首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The actin motor myosin VI regulates endocytosis of cystic fibrosis transmembrane conductance regulator (CFTR) in the intestine, but the endocytic adaptor linking CFTR to myosin VI is unknown. Dab2 (Disabled 2) is the binding partner for myosin VI, clathrin, and α-AP-2 and directs endocytosis of low density lipoprotein receptor family members by recognizing a phosphotyrosine-binding domain. However, CFTR does not possess a phosphotyrosine-binding domain. We examined whether α-AP-2 and/or Dab2 were binding partners for CFTR and the role of myosin VI in localizing endocytic adaptors in the intestine. CFTR co-localized with α-AP-2, Dab2, and myosin VI and was identified in a complex with all three endocytic proteins in the intestine. Apical CFTR was increased in the intestines of Dab-2 KO mice, suggesting its involvement in regulating surface CFTR. Glutathione S-transferase pulldown assays revealed binding of CFTR to α-AP-2 (but not Dab2) in the intestine, whereas Dab-2 interacted with α-AP-2. siRNA silencing of α-AP-2 in cells significantly reduced CFTR endocytosis, further supporting α-AP-2 as the direct binding partner for CFTR. α-AP-2 and Dab2 localized to the terminal web regions of enterocytes, but Dab2 accumulated in this location in Snell''s Waltzer myosin VI(sv/sv) intestine. Ultrastructural examination revealed that the accumulation of Dab2 correlated with prominent involution and the loss of normal positioning of the intermicrovillar membranes that resulted in expansion of the terminal web region in myosin VI(sv/sv) enterocytes. The findings support α-AP-2 in directing myosin VI-dependent endocytosis of CFTR and a requirement for myosin VI in membrane invagination and coated pit formation in enterocytes.  相似文献   

2.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-regulated Cl(-) channel expressed in the apical plasma membrane in fluid-transporting epithelia. Although CFTR is rapidly endocytosed from the apical membrane of polarized epithelial cells and efficiently recycled back to the plasma membrane, little is known about the molecular mechanisms regulating CFTR endocytosis and endocytic recycling. Myosin VI, an actin-dependent, minus-end directed mechanoenzyme, has been implicated in clathrin-mediated endocytosis in epithelial cells. The goal of this study was to determine whether myosin VI regulates CFTR endocytosis. Endogenous, apical membrane CFTR in polarized human airway epithelial cells (Calu-3) formed a complex with myosin VI, the myosin VI adaptor protein Disabled 2 (Dab2), and clathrin. The tail domain of myosin VI, a dominant-negative recombinant fragment, displaced endogenous myosin VI from interacting with Dab2 and CFTR and increased the expression of CFTR in the plasma membrane by reducing CFTR endocytosis. However, the myosin VI tail fragment had no effect on the recycling of endocytosed CFTR or on fluid-phase endocytosis. CFTR endocytosis was decreased by cytochalasin D, an actin-filament depolymerizing agent. Taken together, these data indicate that myosin VI and Dab2 facilitate CFTR endocytosis by a mechanism that requires actin filaments.  相似文献   

3.
The mouse mutant Snell's waltzer (sv) has an intragenic deletion of the Myo6 gene, which encodes the unconventional myosin molecule myosin VI (K. B. Avraham et al., 1995, Nat. Genet. 11, 369-375). Snell's waltzer mutants exhibit behavioural abnormalities suggestive of an inner ear defect, including lack of responsiveness to sound, hyperactivity, head tossing, and circling. We have investigated the effects of a lack of myosin VI on the development of the sensory hair cells of the cochlea in these mutants. In normal mice, the hair cells sprout microvilli on their upper surface, and some of these grow to form a crescent or V-shaped array of modified microvilli, the stereocilia. In the mutants, early stages of stereocilia development appear to proceed normally because at birth many stereocilia bundles have a normal appearance, but in places there are signs of disorganisation of the bundles. Over the next few days, the stereocilia become progressively more disorganised and fuse together. Practically all hair cells show fused stereocilia by 3 days after birth, and there is extensive stereocilia fusion by 7 days. By 20 days, giant stereocilia are observed on top of the hair cells. At 1 and 3 days after birth, hair cells of mutants and controls take up the membrane dye FM1-43, suggesting that endocytosis occurs in mutant hair cells. One possible model for the fusion is that myosin VI may be involved in anchoring the apical hair cell membrane to the underlying actin-rich cuticular plate, and in the absence of normal myosin VI this apical membrane will tend to pull up between stereocilia, leading to fusion.  相似文献   

