首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barley plants (Hordeum vulgare L. cv. Mazurka) were grown inaerated solution cultures with 2 mM or 8 mM inorganic nitrogensupplied as nitrate alone, ammonium alone or 1:1 nitrate+ammonium.Activities of the principal inorganic nitrogen assimilatoryenzymes and nitrogen transport were measured. Activities ofnitrate and nitrite reductases, glutamine synthetase and glutamatesynthase were greater in leaves than in roots but glutamatedehydrogenase was most active in roots. Only nitrate and nitritereductases changed notably (4–10 times) in response tothe different nitrogen treatments. Nitrate reductase appearedto be rate-limiting for nitrate assimilation to glutamate inroots and also in leaves, where its total in vitro activitywas closely related to nitrate flux in the xylem sap and wasslightly in excess of that needed to reduce the transportednitrate. Xylem nitrate concentration was 13 times greater thanthat in the nutrient solution. Ammonium nitrogen was assimilatedalmost completely in the roots and the small amount releasedinto the xylem sap was similar for the nitrate and the ammoniumtreatments. The presence of ammonium in the nutrient decreasedboth export of nitrate to the xylem and its accumulation inleaves and roots. Nitrate was stored in stem bases and was releasedto the xylem and thence to the leaves during nitrogen starvation.In these experiments, ammonium was assimilated principally inthe roots and nitrate in the leaves. Any advantage of this divisionof function may depend partly on total conversion of inorganicnitrogen to amino acids when nitrate and ammonium are givenin optimal concentrations. Hordeum vulgare L., barley, nitrate, ammonium, nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, glutamate dehydrogenase, nitrogen transport  相似文献   

2.
Ricinus plants were supplied with nutrient solutions containingdifferent N-sources or different nitrate concentrations andwere also exposed to mild salinity. Between 41 and 51 d aftersowing, the ratio of inorganic to total nitrogen in xylem andphloem saps, the content of inorganic nitrogen and malate intissues, and nitrate reductase activities were determined. Theflows of nitrate, ammonium, and malate between root and shootwere modelled to identify the site(s) of inorganic nitrogenassimilation and to show the possible role of malate in a pH-statmechanism. Only in the xylem of nitrate-fed plants did inorganicnitrogen, in the form of nitrate, play a role as the transportsolute. The nitrate percentage of total nitrogen in the xylemsap generally increased in parallel with the external nitrateconcentration. The contribution of the shoot to nitrate reductionincreased with higher nitrate supply. Under salt treatment relativelymore nitrate was reduced in the root as compared with non-treatedplants. Ammonium was almost totally assimilated in the root,with only a minor recycling via the phloem. Nitrate reductaseactivities measured in vitro roughly matched, or were somewhatlower than, calculated rates of nitrate reduction. From therates of nitrate reduction (OH -production) and rates of malatesynthesis (2H+-production) it was calculated that malate accumulationcontributed 76, 45, or 39% to the pH-stat system during nitratereduction in plants fed with 0.2, 1.0 or 4.0 mM nitrate, malateflow in the phloem played no role. In tissues of ammonium-fedplants no malate accumulation was found and malate flows inxylem and phloem were also relative low. Key words: Ammonium, Ricinus communis, phloem, xylem, transport, nitrate, nitrate reductase, nitrogen assimilation, malate  相似文献   

