首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whereas the tumor acidic extracellular pH plays a crucial role in the invasive process, the mechanism(s) behind this acidification, especially in low nutrient conditions, are unclear. The regulation of the Na(+)/H(+) exchanger (NHE) and invasion by serum deprivation were studied in a series of breast epithelial cell lines representing progression from non-tumor to highly metastatic cells. Whereas serum deprivation reduced lactate production in all three cells lines, it inhibited NHE activity in the non-tumor cells and stimulated it in the tumor cells with a larger stimulation in the metastatic cells. The stimulation of NHE in the tumor cell lines was the result of an increased affinity of the internal H(+) regulatory site of the NHE without changes in sodium kinetics or expression. Serum deprivation conferred increased cell motility and invasive ability that were abrogated by specific inhibition of the NHE. Inhibition of phosphoinositide 3-kinase by overexpression of a dominant-negative mutant or wortmannin incubation inhibited NHE activity and invasion in serum replete conditions while potentiating the serum deprivation-dependent activation of the NHE and invasion. These results indicate that the up-regulation of the NHE by a phosphoinositide 3-kinase-dependent mechanism plays an essential role in increased tumor cell invasion induced by serum deprivation.  相似文献   

2.
First-trimester normal human trophoblast cells show some phenotypic similarities to malignant cells, e.g., rapid proliferation and ability to invade neighboring tissue, including basement membrane in situ, but do not have the ability for unlimited growth or metastasis. The present study examined whether the invasive ability of normal trophoblast cells is an intrinsic property of these cells, independent of the microenvironment provided by the pregnant uterus, and if so, whether they share some of the molecular mechanisms of invasion exercized by metastatic malignant cells. The ability of in vitro grown human trophoblast lines to invade an epithelium-free human amniotic membrane was measured from the temporal kinetics of retention of radioactivity within this membrane resulting from a penetration by 125I-iododeoxyuridine-labeled trophoblast cells. The magnitude of this invasion was compared to that of the highly metastatic human JAR-choriocarcinoma cell line and murine B16F10 melanoma line. Trophoblasts were found to share some of the same molecular mechanisms of invasion with the metastatic cell lines. Inhibitors of collagenase, plasmin, plasminogen, and plasminogen activators completely prevented invasion of the amnion by the trophoblast lines as well as by the metastatic JAR and B16F10 lines. Mersalyl, a compound known to activate collagenase, stimulated invasion by all cell lines tested, including under conditions in which plasmin activity was inhibited. In addition, trophoblasts produced significant levels of type IV collagenase and laminin, both of which appear to be important products of metastatic tumor cells required for basement membrane invasion. It may be concluded from these findings that the invasive property of first trimester human trophoblasts is genetically determined; that the magnitude of amnion invasion cannot differentiate between metastatic cell lines and invasive but nonmetastatic cell lines; and that invasiveness is not a sufficient prerequisite for metastatic ability.  相似文献   

3.
An antiserum prepared against the Triton-insoluble cytoskeleton of in vivo grown B16 melanoma tumor has been used to analyze the differential expression of cytoskeleton-associated molecules in cells with different degrees of proliferation and metastatic ability. This antiserum identified a major 97 kd molecule associated with the cytoskeletal fraction in B16 melanoma tumors, mouse embryo and in proliferating lymphocytes, with no reactivity with the 97 kd species in non proliferating lymphocytes. The antiserum revealed immune reactivity with a 180 kd Triton-insoluble species in normal adult mouse liver and kidney. A comparison of tumor cells with differing metastatic ability also showed a minor 180 kd component in poorly metastatic cells which appeared decreased and partly degraded in its more invasive counterpart. The differential recognition of a 97 kd species in resting and proliferating lymphocytes, as well as the different cleavage of a 180 kd species in tumor cells of differing metastatic ability, implies a role for these molecules in cell proliferation. The fact that these differences can be detected with an antiserum to tumor cell cytoskeleton suggests that this Triton-insoluble fraction may be a good source of molecules involved in growth control.  相似文献   