4.
In enterocytes of the small intestine, endocytic trafficking of CFTR channels from the brush border membrane (BBM) to the subapical endosomes requires the minus-end motor, myosin VI (Myo6). The subapical localization of Myo6 is dependent on myosin Ia (Myo1a) the major plus-end motor associated with the BBM, suggestive of functional synergy between these two motors. In villus enterocytes of the Myo1a KO mouse small intestine, CFTR accumulated in syntaxin-3 positive subapical endosomes, redistributed to the basolateral domain and was absent from the BBM. In colon, where villi are absent and Myo1a expression is low, CFTR exhibited normal localization to the BBM in the Myo1a KO similar to WT. cAMP-stimulated CFTR anion transport in the small intestine was reduced by 58% in the KO, while anion transport in the colon was comparable to WT. Co-immunoprecipitation confirmed the association of CFTR with Myo1a. These data indicate that Myo1a is an important regulator of CFTR traffic and anion transport in the BBM of villus enterocytes and suggest that Myo1a may power apical CFTR movement into the BBM from subapical endosomes. Alternatively, it may anchor CFTR channels in the BBM of villus enterocytes as was proposed for Myo1a's role in BBM localization of sucrase-isomaltase.  相似文献   

5.
Myosin VI (Myo6) is an actin-based motor protein implicated in clathrin-mediated endocytosis in nonneuronal cells, though little is known about its function in the nervous system. Here, we find that Myo6 is highly expressed throughout the brain, localized to synapses, and enriched at the postsynaptic density. Myo6-deficient (Snell's waltzer; sv/sv) hippocampus exhibits a decrease in synapse number, abnormally short dendritic spines, and profound astrogliosis. Similarly, cultured sv/sv hippocampal neurons display decreased numbers of synapses and dendritic spines, and dominant-negative disruption of Myo6 in wild-type hippocampal neurons induces synapse loss. Importantly, we find that sv/sv hippocampal neurons display a significant deficit in the stimulation-induced internalization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptors (AMPARs), and that Myo6 exists in a complex with the AMPAR, AP-2, and SAP97 in brain. These results suggest that Myo6 plays a role in the clathrin-mediated endocytosis of AMPARs, and that its loss leads to alterations in synaptic structure and astrogliosis.  相似文献   

6.
Unconventional myosins have been associated with hearing loss in humans, mice, and zebrafish. Mutations in myosin VI cause both recessive and dominant forms of nonsyndromic deafness in humans and deafness in Snell's waltzer mice associated with abnormal fusion of hair cell stereocilia. Although myosin VI has been implicated in diverse cellular processes such as vesicle trafficking and epithelial morphogenesis, the role of this protein in the sensory hair cells remains unclear. To investigate the function of myosin VI in zebrafish, we cloned and examined the expression pattern of myosin VI, which is duplicated in the zebrafish genome. One duplicate, myo6a, is expressed in a ubiquitous pattern during early development and at later stages, and is highly expressed in the brain, gut, and kidney. myo6b, on the other hand, is predominantly expressed in the sensory epithelium of the ear and lateral line at all developmental stages examined. Both molecules have different splice variants expressed in these tissues. Using a candidate gene approach, we show that myo6b is satellite, a gene responsible for auditory/vestibular defects in zebrafish larvae. Examination of hair cells in satellite mutants revealed that stereociliary bundles are irregular and disorganized. At the ultrastructural level, we observed that the apical surface of satellite mutant hair cells abnormally protrudes above the epithelium and the membrane near the base of the stereocilia is raised. At later stages, stereocilia fused together. We conclude that zebrafish myo6b is required for maintaining the integrity of the apical surface of hair cells, suggesting a conserved role for myosin VI in regulation of actin-based interactions with the plasma membrane.  相似文献   

7.
Cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl(-) secretion across fluid-transporting epithelia is regulated, in part, by modulating the number of CFTR Cl(-) channels in the plasma membrane by adjusting CFTR endocytosis and recycling. However, the mechanisms that regulate CFTR recycling in airway epithelial cells remain unknown, at least in part, because the recycling itineraries of CFTR in these cells are incompletely understood. In a previous study, we demonstrated that CFTR undergoes trafficking in Rab11a-specific apical recycling endosomes in human airway epithelial cells. Myosin Vb is a plus-end-directed, actin-based mechanoenzyme that facilitates protein trafficking in Rab11a-specific recycling vesicles in several cell model systems. There are no published studies examining the role of myosin Vb in airway epithelial cells. Thus, the goal of this study was to determine whether myosin Vb facilitates CFTR recycling in polarized human airway epithelial cells. Endogenous CFTR formed a complex with endogenous myosin Vb and Rab11a. Silencing myosin Vb by RNA-mediated interference decreased the expression of wild-type CFTR and DeltaF508-CFTR in the apical membrane and decreased CFTR-mediated Cl(-) secretion across polarized human airway epithelial cells. A recombinant tail domain fragment of myosin Vb attenuated the plasma membrane expression of CFTR by arresting CFTR recycling. The dominant-negative effect was dependent on the ability of the myosin Vb tail fragment to interact with Rab11a. Taken together, these data indicate that myosin Vb is required for CFTR recycling in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells.  相似文献   