3.
Distribution of Nitrogen during Growth of Sunflower (Helianthus annuus L.)   总被引:1,自引:0,他引:1  
The accumulation, distribution and redistribution of dry matterand nitrogen is described for Helianthus annuus L. cv. Hysun21 grown on 6 mM urea in glasshouse culture. Seed dry matterand nitrogen were transferred to seedlings with net efficienciesof 40 and 86 per cent respectively. At flowering, the stem hadmost of the plant's dry matter and the leaves most of its nitrogen.About 35 per cent of the plant's nitrogen accumulated afterthree-row anthesis. The amount of protein in vegetative parts,especially leaves, declined after flowering. Concentrationsof free amino compounds also decreased during growth. Matureseeds had 38 per cent of the total plant dry weight and 68 percent of the total nitrogen. Seeds acquired 33 per cent of theirdry matter and nitrogen from redistribution from above-groundplant parts. The stem was most important for storage of carbohydrate,leaves the most important for nitrogen. Over 50 per cent ofthe nitrogen in the stem and leaves was redistributed. Plantsthat received 6 mM nitrate accumulated more dry matter thanurea-grown plants. Seeds from nitrate-grown plants were heavier(58 mg) than those of urea-grown plants (46 mg), and their percentageoil was greater (50 and 41 respectively). The amount of nitrogenper seed was the same. Little or no urea was detected in xylem sap of plants suppliedwith 5 mM urea, but it was detected in sap of plants which received25 mM. Concentrations of urea and amino compounds in the sapdecreased up the stem. Plants supplied with nitrate had mostof the nitrogen in xylem sap as NO2, suggesting littlenitrate reduction in roots. Plants grown on 6 mM nitrate andchanged to high levels of urea-nitrogen for 14 days still hadhigh levels of nitrate; little nitrate remained in plants receivinglow levels of urea. When urea is applied in irrigation waterto field-grown sunflower, the nitrogen is subsequently takenup as nitrate due to rapid nitrogen transformations in the soil. Helianthus annuus L., sunflower, urea, nitrate, nitrogen transport, xylem sap, nitrogen accumulation nitrogen distribution  相似文献   

4.
Seedlings of Ricinus communis L. cultivated in quartz sand weresupplied with a nutrient solution containing either 1 mol m–3NO3 or 1 mol m–3 NH+4 as the nitrogen source. Duringthe period between 41 and 51 d after sowing, the flows of N,C and inorganic ions between root and shoot were modelled andexpressed on a fresh weight basis. Plant growth was clearlyinhibited in the presence of NH+4. In the xylem sap the majornitrogenous solutes were nitrate (74%) or glutamine (78%) innitrate or ammonium-fed plants, respectively. The pattern ofamino acids was not markedly influenced by nitrogen nutrition;glutamine was the dominant compound in both cases. NH+4 wasnot transported in significant amounts in both treatments. Inthe phloem, nitrogen was transported almost exclusively in organicform, glutamine being the dominant nitrogenous solute, but theN-source affected the amino acids transported. Uptake of nitrogenand carbon per unit fresh weight was only slightly decreasedby ammonium. The partitioning of nitrogen was independent ofthe form of N-nutrition, although the flow of nitrogen and carbonin the phloem was enhanced in ammonium-fed plants. Cation uptakerates were halved in the presence of ammonium and lower quantitiesof K+, Na+ and Ca2+ but not of Mg2+ were transported to theshoot. As NH+4 was balanced by a 30-fold increase in chloride in thesolution, chloride uptake was increased 6-fold under ammoniumnutrition. We concluded that ammonium was predominantly assimilated inthe root. Nitrate reduction and assimilation occurred in bothshoot and root. The assimilation of ammonium in roots of ammonium-fedplants was associated with a higher respiration rate. Key words: Ricinus communis, nitrogen nutrition (nitrate/ammonium), phloem, xylem, transport, partitioning, nitrogen, carbon, potassium, sodium, magnesium, calcium, chloride  相似文献   

5.
Seedlings of Ricinus communis L. were cultivated in quartz sandand supplied with media which contained either different concentrationsof nitrate or ammonium nitrogen and were treated with a lowsalt stress. The concentration of ABA was determined in tissuesand in xylem and phloem saps. Between 41 and 51 day after sowing,abscisic acid (ABA) flows between roots and shoots were modelled.Long-distance transport of ABA was not stimulated under conditionsof nitrate deficiency (0.2 mol m–3). However, when ammoniumwas given as the only N source (1.0 mol m–3), ABA transportin both xylem and phloem was increased significantly. Mild saltstress (40 mol m–3 NaCl) increased ABA transport in nitrate-fedplants, but not in ammonium-fed plants. The leaf conductancewas lowered by salt treatment with both nitrogen sources, butit was always lower in ammonium-fed compared to nitrate-fedplants. A negative correlation of leaf conductance to ABA levelsin leaves or flow in xylem was found only in comparison of ammonium-fedto nitrate-fed plants. Key words: Abscisic acid, ammonium, Ricinus communis, phloem, xylem, transport, nitrate, nitrogen nutrition  相似文献   

