首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Normal human fetuses at different gestation periods were collected on ice after hysterotomy and the enzymes of the urea cycle were measured in the liver. The activity of all enzymes increased with increasing gestational age towards the adult value, however, in no case did the values reach the normal adult level. The bladder fluid of these fetuses contained urea and ammonia nitrogen at concentrations which were akin to the concentrations found in fetal blood. The ornithine transcarbamylase activity was the lowest when compared to the adult values and appeared to be the rate-limiting enzyme in the cycle, along with argininosuccinic acid synthetase activity, which was also very low. The activity of arginase was found to be the highest in the cycle. The very low ornithine transcarbamylase and argininosuccinic acid synthetase activities and the comparatively higher arginase activity migh lead to the channeling of ornithine into alternate metabolic pathways.  相似文献   

2.
Ammonia, produced by bacterial degradation of unabsorbed and endogenous nitrogenous compounds, is found to be present at millimolar concentrations in the colon lumen. From in vivo animal experiments, this metabolite has been shown to alter colonic epithelial cell morphology and to increase compensatory cell proliferation when present in excess. In this in vitro study, using the human colon adenocarcinoma HT-29 Glc(-/+) cell line treated with increasing doses of NH(4)Cl, we found that 20 mM NH(4)Cl, a concentration close to that found in the large intestine lumen, was able to increase the volume of vacuolar lysosomes and to repress HT-29 Glc(-/+) cell proliferation. This growth-inhibitory effect was not correlated with decrease of cell viability, with modification of cell differentiation and change of the cell distribution in the different cell cycle phases, thus indicating a proportional slowdown in all cell cycle phases. In contrast to what is found in healthy colonocytes, ammonia was not metabolized by HT-29 cells into carbamoyl-phosphate (carbamoyl-P) and citrulline, indicating that ammonia was likely acting on cells by itself. This agent was shown to markedly reduce cellular ornithine decarboxylase (ODC) activity resulting in a threefold decrease in the capacity of HT-29 cells to synthetize polyamines, these latter metabolites being strictly necessary for cell growth. The unexpected finding that ammonia is acting as an antimitotic agent against tumoral HT-29 colonic cells may be related to the inability of these cells to metabolize this compound.  相似文献   

3.
Arginine metabolism in rat enterocytes   总被引:2,自引:0,他引:2  
Rat enterocytes exposed to L-arginine in the absence of any other exogenous substrate were found to actively metabolize this cationic amino acid. L-Arginine was converted to L-citrulline either directly in a NADPH-sensitive manner thought to be coupled with the generation of NO, or indirectly through the sequence of reactions catalyzed by arginase and ornithine transcarbamylase. A large fraction of L-citrulline and L-ornithine generated from exogenous L-arginine was released in the incubation medium. The production of CO2 and (poly)amines from L-arginine occurred at rates 2 to 3 orders of magnitude lower than that characterizing the net uptake of the cationic amino acid, and this despite the fact that enterocytes were equipped to allow the interconversion of L-ornithine and L-glutamate. It is concluded that the oxidative catabolism of L-arginine in enterocytes is quantitatively negligible relative to its conversion to L-citrulline and L-ornithine.  相似文献   

4.
Nitric oxide (NO) is an important gaseous radical involved in many physiological processes. It is produced from the amino acid L-arginine by the action of nitric oxide synthases (NOS) in what is called the L-arginine/NO pathway. Tracking its metabolic fate in biological fluids is of particular interest as it may indicate how the human body responds in health and disease. However, due to its short life span (a few seconds) it is very difficult to accurately monitor any up- or down-regulation in body fluids in vivo. As a consequence, methods have been developed based on the measurement of the NO-derived products nitrite and nitrate or on the substrate of NO, L-arginine and its simultaneously generated product, L-citrulline. Considering only a fraction of the endogenous L-arginine pool is used for the synthesis of NO, NO-production cannot be estimated by measuring changes in the concentrations of L-arginine and/or L-citrulline alone. Instead, to estimate NO-related changes in the L-arginine and/or L-citrulline pools a form of tagging these metabolites for the NOS-mediated reaction is required. The application of stable isotopes is an elegant way to track NOS-mediated changes. The present paper is focussed on the application of various combinations of chromatography and mass spectrometry to measure isotopic enrichments resulting from the conversion of L-arginine to NO and L-citrulline in a one-to-one stoichiometry. In addition, the various aspects and principles involved in the application of stable isotopes in metabolic studies in general and the study of the activity of NOS in particular are discussed.  相似文献   