8.
Hair cell stereocilia are apical membrane protrusions filled with uniformly polarized actin filament bundles. Protein tyrosine phosphatase receptor Q (PTPRQ), a membrane protein with extracellular fibronectin repeats has been shown to localize at the stereocilia base and the apical hair cell surface, and to be essential for stereocilia integrity. We analyzed the distribution of PTPRQ and a possible mechanism for its compartmentalization. Using immunofluorescence we demonstrate that PTPRQ is compartmentalized at the stereocilia base with a decaying gradient from base to apex. This distribution can be explained by a model of transport directed toward the stereocilia base, which counteracts diffusion of the molecules. By mathematical analysis, we show that this counter transport is consistent with the minus end-directed movement of myosin VI along the stereocilia actin filaments. Myosin VI is localized at the stereocilia base, and exogenously expressed myosin VI and PTPRQ colocalize in the perinuclear endosomes in COS-7 cells. In myosin VI-deficient mice, PTPRQ is distributed along the entire stereocilia. PTPRQ-deficient mice show a pattern of stereocilia disruption that is similar to that reported in myosin VI-deficient mice, where the predominant features are loss of tapered base, and fusion of adjacent stereocilia. Thin section and freeze-etching electron microscopy showed that localization of PTPRQ coincides with the presence of a dense cell surface coat. Our results suggest that PTPRQ and myosin VI form a complex that dynamically maintains the organization of the cell surface coat at the stereocilia base and helps maintain the structure of the overall stereocilia bundle.  相似文献   

9.
Cortical actin patches are dynamic structures required for endocytosis in yeast. Recent studies have shown that components of cortical patches localize to the plasma membrane in a precisely orchestrated manner, and their movements at and away from the plasma membrane may define the endocytic membrane invagination and vesicle scission events, respectively. Here, through live-cell imaging, we analyze the dynamics of the highly conserved class I unconventional myosin, Myo5, which also localizes to cortical patches and is known to be involved in endocytosis and actin nucleation. Myo5 exhibits a pattern of dynamic localization different from all cortical patch components analyzed to date. Myo5 associates with cortical patches only transiently and remains stationary during its brief cortical lifespan. The peak of Myo5 association with cortical patches immediately precedes the fast movement of Arp2/3 complex-associated structures away from the plasma membrane, thus correlating precisely with the proposed vesicle scission event. To further test the role of Myo5, we generated a temperature-sensitive mutant myo5 allele. In the myo5 mutant cells, Myo5 exhibits a significantly extended cortical lifespan as a result of a general impairment of Myo5 function, and Arp2 patches exhibit an extended slow-movement phase prior to the fast movement toward the cell interior. The myo5 mutant cells are defective in fluid-phase endocytosis and exhibit an increased number of invaginations on the membrane. Based on these results, we hypothesize that the myosin I motor protein facilitates the membrane fusion/vesicle scission event of endocytosis.  相似文献   

10.
Mutations in the unconventional myosin VI gene, Myo6, are associated with deafness and vestibular dysfunction in the Snell's waltzer (sv) mouse. The corresponding human gene, MYO6, is located on chromosome 6q13. We describe the mapping of a new deafness locus, DFNA22, on chromosome 6q13 in a family affected by a nonsyndromic dominant form of deafness (NSAD), and the subsequent identification of a missense mutation in the MYO6 gene in all members of the family with hearing loss.  相似文献   