6.
7.
The effect of supplying either nitrate or ammonium on nitrate reductase activity (NRA) was investigated in Brassica napus seedlings. In roots, nitrate reductase activity (NRA) increased as a function of nitrate content in tissues and decreased when ammonium was the sole nitrogen source. Conversely, in the shoots (comprising the cotyledons and hypocotyl), NRA was shown to be independent of nitrate content. Moreover, when ammonium was supplied as the sole nitrogen source, NRA in the shoots was surprisingly higher than under nitrate supply and increased as a function of the tissue ammonium content. Under 15 mM of exogenous ammonium, the NRA was up to 2.5-fold higher than under nitrate supply after 6 d of culture. The NR mRNA accumulation under ammonium nutrition was 2-fold higher than under nitrate supply. The activation state of NR in shoots was especially high compared with roots: from nearly 80% under nitrate supply it reached 94% under ammonium. This high NR activation state under ammonium supply could be the consequence of the slight acidification observed in the shoot tissue. The effect of ammonium on NRA was only observed in cotyledons and when more than 3 mM ammonium was supplied. No such NRA increase was evident in the roots or in foliar discs. Addition of 1 mM nitrate under ammonium nutrition halved NRA and decreased the ammonium content in shoots. Thus, this unusual NRA was restricted to seedling cotyledons when nitrate was lacking in the nitrogen source.  相似文献   

8.
A suspension culture of soybean (Glycine max L.) was grown on a defined medium in which the nitrogen sources were nitrate (25 mM) and ammonium (2 mM). The cells did not grow on nitrate unless the medium was supplemented with ammonium or glutamine. The l- and d-isomers of 12 amino acids tested singly could not replace ammonium. Most amino acids (4 mM) inhibited growth when the cells were cultured on nitrate and ammonium. Cells from five other plants (Reseda luteoli L.; Triticum monococcum L.; flax, Linum usitatissimum L.; horseradish, Amoracia lapathifolia Gilib; Haplopappus gracilis L.) grew on the defined medium with nitrate (25 mM) as the sole nitrogen source. Higher cell yields were obtained when ammonium (2 mM) or glutamine also was present. Supplementing the defined medium with high concentrations of ammonium (20 mM) inhibited growth of soybean, Haplopappus, and wheat cells. Addition of citrate (5 mM) relieved the inhibitory effects of ammonium in soybean and wheat cells but not in the Haplopappus cells.  相似文献   

9.
Seedlings of 12 genotypes were grown in pots and watered withnutrient solutions providing 0, 1, 6 and 20 mg equivalents ofnitrate per I. Increasing the external nitrate supply broughtabout increases in plant weight, nitrate, reduced nitrogen concentrationsand in vivo nitrate reductase activity. When given solutioncontaining 6 mg equivalents of nitrate per litre, the plantscontained approximately 0.1 per cent nitrate, a concentrationsimilarto that found in field-grown plantsat thesamestage of growth.At the 6 mg equivalent level nitrate supply, nitrate reductaseactivity was strongly positively correlated with the concentrationsof nitrate and reduced nitrogen and negatively correlated withplant weight. Similar, though weaker, correlations were foundat the lower and higher levels of nitrate supply. The two Triticalegenotypes however, had higher than average plant weights andnitrate reductase activities, while plants of the two Aegilopsspecies weighed much less, especially at the higher levels ofnitrate supply, than the average of all 12 genotypes and generallyhad correspondingly greater nitrate and reduced nitrogen concentrationsand nitrate reductase activities. For individual genotypes,plant weight at a given level of nitrate supply was stronglycorrelated with weight at all other levels. In a second experiment seedlings of 150 genotypes were grownin compost watered with 10 mM Ca(NO3)2 Nitrate and reduced nitrogenconcentrations were negatively correlated with plant weightbut there was no significant correlation between nitrate reductaseactivityand either plant weight, nitrate or reduced nitrogen concentration. The results are taken to indicate that genetic factors, otherthan those determining the supply of reduced nitrogen, werelimiting growth and that as a consequence small plants accumulatednitrate and reduced nitrogen compounds in greater concentrationsthan large ones. The greater nitrate concentrations in smallplants may have induced the increased nitrate reductase activityfound in these, as compared with larger plants. Because plantweight varied more than did reduced nitrogen concentration,variation in reduced nitrogen per plant was more highly correlatedwith plant weight than with per cent reduced nitrogen.  相似文献   