4.
Tumor cells often show a decrease in cell–cell and/or cell–matrix adhesion. An increasing body of evidence indicates that this reduction in cell adhesion correlates with tumor invasion and metastasis. Two main groups of adhesion molecules, cadherins and CAMs, have been implicated in tumor malignancy. However, the specific role that these proteins play in the context of tumor progression remains to be elucidated. In this review, we discuss recent data pointing to a causal relationship between the loss of cell adhesion molecules and tumor progression. In addition, the direct involvement of these molecules in specific signal transduction pathways will be considered, with particular emphasis on the alterations of such pathways in transformed cells. Finally, we review recent observations on the molecular mechanisms underlying metastatic dissemination. In many cases, spreading of tumor cells from the primary site to distant organs has been characterized as an active process involving the loss of cell–cell adhesion and gain of invasive properties. On the other hand, various examples of metastases exhibiting a relatively benign (i.e. not invasive) phenotype have been reported. Together with our recent results on a mouse tumor model, these findings indicate that ‘passive’ metastatic dissemination can occur, in particular as a consequence of impaired cell–matrix adhesion and of tumor tissue disaggregation.  相似文献   

5.
Fluctuating oxygen levels characterize the microenvironment of many cancers and tumor hypoxia is associated with increased invasion and metastatic potential concomitant with a poor prognosis. Similarly, the expression of lysyl oxidase (LOX) in breast cancer facilitates tumor cell migration and is associated with estrogen receptor negative status and reduced patient survival. Here we demonstrate that hypoxia/reoxygenation drives poorly invasive breast cancer cells toward a more aggressive phenotype by up-regulating LOX expression and catalytic activity. Specifically, hypoxia markedly increased LOX protein expression; however, catalytic activity (beta-aminopropionitrile inhibitable hydrogen peroxide production) was significantly reduced under hypoxic conditions. Moreover, poorly invasive breast cancer cells displayed a marked increase in LOX-dependent FAK/Src activation and cell migration following hypoxia/reoxygenation, but not in response to hypoxia alone. Furthermore, LOX expression is only partially dependent on hypoxia inducible factor-1 (HIF-1alpha) in poorly invasive breast cancer cells, as hypoxia mimetics and overexpression of HIF-1alpha could not up-regulate LOX expression to the levels observed under hypoxia. Clinically, LOX expression positively correlates with tumor progression and co-localization with hypoxic regions (defined by HIF-1alpha expression) in ductal carcinoma in situ and invasive ductal carcinoma primary tumors. However, positive correlation is lost in metastatic tumors, suggesting that LOX expression is independent of a hypoxic environment at later stages of tumor progression. This work demonstrates that both hypoxia and reoxygenation are necessary for LOX catalytic activity which facilitates breast cancer cell migration through a hydrogen peroxide-mediated mechanism; thereby illuminating a potentially novel mechanism by which poorly invasive cancer cells can obtain metastatic competency.  相似文献   

6.
Integrins and tumor invasion   总被引:12,自引:0,他引:12  
Cell-extracellular matrix interactions are important in the process of tumor cell invasion and metastasis. In particular, the interactions of tumor cells with basement membranes of tissue epithelial, as well as vascular endothelial, cells are likely to represent key steps in the metastatic process. The interactions between cells and the connective tissue matrix are mediated by a large family of cell surface receptors, the integrins, which represent multiple receptors for extracellular matrix and basement membrane components. Here, I review recent progress in elucidating the roles of integrins in tumor cell invasion. Altered expression of this large family of receptors on invasive tumor cells, as compared with non-invasive cells, may represent a fundamental step in the progressive expression of the invasive phenotype.  相似文献   

7.
Ovarian cancers metastasize by shedding into the peritoneal fluid and dispersing to distal sites within the peritoneum. Monolayer cultures do not accurately model the behaviors of cancer cells within a nonadherent environment, as cancer cells inherently aggregate into multicellular structures which contribute to the metastatic process by attaching to and invading the peritoneal lining to form secondary tumors. To model this important stage of ovarian cancer metastasis, multicellular aggregates, or spheroids, can be generated from established ovarian cancer cell lines maintained under nonadherent conditions. To mimic the peritoneal microenvironment encountered by tumor cells in vivo, a spheroid-mesothelial co-culture model was established in which preformed spheroids are plated on top of a human mesothelial cell monolayer, formed over an extracellular matrix barrier. Methods were then developed using a real-time cell analyzer to conduct quantitative real time measurements of the invasive capacity of different ovarian cancer cell lines grown as spheroids. This approach allows for the continuous measurement of invasion over long periods of time, which has several advantages over traditional endpoint assays and more laborious real time microscopy image analyses. In short, this method enables a rapid, determination of factors which regulate the interactions between ovarian cancer spheroid cells invading through mesothelial and matrix barriers over time.  相似文献   