5.
In enterocytes isolated from pig jejunum, L-arginine is metabolized to L-citrulline either directly or indirectly through the sequence of reactions catalysed by arginase and ornithine transcarbamylase. In the presence of 5 mM D-glucose, the direct conversion of 1mM L-[guanido-14C] arginine to L-citrulline was increased more than 4 times. Isolated enterocytes exhibit a high glycolytic capacity. Furthermore, the decarboxylation of 5mM D-[1-14C] glucose was 3.6 fold higher than the decarboxylation of 5 mM D-[6-14C] glucose which suggests the presence of a pentose phosphate pathway in enterocytes. Since the production of labelled L-citrulline from L-[guanido-14C] arginine in pig enterocyte homogenates was markedly increased in the presence of NADPH, it is proposed that the direct conversion of L-arginine to L-citrulline could be stimulated by the production of NADPH from D-glucose in the pentose phosphate pathway.  相似文献   

6.
Nitric oxide (NO) is an important vasorelaxant produced along with L-citrulline from L-arginine in a reaction catalyzed by endothelial nitric oxide synthase (eNOS). Previous studies suggested that the recycling of L-citrulline to L-arginine is essential for NO production in endothelial cells. However, there is no direct evidence demonstrating the degree to which the recycling of L-citrulline to L-arginine is coupled to NO production. We hypothesized that the amount of NO formed would be significantly higher than the amount of L-citrulline formed due to the efficiency of L-citrulline recycling via the citrulline-NO cycle. To test this hypothesis, endothelial cells were incubated with [14C]-L-arginine and stimulated by various agents to produce NO. The extent of NO and [14C]-L-citrulline formation were simultaneously determined. NO production exceeded apparent L-citrulline formation of the order of 8 to 1, under both basal and stimulated conditions. As further support, alpha-methyl-DL-aspartate, an inhibitor of argininosuccinate synthase (AS), a component of the citrulline-NO cycle, inhibited NO production in a dose-dependent manner. The results of this study provide evidence for the essential and efficient coupling of L-citrulline recycling, via the citrulline-NO cycle, to endothelial NO production.  相似文献   

7.
Summary. Nitric oxide synthase (NOS) activities are responsible for the enzymatic conversion of L-arginine into NO and L-citrulline. Relatively low amounts of NO are produced in intestinal epithelial cells or are released from nerve endings. The effects of NO production are related to the maintenance of epithelial integrity and permeability. A pathological role of an increased NO production has been suggested to play a role in models of experimental colitis. In humans, NOS activity in colon mucosa from patients with ulcerative colitis is clearly increased when compared with the activity of the control group. In contrast, an increase of NOS activity in the colon mucosa from patients with Crohn's disease remains controversial. In the present work, we have measured NOS activity in colon biopsies originating from the control group (n = 16), from patients with ulcerative colitis (n = 23) and Crohn's disease (n = 17) using the radiochemical method of the conversion of L-[guanido-14C] arginine into radioactive L-citrulline. In the control group, NOS activity was mainly of the inducible type (88% of total NOS activity) since it was characterised by its insensibility to the absence of calcium in the assay medium. In colon biopsies originating from patients with ulcerative colitis, inducible NOS activity was increased 3 fold (p < 0.005) and in patients with Crohn's disease, inducible NOS activity was increased 5 fold (p < 0.005). Correlations between NOS activity in colon biopsies and the intensity parameters of the disease i.e. Truelove index, endoscopic score and histo-logical parameters were evidenced in patients with ulcerative colitis. In contrast, in patients with Crohn's disease, the high inducible NOS activity was not correlated with any intensity parameters of the disease. From these data, we concluded that although inducible NOS activity was increased several fold in colon biopsies originating from patients with both ulcerative colitis and Crohn's disease, a correlation between this activity and the severity of bowel inflammation was not found in either cases. Received August 7, 1999  相似文献   