10.
The long-day flowering of Lemna perpusilla 6746 on an SH inhibitor-containingmedium was inhibited by the application of ammonium ion to themedium. Ammonium ion not only suppressed long-day flowering,but relieved the inhibition of vegetative growth caused by theinhibitors. Nitrite, casamino acids, glutamine and asparaginehad a similar effect, suggesting that the inhibition of long-dayflowering by ammonium ion is not a direct effect of the ion.Most amino acids, with the exception of glutamate and aspartate,also prevented long-day flowering, but their effects on vegetativegrowth varied. No qualitative differences in amino acid compositionwere observed among plants cultured on media containing nitrate,nitrite or NH44NO3as the sole nitrogen source. However, theamounts of free and total amino acids werehigher in plants fedwith nitrite or NH4NO3 than in those fed with nitrate. Thissuggests that the inhibition of long-day flowering by ammoniumand nitrite can be ascribed to increased nitrogen metabolism. Though decreased activity by SH inhibitors of nitrate reductase(SH enzyme) is assumed to result in long-day flowering by loweringthe nitrogen metabolism, lowering the nitrogen level in M mediumdid not bring about floral initiation in the absence of SH inhibitors. (Received January 7, 1975; )  相似文献   

11.
Nitrogen assimilation in citrus trees   总被引:1,自引:0,他引:1  
Assimilation of 15N-ammonium and 15N-nitrate was examined in 3-year-old satsuma mandarin (Citrus unshiu Marcovitch) trees. Experiments were designed to establish the time course of incorporation of nitrogen just taken up into amino compounds. In fine roots, absorbed 15N-ammonium was actively incorporated into glutamine and then into glutamic acid and asparagine. When feeding 15N-nitrate, glutamic acid and asparagine were actively synthesized, but glutamine synthesis was comparatively low as compared with that in ammonium feeding. In current leaves and fruits, a clear difference in the labelling patterns of amino acids was found between the ammonium and nitrate feedings. The amino acid most markedly labelled was asparagine in the ammonium feeding and glutamine in the nitrate feeding. Considering the most heavily labelled component in leaves and fruits, the main form of the nitrogen components transported upward in the xylem was discussed.  相似文献   

12.
Peoples, M. B., Sudin, M. N. and Herridge, D. F. 1987. Translocationof nitrogenous compounds insymbiotic and nitrate-fed amide-exportinglegumes.–J. exp. Bot. 38: 567–579. The transport of nitrogen from the roots and nodules of chickpea(Cicer anetinum L.), lentil (Lens culinaris Medic), faba bean(Vicia faba L.) and pea (Pisum sativum L.) was examined in glasshouse-grownplants supplied either with nitrate-free nutrients or with nutrientssupplemented with 1,2,4 or 8 mol m-3153N-nitrate. A sixth treatmentcomprised uninoculated plants supplied with 8–0 mol m-31513N-nitrate. For each species, more than 75% of the nitrogenwas exported from the nodules as the amides, asparagine andglutamine. In fully symbiotic plants, the amides also dominatednitrogen transport to the shoot When N2 fixation activity wasdecreased by the addition of nitrate to the rooting medium,the N-composition of xylem exudate and stem solutes changedconsiderably. The relative concentrations of asparagine tendedto increase in the xylem whilst those of glutamine were reduced;the levels of nitrate increased in both xylem exudate and thesoluble nitrogen pool of the stem with a rise in nitrate supply.The changes in relative nitrate contents reflected generallythe contributions of root and shoot to overall nitrate reductaseactivity at the different levels of nitrate used. The relationshipsbetween the relative contents of xylary or stem nitrate andamino nitrogen and the plants' reliance on N2 fixation (determinedby the 15N isotope dilution procedure) were examined. Data suggestthat compositional relationships based on nitrate may be reasonableindicators of symbiotic dependence for all species under studyexcept faba bean when greater than 25% of plant nitrogen wasderived from N2 fixation. Key words: Nitrogen, translocation, legumes  相似文献   