8.
Upregulated expression of eN has been found in the highly invasive human melanoma cell lines but neither in melanocytes nor in primary tumor cells. Membrane proteins associated with cell adhesion and metastasis: alpha5-, beta1-, beta3-integrins, and CD44 were elevated gradually in accordance with increasing metastatic potential. alphav-integrin was seen mostly in aggressive melanomas. The expression of eN correlated with a number of metastasis-related markers and thus may have a function in the process. eN activity went parallel with its amount in all cells. Concanavalin A strongly inhibited the enzyme in a noncompetitive way. Clustering of eN protein in overexpressing cells by ConA-treatment increased the enzyme association with the heavy cytoskeletal complexes. A similar shift towards cytoskeletal fractions took also place with other membrane proteins coexpressed with eN. This ConA-induced association may reflect a putative interaction of eN with physiological ligand, that upon interaction, aggregates protein components of lipid rafts and triggers signaling pathway that may be intrinsically involved in cell-stroma adhesion.  相似文献   

9.
Epithelial-mesenchymal transition (EMT) is a key process in tumor metastatic cascade that is characterized by the loss of cell-cell junctions and cell polarity, resulting in the acquisition of migratory and invasive properties. However, the precise molecular events that initiate this complex EMT process in head and neck cancers are poorly understood. Increasing evidence suggests that tumor microenvironment plays an important role in promoting EMT in tumor cells. We have previously shown that head and neck tumors exhibit significantly higher Bcl-2 expression in tumor-associated endothelial cells and overexpression of Bcl-2 alone in tumor-associated endothelial cells was sufficient to enhance tumor metastasis of oral squamous cell carcinoma in a severe combined immunodeficient (SCID) mouse model. In this study, we show that endothelial cells expressing Bcl-2 (EC-Bcl-2), when cocultured with head and neck tumor cells (CAL27), significantly enhance EMT-related changes in tumor cells predominantly by the secretion of IL-6. Treatment with recombinant IL-6 or stable IL-6 overexpression in CAL27 cells or immortalized oral epithelial cells (IOE) significantly induced the expression of mesenchymal marker, vimentin, while repressing E-cadherin expression via the JAK/STAT3/Snail signaling pathway. These EMT-related changes were further associated with enhanced tumor and IOE cell scattering and motility. STAT3 knockdown significantly reversed IL-6-mediated tumor and IOE cell motility by inhibiting FAK activation. Furthermore, tumor cells overexpressing IL-6 showed marked increase in lymph node and lung metastasis in a SCID mouse xenograft model. Taken together, these results show a novel function for IL-6 in mediating EMT in head and neck tumor cells and increasing their metastatic potential.  相似文献   

10.
Hepatocyte growth factor (HGF) induces invasive growth, a biological program that confers tumor cells the capability to invade and metastasize by integrating cell proliferation, motility, morphogenesis, and survival. We here demonstrate that HGFR activation promotes survival of colorectal carcinoma (CRC) cells exposed to conditions that mimic those met during tumor progression, i.e. nutrient deprivation or substrate detachment, and following chemotherapeutic treatment. In all these conditions, a sustained activation of p38 MAPK delivers a main death signal that is overcome by cell treatment with HGF. HGF-driven survival requires the engagement of the PI3K/Akt/mTOR/p70S6K and ERK MAPK transduction pathways. Abrogation of p38 MAPK activity prevents CRC cell apoptosis also when these transduction pathways are inhibited, and treatment with HGF further increases survival. Engagement of these signaling cascades is also needed for HGF to induce CRC cell scattering, morphogenesis, motility and invasion. Activation of p38 MAPK signaling is therefore a main apoptotic switch for CRC cells in the stressful conditions encountered during tumor progression. Conversely, HGF orchestrates several biochemical pathways, which allow cell survival in these same conditions and promote the biological responses required for tumor invasive growth. Both p38 MAPK and HGF/HGFR signaling constitute potential molecular targets for inhibiting colorectal carcinogenesis.  相似文献   