11.
Myosin VI, an actin-based motor protein, and Disabled 2 (Dab2), a molecule involved in endocytosis and cell signalling, have been found to bind together using yeast and mammalian two-hybrid screens. In polarised epithelial cells, myosin VI is known to be associated with apical clathrin-coated vesicles and is believed to move them towards the minus end of actin filaments, away from the plasma membrane and into the cell. Dab2 belongs to a group of signal transduction proteins that bind in vitro to the FXNPXY sequence found in the cytosolic tails of members of the low-density lipoprotein receptor family. The central region of Dab2, containing two DPF motifs, binds to the clathrin adaptor protein AP-2, whereas a C-terminal region contains the binding site for myosin VI. This site is conserved in Dab1, the neuronal counterpart of Dab2. The interaction between Dab2 and myosin VI was confirmed by in vitro binding assays and coimmunoprecipitation and by their colocalisation in clathrin-coated pits/vesicles concentrated at the apical domain of polarised cells. These results suggest that the myosin VI–Dab2 interaction may be one link between the actin cytoskeleton and receptors undergoing endocytosis.  相似文献   

12.
Drosophila myosin IB (Myo1B) is one of two class I myosins in the Drosophila genome. In the larval and adult midgut enterocyte, Myo1B is present within the microvillus (MV) of the apical brush border (BB) where it forms lateral tethers between the MV membrane and underlying actin filament core. Expression of green fluorescent protein-Myo1B tail domain in the larval gut showed that the tail domain is sufficient for localization of Myo1B to the BB. A Myo1B deletion mutation exhibited normal larval gut physiology with respect to food uptake, clearance, and pH regulation. However, there is a threefold increase in terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive enterocyte nuclei in the Myo1B mutant. Ultrastructural analysis of mutant midgut revealed many perturbations in the BB, including membrane tethering defects, MV vesiculation, and membrane shedding. The apical localization of both singed (fascin) and Dmoesin is impaired. BBs isolated from mutant and control midgut revealed that the loss of Myo1B causes the BB membrane and underlying cytoskeleton to become destabilized. Myo1B mutant larvae also exhibit enhanced sensitivity to oral infection by the bacterial pathogen Pseudomonas entomophila, and severe cytoskeletal defects are observed in the BB of proximal midgut epithelial cells soon after infection. Resistance to P. entomophila infection is restored in Myo1B mutant larvae expressing a Myo1B transgene. These results indicate that Myo1B may play a role in the local midgut response pathway of the Imd innate immune response to Gram-negative bacterial infection.  相似文献   

13.
In polarized epithelial cells, newly synthesized membrane proteins are delivered on specific pathways to either the apical or basolateral domains, depending on the sorting motifs present in these proteins. Because myosin VI has been shown to facilitate secretory traffic in nonpolarized cells, we investigated its role in biosynthetic trafficking pathways in polarized MDCK cells. We observed that a specific splice isoform of myosin VI with no insert in the tail domain is required for the polarized transport of tyrosine motif containing basolateral membrane proteins. Sorting of other basolateral or apical cargo, however, does not involve myosin VI. Site-directed mutagenesis indicates that a functional complex consisting of myosin VI, optineurin, and probably the GTPase Rab8 plays a role in the basolateral delivery of membrane proteins, whose sorting is mediated by the clathrin adaptor protein complex (AP) AP-1B. Our results suggest that myosin VI is a crucial component in the AP-1B-dependent biosynthetic sorting pathway to the basolateral surface in polarized epithelial cells.  相似文献   

14.
Myosin VI is involved in membrane traffic and dynamics and is the only myosin known to move towards the minus end of actin filaments. Splice variants of myosin VI with a large insert in the tail domain were specifically expressed in polarized cells containing microvilli. In these polarized cells, endogenous myosin VI containing the large insert was concentrated at the apical domain co-localizing with clathrin- coated pits/vesicles. Using full-length myosin VI and deletion mutants tagged with green fluorescent protein (GFP) we have shown that myosin VI associates and co-localizes with clathrin-coated pits/vesicles by its C-terminal tail. Myosin VI, precipitated from whole cytosol, was present in a protein complex containing adaptor protein (AP)-2 and clathrin, and enriched in purified clathrin-coated vesicles. Over-expression of the tail domain of myosin VI containing the large insert in fibroblasts reduced transferrin uptake in transiently and stably transfected cells by >50%. Myosin VI is the first motor protein to be identified associated with clathrin-coated pits/vesicles and shown to modulate clathrin-mediated endocytosis.  相似文献   