13.
Seedlings of Scots pine ( Pinus sylvestris L.) were grown on perlite for 21 days under controlled conditions. Apart from the water control, KNO3 (15 m M ), (NH4)2SO4 (7.5 m M ), and NH4NO3 (15 m M ) were offered to study the effects of a high nitrogen supply on nitrogen assimilation. In some experiments 1.3 m M potassium was added to the basic ammonium solutions. In labelling studies nitrate and ammonium were 2.3 atom%15N-enriched. It was found that over the 21-day period approximately three times more ammonium-N was taken up than nitrate-N. However, nitrate and ammonium, applied simultaneously, were taken up to the same extent as if they were applied separately (additivity). The presence of K+ in the medium did not affect N-uptake. Among the soluble N-containing compounds nitrate, ammonium and 8 amino acids were quantified. It was found that assimilation of nitrate can cope with the uptake of NO3 under all circumstances. Neither free nitrate nor ammonium or amino acids accumulated to an extent exceeding the values of water-grown seedlings. On the other hand, in case of high ammonium supply considerably more nitrogen was taken up than could be incorporated into nonsoluble N-containing substance ('protein'). The remaining nitrogen was found to accumulate in intermediary storage pools (free NH4+, glutamine, asparagine, arginine). Part of this accumulated N could be incorporated into protein when potassium was offered in the nutrient solution. It is concluded that potassium is a requirement for a high rate of protein synthesis not only in crop plants but also in conifers.  相似文献   

14.
We studied the response of maize (Zea mays L. cv. Anjou 256)to a simultaneous, but separated supply of ammonium and nitrate(localized supply, LS). A split-root system was used to supplyhalf of the roots with ammonium and the other half with nitrate.A homogeneously distributed supply of both nitrogen forms (HS)was the control treatment. Seedlings were grown for 12 d fromthe two-leaf to the three-leaf stage in hydroponics at threepH levels (4, 5·5 and 7). The total N concentration was3 mol m-3. The split-root system was established by removingthe seminal root system and using only four nodal roots perplant. Total root length and root surface area were recordedautomatically with a modified Delta- T area meter. Other morphologicalroot traits (such as main axis length and diameter, number,density, and length of laterals) were recorded manually. Uptakeof ammonium and nitrate was measured by the depletion of thenutrient solution. As compared with LS, HS was superior in shootand root DM, total root length and root surface area, ammoniumand nitrate uptake and shoot nitrogen concentration, irrespectiveof pH level. This indicates that, also under field conditions,mixed ammonium and nitrate fertilization is only beneficialto plant growth if both N forms are evenly distributed in thesoil. At both HS and LS, ascending pH increased the ammonium:nitrateuptake ratio. At LS, declining pH induced a considerable shiftin the distribution of root DM, root length, and root surfacearea the nitrate-fed compartment.Copyright 1993, 1999 AcademicPress Maize, Zea may L., ammonium, nitrate, pH, root morphology, split-root  相似文献   