11.
Cancer metastasis is a complex process involving cell-cell interactions mediated by cell adhesive molecules. In this study we determine the adhesion strength between an endothelial cell monolayer and tumor cells of different metastatic potentials using Atomic Force Microscopy. We show that the rupture forces of receptor-ligand bonds increase with retraction speed and range between 20 and 70 pN. It is shown that the most invasive cell lines (T24, J82) form the strongest bonds with endothelial cells. Using ICAM-1 coated substrates and a monoclonal antibody specific for ICAM-1, we demonstrate that ICAM-1 serves as a key receptor on endothelial cells and that its interactions with ligands expressed by tumor cells are correlated with the rupture forces obtained with the most invasive cancer cells (T24, J82). For the less invasive cancer cells (RT112), endothelial ICAM-1 does not seem to play any role in the adhesion process. Moreover, a detailed analysis of the distribution of rupture forces suggests that ICAM-1 interacts preferentially with one ligand on T24 cancer cells and with two ligands on J82 cancer cells. Possible counter receptors for these interactions are CD43 and MUC1, two known ligands for ICAM-1 which are expressed by these cancer cells.  相似文献   

12.
The effect of the phorbol ester tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) on cell invasion was studied using an in vitro assay for cell invasion through a reconstituted basement membrane matrix (Matrigel). TPA inhibited the invasiveness of malignant human fibrosarcoma HT1080 cells. In contrast, WI-38 lung fibroblasts, which show a very low invasive capacity, were stimulated (3-fold) to invade Matrigel after exposure to TPA for 48 hours. The inhibitory or stimulatory effects of TPA on cell invasion were correlated with a decrease or an increase in cell motility and collagenase IV activity, respectively. Synthetic diacylglycerols partially mimicked the inhibitory action of TPA on HT1080 cells but failed to stimulate WI-38 cell invasion. Immunoblots demonstrated that in both cell lines the alpha and beta isoforms of protein kinase C were equally down-regulated after a 5 hour exposure to TPA despite the basal low level of protein kinase C polypeptide in the malignant cells. Thus, whereas in WI-38 cells induction of an invasive behavior could be observed in the absence of protein kinase C, in the malignant cells disappearance of the kinase was associated with a non-invasive phenotype.  相似文献   

13.
Background: Our previous studies revealed that leukocyte infiltration into aged or injured myoepithelial cell layers is a key trigger for breast tumor invasion and metastasis. Our current study further assessed the possibility that leukocyte aggregates may harbor detached individual tumor cell or clusters of tumor cells. Materials and methods: Tissue sections from patients with pregnancy-associated breast cancer (PABC) and controls were subjected to morphological and immunohistochemical assessment with a panel of leukocyte and tumor cell related markers. Results: A total of 63 leukocyte aggregates were detected in the 20 PABC cases studied. Of these, 55 (87%) were distributed within normal or hyperplastic lobules adjacent to invasive lesions. Over 70% of these leukocyte aggregates harbored detached individual tumor cell or cell clusters with malignant properties, including strong p53 positivity, elevated proliferation, reduced cell surface adhesion molecules, and cytological resemblance to adjacent invasive cancer cells. A significant number of these tumor cells or condensed chromosomes of mitotic tumor cells were observed to conjoin with the plasma membrane of leukocytes. Similar alterations were seen in leukocyte aggregates within the inter-lobular space and in non-PABC with a lower frequency. Conclusions: These findings suggest that leukocyte infiltration may trigger dissemination of tumor cells from their primary site, and that leukocyte aggregates may serve as a reservoir for disseminated tumor cells that may be physically dragged to distant sites by leukocytes during their migration.  相似文献   

