higher than 55°C. When it was pretreated at 75°C, maximal inhibition of phospholipid transfer was observed after 3‐min heating and no difference was observed after longer times, up to 60 min. The same activity was also obtained when lipophorin was heated for 20 min at 75°C at protein concentrations from 0.2 to 10 mg/ml. After preincubation at 55°C, the same rate of lipophorin loading with PLs at the fat body was still present, and 30% of the activity was observed at 75°C. The effect of temperature on lipophorin was also analyzed by turbidity and intrinsic fluorescence determinations. Turbidity of a lipophorin solution started to increase after preincubations at temperatures higher than 65°C. Emission fluorescence spectra were obtained for lipophorin, and the spectral area decreased after preincubations at 85°C or above. These data indicated no difference in the spectral center of mass at any tested temperature. Altogether, these results demonstrate that lipophorin from R. prolixus is very resistant to high temperatures.  相似文献   

12.
  • 1.1. The lipid composition of lipophorin from the Colorado potato beetle, Leptinotarsa decemlineata Say, was analyzed.
  • 2.2. This insect lipophorin contains 44% lipid and is characterized by large amounts of hydrocarbons and small amounts of diacylglycerol.
  • 3.3. This is the first observation of a diacylglycerol-poor insect lipophorin in haemolymph.
  • 4.4. Since the main energy source for flight in the Colorado potato beetle is proline, the low diacylglycerol content in lipophorin must be related to its peculiar flight metabolism.
  • 5.5. This lipophorin, however, can still take up appreciable amounts of diacylglycerol from the locust fat body. Hydrocarbon uptake by this lipophorin was also demonstrated.
  • 6.6. The main function of this lipophorin therefore seems to be transport of hydrocarbons from oenocytes to the cuticle.
  相似文献   

13.
In this study, we describe the fate of fatty acids that are incorporated from the lumen by the posterior midgut epithelium of Rhodnius prolixus and the biosynthesis of lipids. We also demonstrate that neutral lipids (NL) are transferred to the haemolymphatic lipophorin (Lp) and that phospholipids remain in the tissue in which they are organised into perimicrovillar membranes (PMMs). 3H-palmitic acid added at the luminal side of isolated midguts of R. prolixus females was readily absorbed and was used to synthesise phospholipids (80%) and NL (20%). The highest incorporation of 3H-palmitic acid was on the first day after a blood meal. The amounts of diacylglycerol (DG) and triacylglycerol synthesised by the tissue decreased in the presence of Lp in the incubation medium. The metabolic fates of 3H-lipids synthesised by the posterior midgut were followed and it was observed that DG was the major lipid released to Lp particles. However, the majority of phospholipids were not transferred to Lp, but remained in the tissue. The phospholipids that were synthesised and accumulated in the posterior midgut were found to be associated with Rhodnius luminal contents as structural components of PMMs.  相似文献   

14.
[(14)C]Oleic acid injected into the hemocoel of Rhodnius prolixus females was shown to rapidly associate with lipophorin particles. Half of the lipophorin-associated [(14)C]oleic acid was transferred in about 5 min to different organs, but the midgut was the main organ to take it up on day 10 after a blood meal. The rate of [(14)C]oleic acid incorporation by the midgut was high up to 15 min after injection and then declined. The [(14)C]oleic acid incorporated by the midgut was found in phospholipids (58.6%) and neutral lipids (37.4%). The midgut capacity to incorporate [(14)C]oleic acid varied on different days after a meal: it increased up to day 10 and then decreased. The fate of the [(14)C]lipids synthesized by the midgut was followed and it was observed that 10 days after feeding diacylglycerol was the main lipid released to hemolymph and that most of phospholipids and triacylglycerols remained associated with the midgut. The metabolism of free fatty acids in Rhodnius prolixus females is discussed in the context of major biological events that follow a blood meal such as digestion and oogenesis.  相似文献   

15.
《Insect Biochemistry》1990,20(8):793-799
Twenty monoclonal antibodies raised against locust native lipophorin were screened by testing their capacity to inhibit diacylglycerol (DG) uptake from fat body by lipophorin in vitro. One of the monoclonal antibodies clearly inhibits the loading of DG by lipophorin from the fat body. This antibody cross reacts only with apolipophorin-II(apoLp-II), one of the two apoproteins of lipophorin. By using proteolytic apoLp-II fragments, we have shown that the epitope for the antibody against apoLp-II contains lysine. Furthermore, both the apoproteins, apoLp-I and apoLp-II, were almost equally labeled with biotin when the native lipophorin was incubated with modified biotin-reagent. These observations strongly suggest that apoLp-II, at least in part, is localized on the outer surface of lipophorin and may contribute to the lipid loading process from fat body.  相似文献   