8.
Measuring nitric-oxide synthase (NOS) activity by monitoring the conversion of L-arginine to L-citrulline is currently the standard assay for NOS activity. We describe a simple method of quantifying low values of NOS activity by removing the background mathematically. When performing NOS activity studies in samples with low protein amount (< 25 microg/microl), we encountered the problem of sample values that can hardly be differentiated from blank values probably originating from radioactive-labeled arginine in the final eluate. Our method determines mathematically these background values and may be an improvement of the citrulline assay.  相似文献   

9.
Chronic high-protein consumption leads to increased concentrations of NH(4)(+)/NH(3) in the colon lumen. We asked whether this increase has consequences on colonic epithelial cell metabolism. Rats were fed isocaloric diets containing 20 (P20) or 58% (P58) casein as the protein source for 7 days. NH(4)(+)/NH(3) concentration in the colonic lumen and in the colonic vein blood as well as ammonia metabolism by isolated surface colonic epithelial cells was determined. After 2 days of consumption of the P58 diet, marked increases of luminal and colonic vein blood NH(4)(+)/NH(3) concentrations were recorded when compared with the values obtained in the P20 group. Colonocytes recovered from the P58 group were characterized at that time and thereafter by an increased capacity for l-ornithine and urea production through arginase (P < 0.05). l-Ornithine was mostly used in the presence of NH(4)Cl for the synthesis of the metabolic end product l-citrulline. After 7 days of the P58 diet consumption, however, the ammonia metabolism into l-citrulline was found lower (P < 0.01) when compared with the values measured in the colonocytes recovered from the P20 group despite any decrease in the related enzymatic activities (i.e., carbamoyl-phosphate synthetase I and ornithine carbamoyl transferase). This decrease was found to coincide with a return of blood NH(4)(+)/NH(3) concentration in colonic portal blood to values close to the one recorded in the P20 group. In response to increased NH(4)(+)/NH(3) concentration in the colon, the increased capacity of the colonocytes to synthesize l-ornithine is likely to correspond to an elevated l-ornithine requirement for the elimination of excessive blood ammonia in the liver urea cycle. Moreover, in the presence of NH(4)Cl, colonocytes diminished their synthesis capacity of l-citrulline from l-ornithine, allowing a lower cellular utilization of this latter amino acid. These results are discussed in relationship with an adaptative process that would be related to both interorgan metabolism and to the role of the colonic epithelium as a first line of defense toward luminal NH(4)(+)/NH(3) concentrations.  相似文献   

10.
非对称二甲基精氨酸(ADMA)是内源性一氧化氮合酶抑制剂,被公认是一种与心血管疾病、糖尿病、性功能障碍和肾功能衰竭等多种疾病密切相关的危险因子. 本文通过化学发光法检测瓜氨酸或ADMA经鸟氨酸氨基甲酰转移酶(ArcB)和氨基甲酰磷酸激酶(ArcC)偶联生成的ATP,并对该方法检测的灵敏度和动态范围进行了初步评价.1)从绿脓杆菌中克隆了鸟氨酸氨基甲酰转移酶和氨基甲酰磷酸激酶,转化大肠杆菌实现高效可溶性表达,用镍柱亲和纯化得到融合蛋白,TLC薄层层析法定性和测氨法定量验证了融合蛋白活性.2)用化学发光法检测了瓜氨酸或ADMA经相应酶偶联反应后的产物ATP,并且对实验进行了优化,结果表明两者都能在偶联酶作用下催化释放ATP,相应的底物浓度检测下限为01 μmol/L,检测结果接近正常生理血清中ADMA的浓度,且远低于正常生理血清中瓜氨酸浓度. 用正常尿液样品检测结果表明,该方法可行,为下一步血清和血浆样品的检测奠定了基础.  相似文献   