14.
Carcinoma are complex societies of mutually interacting cells in which there is a progressive failure of normal homeostatic mechanisms, causing the parenchymal component to expand inappropriately and ultimately to disseminate to distant sites. When a cancer cell metastasizes, it first will be exposed to cancer associated fibroblasts in the immediate tumor microenvironment and then to normal fibroblasts as it traverses the underlying connective tissue towards the bloodstream. The interaction of tumor cells with stromal fibroblasts influences tumor biology by mechanisms that are not yet fully understood. Here, we report a role for normal stroma fibroblasts in the progression of invasive tumors to metastatic tumors. Using a coculture system of human metastatic breast cancer cells (MCF10CA1a) and normal murine dermal fibroblasts, we found that medium conditioned by cocultures of the two cell types (CoCM) increased migration and scattering of MCF10CA1a cells in vitro, whereas medium conditioned by homotypic cultures had little effect. Transient treatment of MCF10CA1a cells with CoCM in vitro accelerated tumor growth at orthotopic sites in vivo, and resulted in an expanded pattern of metastatic engraftment. The effects of CoCM on MCF10CA1a cells were dependent on small amounts of active TGF-β1 secreted by fibroblasts under the influence of the tumor cells, and required intact ALK5-, p38-, and JNK signaling in the tumor cells. In conclusion, these results demonstrate that transient interactions between tumor cells and normal fibroblasts can modify the acellular component of the local microenvironment such that it induces long-lasting increases in tumorigenicity and alters the metastatic pattern of the cancer cells in vivo. TGF-β appears to be a key player in this process, providing further rationale for the development of anti-cancer therapeutics that target the TGF-β pathway.  相似文献   

15.
Bullous pemphigoid antigen-1 (BPA1) and alpha(6)beta(4)-integrin colocalize at the hemidesmosomes in basal-layer keratinocytes of normal squamous epithelia. The expression of these genes was analyzed during the process of tumor cell invasion and metastasis on frozen sections of head and neck biopsies, and the structural appearance of hemidesmosomes was analyzed by electron microscopy. Despite a diminution of hemidesmosomal structures as revealed by electron microscopy, gene expression of BPA1 and alpha(6)beta(4)-integrins was distinctly upregulated with the onset of invasive growth, demonstrated at the mRNA level by in situ hybridization. The upregulated gene expression extended to the entire proliferative zone of invasive tumors, including the tumor cells which have lost contact with the basement membrane and no longer display hemidesmosomes. The polarized localization of the BPA1 and alpha(6)beta(4) proteins to the basal aspect of the peripheral tumor cells was largely retained in invasive but nonmetastatic lesions, but was lost upon progression to metastatic growth of head and neck squamous cell carcinomas (SCC), in which pericellular staining extended into many tumor cell layers. The results of this study confirm that expression of BPA1 and alpha(6)beta(4)-integrins is elevated in carcinoma cells but is not directed to intact hemidesmosomes. Importantly, this loss of directed localization is an indicator of the capacity to metastasize.  相似文献   

16.
Metalloproteinases (MMPs) are a cluster of at least 23 enzymes belonging to the more wide family of endopeptidases called Metzincins, whose structure is characterized by the presence of a zinc ion at the catalytic site. Although the general view of MMPs as physiologic scissors involved in extracellular matrix (ECM) degradation and tissue remodeling is still valid, additional functions have recently emerged, including the ability to cleave non ECM molecules such as growth factors, cytokines and chemokines from their membrane-anchored proforms. These functions are utilized by tumor cells and are fundamental in the determination of tumor progression and invasion. The effect of MMPs activity in cancer progression has been traditionally associated with the acquisition by tumor cells of an invasive phenotype, an indispensable requisite for the metastatic spreading of cancer cells. In addition to the traditional view, a new role for MMPs in creating a favourable microenvironment has been proposed, so that MMPs are not only involved in cell invasion, but also in signaling pathways that control cell growth, inflammation, or angiogenesis. Finally, recent evidence suggest a role of MMPs in the so called "pre-metastatic niche" that is the hypothesis of an early distant modification of the premetastatic site by primary cancer cells. This new hypothesis is changing our traditional view about MMPs and provides important insights into the effective time window for the therapeutic use of MMP inhibitors. In this review we provide the main available data about the ability of MMPs in creating a suitable microenvironment for tumor growth in metastatic sites and we indicate the implication of these data on the potential use of MMP inhibitors in the metastatic therapy.  相似文献   