16.
《Insect Biochemistry》1987,17(8):1173-1180
The source of the lipophorin present in the larval haemolymph of the southwestern corn borer, Diatraea grandiosella, was examined in vitro. Although lipophorin was shown to be one of several proteins released from cultured fat body and midgut, only fat body was shown to synthesize lipophorin. Fat body, incubated in a medium containing [3H]leucine, was shown to release radiolabelled lipophorin using immunoprecipitation. Similar studies using midguts incubated in a medium containing [3H]leucine did not reveal any synthesis of lipophorin. Lipophorin was isolated by density-gradient ultracentrifugation from media in which the fat bodies of about 600 diapausing larvae had been incubated for 4 hr. The isolated lipophorin had a peak density of 1.11 g/ml, and contained various lipids including diacylglycerol, triacylglycerol, sterol, hydrocarbon, free fatty acid, phosphatidyl choline, phosphatidyl ethanolamine and sphingomyelin.  相似文献   

17.
A lipid transfer particle (LTP) from the hemolymph of adult male locusts, Locusta migratoria, was isolated and purified. The locust LTP exhibited its capacity to catalyze the exchange of diacylglycerol between low density lipophorin (LDLp) and high density lipophorin (HDLp). Contrary to the LTP reported for the tobacco hornworm, M. sexta, the locust LTP appeared to lack the capacity to promote net transfer of diacylglycerol to form an intermediate density lipophorin, although it seems premature to conclude the complete lack of such a capacity in locust LTP. The original concentration of LTP in hemolymph is assumed to be extremely low compared to that of lipophorin; only a catalytic amount of LTP may be present in the hemolymph (e.g., only 160 micrograms of LTP was obtained from the original hemolymph containing 400 mg protein). The molecular weight of intact LTP was estimated to be about 600,000 and the LTP was comprised of three glycosylated apoproteins, apoLTP-I (mol wt 310K), apoLTP-II (mol wt 89K), and apoLTP-III (mol wt 68K). The locust LTP contained significant amounts of lipids; the total lipid content amounted to 14.4% and the lipids were comprised of 17% hydrocarbons, 44% diacylglycerol, 8% cholesterol, 13% free fatty acid, and 18% phospholipids. The above molecular properties of locust LTP are essentially similar to those reported for M. sexta LTP.  相似文献   

18.
《Insect Biochemistry》1987,17(5):771-776
The metabolism of locust lipophorin A+ during lipid delivery to the flight muscle and lipid loading at the fat body was studied in vitro. Protein C2 was shown to be released upon hydrolysis of lipophorin A+-carried diacylglycerol by the flight muscle lipoprotein lipase. This in vitro released protein C2 was shown to reassociate with lipophorin Ay upon hormone-induced lipid mobilization from fat body in vitro. These results demonstrate the reversibility of the association of protein C2 with lipophorin Ay and support the shuttle function of the protein components of locust lipophorin A+ in lipid transport.  相似文献   

19.
The density of lipophorin was determined in adult females of Rhodnius prolixus on different days after a meal. Several populations of lipophorins, differing in density but always in the range of HDL, were found in the hemolymph. The density of the major population was analyzed and a complex profile of density variation was found associated with the principal metabolic events in these insects digestion and oogenesis. During the initial three days after the blood meal, with the onset of the digestive process, the density of lipophorin decreased from 1.1185 g/l to 1.1095 g/l, associated with the transfer of lipids from midgut to the lipophorin particles. During the period of intense vitellogenesis and lipid uptake by the ovary, the lipophorin density started to increase and reached the value, 1.1322 g/l, and remained stable up to the end of oogenesis. As soon as the requirement of lipids to build up the oocytes ceased, the density of lipophorin decreased to its initial value associated with the transfer of lipids from fat body to lipophorin. Soon after the blood meal the midgut was the main source of lipids capable of replenishing the lipophorin particles, while the fat body assumed this function during the succeeding days and reached its maximum capacity around day 10, as estimated by the rate of lipid transfer. The principal lipids transferred were phospholipids and diacylglycerols. Except in the protein/lipid ratio no major changes were observed among different lipids isolated from lipophoin of different densities. Arch. Insect Biochem. Physiol. 35:301-313, 1997.© 1997 Wiley-Liss, Inc.  相似文献   

20.
The fatty acids of the triacylglycerol reserves in the fat body and of the diacylglycerol of lipophorin in the hemolymph of non-diapause and diapause larvae of D. grandiosella were compared. For both non-diapause and diapause larvae palmitate, palmitoleate, oleate, and linoleate were the predominant fatty acids present in fatty body triacylglycerol, and palmitate, oleate, and linoleate were the predominant fatty acids present in lipophorin diacylglycerol. However, differences were detected in the relative amounts of oleate and linoleate present in lipophorin diacylglycerol of non-diapause and diapause larvae. The relative amount of linoleate in lipophorin diacylglycerol declined during diapause, whereas that of oleate remained relatively high during diapause. The fatty acid profile of lipophorin diacylglycerol from non-diapause larvae treated with a juvenile hormone analog to induce a diapause-like state more closely matched that of diapause larvae than that of non-diapause larvae. The differences detected in the fatty acid composition of lipophorin diacylglycerol in non-diapause and diapause larvae appear to be due mainly to the different physiological states rather than to the different rearing temperatures employed. The results are discussed in relation to the essential role fatty acids, especially oleate, play in the survival of diapause larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号