11.
Production of nitric oxide through the action of nitric oxide synthase (NOS) has been detected in the islets of Langerhans. The inducible isoform of NOS (iNOS) is induced by cytokines and might contribute to the development of type-1 diabetes, while the constitutive isoform (cNOS) is thought to be implicated in the physiological regulation of insulin secretion. In the present study we have detected and quantified islet cNOS- and iNOS-derived NO production concomitant with measuring its influence on insulin secretion in the presence of different secretagogues: glucose, L-arginine, L-leucine and α-ketoisocaproic acid (KIC) both during fasting and freely fed conditions. In intact islets from freely fed mice both cNOS- and iNOS-activity was greatly increased by glucose (20 mmol/l). Fasting induced islet iNOS activity at both physiological (7 mmol/l) and high (20 mmol/l) glucose concentrations. NOS blockade increased insulin secretion both during freely fed conditions and after fasting. L-arginine stimulated islet cNOS activity and did not affect islet iNOS activity. l-leucine or KIC, known to enter the TCA cycle without affecting glycolysis, did not affect either islet cNOS- or iNOS activity. Accordingly, insulin secretion stimulated by L-leucine or KIC was unaffected by addition of L-NAME both during feeding and fasting. We conclude that both high glucose concentrations and fasting increase islet total NO production (mostly iNOS derived) which inhibit insulin secretion. The insulin secretagogues L-leucine and KIC, which do not affect glycolysis, do not interfere with the islet NO-NOS system.  相似文献   

12.
1 and 10 mmol/l isovalerate strongly inhibited urea synthesis in isolated rat hepatocytes incubated with 10 mmol/l alanine and 3 mmol/l ornithine. Isovalerate also markedly decreased N-acetylglutamate levels, and the decrease correlated with the inhibition of urea synthesis by isovalerate. This compound also lowered cellular levels of acetyl-CoA, a substrate of N-acetylglutamate synthase (EC 2.3.1.1). Isovalerate did not significantly affect the cellular levels of ATP and had no direct effect on N-acetylglutamate synthase activity. These results suggest that the inhibition of urea synthesis by isovalerate is due to decrease in N-acetylglutamate levels.  相似文献   

13.
Iwanaga T  Yamazaki T  Kominami S 《Biochemistry》1999,38(50):16629-16635
Rat neuronal nitric oxide synthase (nNOS) was heterologously expressed in Escherichia coliand purified. The conversion of L-arginine to N(omega)-hydroxy-L-arginine and further to L-citrulline in one cycle of the reaction of the purified nNOS was measured with the reaction rapid quenching method using (3)H-L-arginine as the substrate. It was found that most of the produced (3)H-N(omega)-hydroxy-L-arginine was successively hydroxylated to (3)H-L-citrulline without leaving the enzyme. From the analysis of time courses, the rate constants for each reaction step, and also for the dissociation of the intermediate, were estimated at various temperature in which the rates for the first and the second reactions were not much different each other but the rate for the dissociation of (3)H-N(omega)-hydroxy-L-arginine from the enzyme was significantly slow. Under the steady-state reaction condition, almost all of the nNOS was estimated to be active from the amount of burst formation of L-citrulline in the pre-steady state. The rate constant for the dissociation of the product L-citrulline from nNOS was calculated from the combination of results of the rapid quenching experiments and the metabolism of L-arginine in the presence of an excess amount of substrate, which was the smallest among all the rate constants in one cycle of the nNOS reaction. The activation energies for all the reaction steps were determined from the temperature dependence of the rate constants, which revealed that the rate-determining step of the nNOS reaction in the steady state was the dissociation of the product L-citrulline from the enzyme.  相似文献   