15.
Cycling of amino compounds in symbiotic lupin   总被引:2,自引:0,他引:2  
The composition of amino acids was determined in the xylem andphloem sap of symbiotic lupins grown under a variety of treatmentsdesigned to alter the rate of nitrogen fixation. Asparaginewas the major amino acid in both xylem and phloem with glutamine,glutamate and aspartate also major components. GABA had a highconcentration in the xylem while valine was a major componentin the phloem. Exposure to combined nitrogen in the form ofeither ammonium or nitrate caused a reduction in specific nitrogenaseactivity and was associated with subsequent changes in bothof the translocated saps. Inhibiting nitrogen fixation by exposingnodules to oxygen produced a lower amide to amine ratio in thexylem sap (1.3:1) compared with control and nitrate ratios (2.6:1)and ammonium ratios (7.1:1). Similar ratios for amide aminewere also observed in the phloem sap. Labelling studies using15N2 to follow nitrogen fixation, ammonium assimilation andamino acid transport have shown rapid accumulation of labelinto glutamine with subsequent enrichment in glutamate, aspartate,alanine, and GABA. Asparagine was found in high concentrationsin nodules and became slowly enriched. Labelled nitrogen fixedand assimilated in nodules was detected 40 min later in stemxylem extracts, largely as the amides glutamine and asparagine.These experiments provide evidence that large amounts of nitrogenouscompounds are cycled through the root nodules of symbiotic plants(contributing approximately 50% of xylem N) and that differencesin the composition of the phloem sap may influence nodule growthand activity. Key words: Nitrogen fixation, nitrogen translocation, isotope labelling, legumes, GC-MS  相似文献   

16.
WALLACE  W.; PATE  J. S. 《Annals of botany》1967,31(2):213-228
A soluble NADH-dependent nitrate reductase is described forthe shoot system of Xanthium. Young leaves and immature stemtissues contain high levels of the enzyme. They are relativelyrich in free amino acids and amides but store little free nitrate.The specific activity of the enzyme is lower in fully expandedleaves, although these leaves exhibit higher rates of fixationof carbon in photosynthesis than do younger leaves. Neithernitrate nor free amino acids accumulate in the mesophyll ofthe leaf. Older parts of the stem axis accumulate large amountsof soluble nitrogen, almost entirely as free nitrate. Reservesof nitrate in the shoot and root are rapidly depleted if nitrateis removed from the external medium. Nitrate reductase is apparently absent from roots of Xanthium.This finding is supported by analyses of bleeding sap from nitrate-fedplants which show that 95 per cent of the nitrogen exportedfrom roots is present as free nitrate. However, roots are capableof synthesizing and exporting large amounts of amino nitrogenif supplied with reduced nitrogen such as urea or ammonium. A scheme is presented summarizing the main features of the metabolismof nitrate in Xanthium and this is compared with the situationin nitrate-fed plants of the field pea (Pisum arvense L.), aspecies previously shown to be capable of reducing nitrate inits root system.  相似文献   

17.
Seedlings (180-d-old) of Casuarina cunninghamianaM L., C. equisetifoliaMiq. and C. glauca Sieber inoculated with each of two differentsources of Frankia, were analysed for translocated nitrogenouscompounds in xylem sap. Analyses were also made on sap fromnodulated and non-nodulated plants of C. glauca grown with orwithout a range of levels of combined nitrogen. Xylem exudateswere collected from stems, roots, and individual nodules ofnodulated plants and from stems and roots of non-nodulated plants.While the proportional composition of solutes varied, the samerange of amino compounds was found in xylem sap from the threedifferent symbioses. In C. glauca asparagine was the major aminoacid in the root sap followed by proline, while in symbioticC. cunninghamiana arginine accounted for more than 25% of theamino compounds. Citrulline was the major translocated productfound in the stem exudate of symbiotic C. equisetifolia. Increasingconcentrations of ammonium nitrate in the nutrient solutionresulted in increasing levels of free ammonia and glutaminein xylem sap from stems of nodulated and non-nodulated C. glauca,but there was relatively little change in the prominent solutes,e.g. citrulline, proline, and arginine. The composition of nitrogenoussolutes in stem or root exudates of C. glauca was similar tothat of exudate collected from individual nodules and on thisbasis it was not possible to distinguish specific products ofcurrent N2 fixation in xylem. The main differences in N solutecomposition between the symbioses were apparently due to hostplant effects rather than nodulation or the levels of combinedN. Also, the data indicate that the use of the proportion ofN in sap as citrulline (or indeed any other organic N solute)could not be used as an index of nitrogen fixation.  相似文献   