17.
Tumor cells often show a decrease in cell-cell and/or cell-matrix adhesion. An increasing body of evidence indicates that this reduction in cell adhesion correlates with tumor invasion and metastasis. Two main groups of adhesion molecules, cadherins and CAMs, have been implicated in tumor malignancy. However, the specific role that these proteins play in the context of tumor progression remains to be elucidated. In this review, we discuss recent data pointing to a causal relationship between the loss of cell adhesion molecules and tumor progression. In addition, the direct involvement of these molecules in specific signal transduction pathways will be considered, with particular emphasis on the alterations of such pathways in transformed cells. Finally, we review recent observations on the molecular mechanisms underlying metastatic dissemination. In many cases, spreading of tumor cells from the primary site to distant organs has been characterized as an active process involving the loss of cell-cell adhesion and gain of invasive properties. On the other hand, various examples of metastases exhibiting a relatively benign (i.e. not invasive) phenotype have been reported. Together with our recent results on a mouse tumor model, these findings indicate that 'passive' metastatic dissemination can occur, in particular as a consequence of impaired cell-matrix adhesion and of tumor tissue disaggregation.  相似文献   

18.
Summary MIP-101 is a poorly differentiated human colon carcinoma cell line established from ascites that produces minimal amounts of carcinoembryonic antigen (CEA), a 180 kDa glycoprotein tumor marker, and nonspecific cross-reacting antigen (NCA), a related protein that has 50 and 90 kDa isoforms, in monolayer culture. However, MIP-101 produces CEA when implanted into the peritoneum of nude mice but not when implanted into subcutaneous tissue. We tested whether three-dimensional (3D) growth was a sufficient stimulus to produce CEA and NCA 50/90 in MIP-101 cells, because cells grow in 3D in vivo rather than in two-dimensions (2D) as occurs in monolayer cultures. To do this, MIP-101 cells were cultured on microcarrier beads in 3D cultures, either in static cultures as nonadherent aggregates or under dynamic conditions in a NASA-designed low shear stress bioreactor. MIP-101 cells proliferated well under all three conditions and increased CEA and NCA production three- to four-fold when grown in 3D cultures compared to MIP-101 cells growing logarithmically in monolayers. These results suggest that 3D growth in vitro simulates tumor function in vivo and that 3D growth by itself may enhance production of molecules that are associated with the metastatic process.  相似文献   

19.
Upregulated expression of eN has been found in the highly invasive human melanoma cell lines but neither in melanocytes nor in primary tumor cells. Membrane proteins associated with cell adhesion and metastasis: α5-, β1-, β3-integrins, and CD44 were elevated gradually in accordance with increasing metastatic potential. αv-integrin was seen mostly in aggressive melanomas. The expression of eN correlated with a number of metastasis-related markers and thus may have a function in the process. eN activity went parallel with its amount in all cells. Concanavalin A strongly inhibited the enzyme in a noncompetitive way. Clustering of eN protein in overexpressing cells by ConA-treatment increased the enzyme association with the heavy cytoskeletal complexes. A similar shift towards cytoskeletal fractions took also place with other membrane proteins coexpressed with eN. This ConA-induced association may reflect a putative interaction of eN with physiological ligand, that upon interaction, aggregates protein components of lipid rafts and triggers signaling pathway that may be intrinsically involved in cell-stroma adhesion.  相似文献   

20.
Previous reports have implicated connexin 43 (Cx43) as a tumor suppressor in early stages of tumorigenesis and in some cases as an enhancer of cell migration in later stages. To address the role of Cx43 in melanoma tumor progression, we utilized two melanoma cell lines derived from the same patient in pre‐metastasis (WM793B) and following isolation from a lung metastasis in nude mice (1205Lu). Our results demonstrate a strikingly increased expression of Cx43 in both the pre‐metastatic and metastatic melanoma cell lines that were actively migrating compared to non‐migrating cells. To further investigate the role of Cx43 in these melanoma cells, we overexpressed wild type (wt) Cx43 as well as a mutant dominant negative Cx43 mutant that causes closed channels (T154A). The metastatic 1205Lu cells expressing Cx43‐T154A showed a twofold decrease in colony formation on soft agar while the nonmetastatic WM793B cells showed no significant change. In invasion assays through a collagen matrix, the same Cx43‐T154A 1205Lu cells demonstrated a three‐ to fourfold increase in the invasion index compared to either wt Cx43 or vector control cells. The increase in invasiveness was eliminated by migration towards media with charcoal‐stripped serum, suggesting that migration may be directed towards a lipophilic compound(s). Our findings demonstrate that a dominant negative Cx43 mutant deficient in channel formation exhibits a dual pattern of regulation in metastatic melanoma cells with a decrease in anchorage‐independent growth and an increase in invasive potential. J. Cell. Physiol. 228: 853–859, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号