14.
Growth of Tetrahymena thermophila in a synthetic nutrient medium with or without the essential amino acid L-arginine was studied in the presence or absence of the arginine metabolites L-citrulline and L-ornithine and the polyamines putrescine, spermidine, and spermine. The effects of the growth conditions on the stimulations of the enzymes of the arginine metabolic and polyamine biosynthetic pathway, arginine deiminase (ADI), citrulline hydrolase (CH), ornithine decarboxylase (ODC), and ornithine-oxo-acid aminotransferase were determined. Tetrahymena cells were unable to grow in the absence of L-arginine and the amino-acid utilization was greatly impaired. None of the metabolites or polyamines was able to substitute for arginine. In the presence of arginine, Tetrahymena cultures grew well and citrulline and ornithine did not alter the growth behaviour in any way. In the presence of putrescine, the lag period was decreased from 3 h to 2 h. Spermidine and spermine acted similar to putrescine but less pronounced. The stimulation of the activity of ADI, the key enzyme of arginine degradation, was absolutely dependent upon the presence of arginine in the medium: in the absence of arginine, the low ADI activity which was present in the cells before inoculation was decreased to zero levels within 30 min. In the presence of arginine, the stimulation of ADI was not altered by citrulline and ornithine but putrescine, spermidine, and spermine decreased ADI-stimulation to half of the control values. The stimulation of CH activity in the presence of arginine was not altered by any added metabolite or polyamine. In the media without arginine, stimulation of CH was greatly reduced, in the presence of ornithine more than in its absence, and even more in the presence of putrescine and spermidine. Stimulation of ODC activity in the presence of arginine was not affected by citrulline and ornithine but in the presence of polyamines it was rapidly decreased to unstimulated levels after an initial ca. 10-fold increase. The "hyperstimulation" of ODC in the absence of free arginine was reduced to normal in the presence of citrulline, the stimulation was decreased even below normal levels in the presence of ornithine and polyamines decreased ODC activity to zero levels. O delta T activity was stimulated more in the presence of arginine than in its absence. In both cases the stimulation was enhanced in the presence of polyamines and only in the absence of arginine--by ornithine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Inhibition studies of crystallized rat liver argininosuccinate synthetase [EC 6.3.4.5] are described. 1. L-Argininosuccinate, L-histidine, and L-tryptophan inhibited the enzyme activity at saturating amounts of the substrates. 2. L-Norvaline, L-argininosuccinate, L-arginine, L-isoleucine, and L-valine competitively inhibited the enzyme activity at a low concentration of L-citrulline, with Ki values of 1.3 x 10(4) M, 2.5 X 10(-4) M, 6.7 X 10(-4) M, 6.3 X 10(-4) M, and 6.0 x 10(-4) M, respectively. 3. L-Argininosuccinate and L-arginine competitively inhibited the enzyme activity at a low concentration of L-aspartate, with Ki values of 9.5 x 10(-4) M and 1.2 x 10(-3) M, respectively. 4. The modes of inhibition by L-histidine were mixed-noncompetitive, uncompetitive, and noncompetitive types with respect to L-citrulline, L-aspartate, and ATP, respectively. 5. When the enzyme was preincubated with L-citrulline, the enzyme activity was slightly increased in the presence of a low concentration of L-histidine in the assay mixture. 6. The conformation of the enzyme was markedly changed by the addition of L-histidine as judged from the CD spectrum. This change was partially reversed by incubation with L-citrulline.  相似文献   

16.
L-arginine is shown to protect hematopoietic progenitor (32D cl 3) cells from death due to exposure to γ radiation ((137)Cs). Some of the other intermediates in the urea cycle, namely ornithine and citrulline, plus urea itself, were not found to have any significant impact on cell survival after irradiation. Intriguingly, supplementation of irradiated cells with L-arginine results in decreased production of peroxynitrite, suggesting that suppression of superoxide generation by nitric oxide synthase in one or more microenvironments is an important factor in the observed radioprotection. The absence of any radioprotective effect of L-arginine in cells at 3% oxygen also confirms the involvement of one or more oxygen-derived species. Knockdown experiments with nitric oxide synthase (NOS) siRNAs in cells and NOS knockout animals confirm that the observed radioprotection is associated with nNOS (NOS-1). L-arginine also ameliorates the transient inhibition of the electron-transport chain complex I that occurs within 30 min of completing the dose (10 Gy) and that appears to be a functional marker for postirradiation mitochondrial oxidant production.  相似文献   

17.
《Life sciences》1994,55(24):PL455-PL460
In the present paper we show the inhibitory effect of melatonin on rat cerebellar nitric oxide synthase (NOS) activity. NO production was monitored by the stoichiometric conversion of L-arginine to L-citrulline. The inhibitory effect of melatonin was dose-dependent, with an IC50 value of about 0.1 mM. However, a significant inhibition of enzyme activity (> 22%) was observed at 1 nM melatonin which is in the range of the physiological serum concentration of the hormone at night. The inhibitory effect of melatonin was observed exclusively in the presence of Ca++. Results suggest a new and important role of the pineal hormone melatonin on central nervous system processes, i.e., by modulating NO production.  相似文献   