18.
A comparison was made of the levels of extractable cytokinin-likecompounds and free nitrate in the tissues of Betula pendulaand Acer pseudoplatanus at two levels of nitrogen nutrition.In further studies comparisons were made of the levels of cytokinin-likecompounds and free amino acids extracted from the tissues ofB. pendula supplied with nitrogen as ammonium sulphate, ammoniumnitrate, or calcium nitrate. These results were then relatedto growth differences between the treatments. B. pendula supplied with a low level of nitrogen as ammoniumnitrate continued to make slow growth whereas A. pseudoplatanusformed terminal resting buds after 2–3 weeks, furthergrowth being arrested. The low levels of extractable cytokinin-likecompounds found in the leaves of B. pendula receiving a lownitrogen supply were in contrast to the results from A. pseudoplatanus,where only a small reduction was found in response to low nitrogensupply. Analysis of the plant tissue showed that free nitrateand amino acids were depleted to a greater extent from B. pendulathan from A. pseudoplatanus under conditions of low nitrogensupply. It is suggested that the ability of B. pendula to continueactive growth with low nitrogen supply may be related to thereadiness with which nitrogen can be mobilized and re-circulatedin the plant, a process including sequential leaf senescence. Contrasting growth habits were seen in B. pendula in ammoniumnitrate- and ammonium sulphate-fed plants. Lateral shoot growthin ammonium sulphate-fed plants was completely inhibited andno detectable cytokinin activity was found in tissue extracts,whereas ammonium nitrate-fed plants grew rapidly, and showedconsiderable development of laterals. Changes in the levelsof individual amino acids show that the form in which nitrogenis taken up by plants affects the subsequent pathways of metabolism.  相似文献   

19.
20.
With the aims (1) to test whether the different natural occurrence of twoPlantago species in grasslands is explained by a different preference of the species for nitrate or ammonium; (2) to test whether the different occurrence is explained by differences in the flexibility of the species towards changes in the nitrogen form; (3) to find suitable parameters as a tool to study ammonium and nitrate utilization of these species at the natural sites in grasslands, plants ofPlantago lanceolata andP. major ssp.major were grown with an abundant supply of nitrate, ammonium or nitrate+ammonium as the nitrogen source (0.5 mM). The combination of ammonium and nitrate gave a slightly higher final plant weight than nitrate or ammonium alone. Ammonium lowered the shoot to root ratio inP. major. Uptake of nitrate per g root was faster than that of ammonium, but from the mixed source ammonium and nitrate were taken up at the same rate. In vivo nitrate reductase activity (NRA) was present in both shoot and roots of plants receiving nitrate. When ammonium was applied in addition to nitrate, NRA of the shoot was not affected, but in the root the activity decreased. Thus, a larger proportion of total NRA was present in the shoot than with nitrate alone. In vitro glutamate dehydrogenase activity (GDHA) was enhanced by ammonium, both in the shoot and in the roots.In vitro glutamine synthetase activity (GSA) was highest in roots of plants receiving ammonium. Both GDHA and GSA were higher inP. lanceolata than inP. major. The concentration of ammonium in the roots increased with ammonium, but it did not accumulate in the shoot. The concentration of amino acids in the roots was also enhanced by ammonium. Protein concentration was not affected by the form of nitrogen. Nitrate accumulated in both the shoot and the roots of nitrate grown plants. When nitrate in the solution was replaced by ammonium, the nitrate concentration in the roots decreased rapidly. It also decreased in the shoot, but slowly. It is concluded that the nitrogen metabolism of the twoPlantago species shows a similar response to a change in the form of the nitrogen source, and that differences in natural occurrence of these species are not related to a differential adaptation of nitrogen metabolism towards the nitrogen form. Suitable parameters for establishing the nitrogen source in the field are thein vivo NRA, nitrate concentrations in tissues and xylem exudate, and the fraction of total reduced nitrogen in the roots that is in the soluble form, and to some extent thein vitro GDHA and GSA of the roots. Grassland Species Research Group. Publ. no 118.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号