18.
Effects of repeated administration of benthiocarb on the nitrogen metabolism of hepatic and neuronal systems have been studied. Repeated benthiocarb treatment was associated with significant decrease in proteins with a concomitant increase in free amino acids (FAA) and specific activity levels of proteases suggesting impaired protein synthesis or elevated proteolysis. The glycogenic aminotransferases showed a significant elevation in both the tissues indicating high feeding of ketoacids into oxidative pathway for efficient operation of TCA cycle to combat energy crisis during induced benthiocarb stress. However, the activity levels of branched-chain aminotransferases decreased suggesting their reduced contribution of intermediates to TCA cycle. A comparative evaluation of the activity levels of ammonogenic enzymes, AMP deaminase, adenosine deaminase and glutamate dehydrogenase (GDH) indicated that ammonia was mostly contributed by nucleotide deamination rather than by oxidative deamination. GDH exhibited reduced activity due to low availability of glutamate. In accordance with increased levels of urea, the activity levels of arginase, a terminal enzyme of urea cycle was increased suggesting increased urea cycle operation in order to combat the increased ammonia content. As the presence of urea cycle in the brain is rather doubtful, the conversion of ammonia to glutamine for the synthesis of GABA is envisaged in brain whereas in liver, excess ammonia was converted to urea through ornithine-arginine reacting system. The increased glutaminase activity observed during benthiocarb intoxication is accounted for counteracting acidosis or maintenance of metabolic homeostasis. Arginase, a terminal enzyme of ornithine cycle showed increased activity denoting the efficient potentiality of tissues to avert ammonia toxicity. The changes observed in tissues of rat administered with benthiocarb reflects a shift in nitrogen metabolism for efficient mobilization of end products of protein catabolism.  相似文献   

19.
Since the interneuronal messenger nitric oxide (NO) can not be stored in neurones, the regulation of the NO-producing enzyme nitric oxide synthase (NOS) is crucial. Neuronal NOS metabolises L-arginine to nitric oxide (NO) and L-citrulline in a Ca(2+)-dependent manner. Thus, availability of L-arginine to NOS may modulate NO production. In this study, we examined the cellular distribution of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase, L-arginine and L-citrulline. Using NADPH-diaphorase histochemistry to visualise putative NO-producing cells and immunocytochemistry to localise L-arginine, we showed that the distribution of L-arginine-immunoreactive neurones correlates well with those of NADPH-diaphorase-positive neurones in cerebral ganglia of the pulmonate Helix pomatia. However, substrate and enzyme were visualised in separate but adjacent neurones. We further examined whether NADPH-diaphorase-labelled cells contain the L-citrulline. Following elevation of intracellular Ca(2+) by the Ca(2+) ionophore, ionomycin, or by a high-K(+) solution, the number of L-citrulline-immunoreactive neurones in mesocerebrum and pedal lobe increased up to tenfold. Preincubation of ganglia with the NOS inhibitor N(G)-nitro-L-arginine prevented ionomycin or high-K(+) solution-induced L-citrulline synthesis. Most L-citrulline-immunoreactive neurones contain NADPH-diaphorase activity. In conclusion, these experiments indicate a complementary distribution of NOS and L-arginine and suggest an unknown signalling pathway between neurones to maintain L-arginine and NO homeostasis.  相似文献   

20.
Nitric oxide acts as a widespread signal molecule and represents the endogenous activator of soluble guanylyl cyclase. In endothelial cells and brain tissue, NO is enzymatically formed from L-arginine by Ca2+/calmodulin-regulated NO synthases which require NADPH, tetrahydrobiopterin, and molecular oxygen as cofactors. Here we show that purified brain NO synthase binds to cytochrome c-agarose and exhibits superoxide dismutase-insensitive cytochrome c reductase activity with a Vmax of 10.2 mumol x mg-1 x min-1 and a Km of 34.1 microM. Cytochrome c reduction was largely dependent on Ca2+/calmodulin and cochromatographed with L-citrulline formation during gel filtration. When reconstituted with cytochrome P450, NO synthase induced a moderate Ca(2+)-independent hydroxylation of N-ethylmorphine. NO synthase also reduced the artificial electron acceptors nitro blue tetrazolium and 2,6-dichlorophenolindophenol. Cytochrome c, 2,6-dichlorophenolindophenol, and nitro blue tetrazolium inhibited NO synthase activity determined as formation of L-citrulline from 0.1 mM L-arginine in a concentration-dependent manner with half-maximal effects at 166, 41, and 7.3 microM, respectively. These results suggest that NO synthase may participate in cellular electron transfer processes and that a variety of electron-acceptors may interfere with NO formation due to the broad substrate specificity of the reductase domain of NO synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号