15.
The C terminus of CFTR contains a PDZ interacting domain that is required for the polarized expression of cystic fibrosis transmembrane conductance regulator (CFTR) in the apical plasma membrane of polarized epithelial cells. To elucidate the mechanism whereby the PDZ interacting domain mediates the polarized expression of CFTR, Madin-Darby canine kidney cells were stably transfected with wild type (wt-CFTR) or C-terminally truncated human CFTR (CFTR-DeltaTRL). We tested the hypothesis that the PDZ interacting domain regulates sorting of CFTR from the Golgi to the apical plasma membrane. Pulse-chase studies in combination with domain-selective cell surface biotinylation revealed that newly synthesized wt-CFTR and CFTR-DeltaTRL were targeted equally to the apical and basolateral membranes in a nonpolarized fashion. Thus, the PDZ interacting domain is not an apical sorting motif. Deletion of the PDZ interacting domain reduced the half-life of CFTR in the apical membrane from approximately 24 to approximately 13 h but had no effect on the half-life of CFTR in the basolateral membrane. Thus, the PDZ interacting domain is an apical membrane retention motif. Next, we examined the hypothesis that the PDZ interacting domain affects the apical membrane half-life of CFTR by altering its endocytosis and/or endocytic recycling. Endocytosis of wt-CFTR and CFTR-DeltaTRL did not differ. However, endocytic recycling of CFTR-DeltaTRL was decreased when compared with wt-CFTR. Thus, deletion of the PDZ interacting domain reduced the half-life of CFTR in the apical membrane by decreasing CFTR endocytic recycling. Our results identify a new role for PDZ proteins in regulating the endocytic recycling of CFTR in polarized epithelial cells.  相似文献   

16.
Mutations in myosin VI (Myo6) cause deafness and vestibular dysfunction in Snell's waltzer mice. Mutations in two other unconventional myosins cause deafness in both humans and mice, making myosin VI an attractive candidate for human deafness. In this report, we refined the map position of human myosin VI (MYO6) by radiation hybrid mapping and characterized the genomic structure of myosin VI. Human myosin VI is composed of 32 coding exons, spanning a genomic region of approximately 70 kb. Exon 30, containing a putative CKII site, was found to be alternatively spliced and appears only in fetal and adult human brain. D6S280 and D6S284 flank the myosin VI gene and were used to screen hearing impaired sib pairs for concordance with the polymorphic markers. No disease-associated mutations were identified in twenty-five families screened for myosin VI mutations by SSCP analysis. Three coding single nucleotide polymorphisms (cSNPs) were identified in myosin VI that did not alter the amino acid sequence. Myosin VI mutations may be rare in the human deaf population or alternatively, may be found in a population not yet examined. The determination of the MYO6 genomic structure will enable screening of individuals with non-syndromic deafness, Usher's syndrome, or retinopathies associated with human chromosome 6q for mutations in this unconventional myosin.  相似文献   

17.
Amino acid transporters (AATers) in the brush border of the apical plasma membrane (APM) of renal proximal tubule (PT) cells mediate amino acid transport (AAT). We found that the membrane-associated class I myosin myosin 1b (Myo1b) localized at the apical brush border membrane of PTs. In opossum kidney (OK) 3B/2 epithelial cells, which are derived from PTs, expressed rat Myo1b-GFP colocalized in patched microvilli with expressed mouse V5-tagged SIT1 (SIT1-V5), which mediates neutral amino acid transport in OK cells. Lentivirus-mediated delivery of opossum Myo1b-specific shRNA resulted in knockdown (kd) of Myo1b expression, less SIT1-V5 at the APM as determined by localization studies, and a decrease in neutral AAT as determined by radioactive uptake assays. Myo1b kd had no effect on Pi transport or noticeable change in microvilli structure as determined by rhodamine phalloidin staining. The studies are the first to define a physiological role for Myo1b, that of regulating renal AAT by modulating the association of AATers with the APM.  相似文献   

18.
Myosin 1E is one of two "long-tailed" human Class I myosins that contain an SH3 domain within the tail region. SH3 domains of yeast and amoeboid myosins I interact with activators of the Arp2/3 complex, an important regulator of actin polymerization. No binding partners for the SH3 domains of myosins I have been identified in higher eukaryotes. In the current study, we show that two proteins with prominent functions in endocytosis, synaptojanin-1 and dynamin, bind to the SH3 domain of human Myo1E. Myosin 1E co-localizes with clathrin- and dynamin-containing puncta at the plasma membrane and this co-localization requires an intact SH3 domain. Expression of Myo1E tail, which acts in a dominant-negative manner, inhibits endocytosis of transferrin. Our findings suggest that myosin 1E may contribute to receptor-mediated endocytosis.  相似文献   

19.
Myosin VI is a motor protein that moves toward the minus end of actin filaments. It is involved in clathrin-mediated endocytosis and associates with clathrin-coated pits/vesicles at the plasma membrane. In this article the effect of the loss of myosin VI no insert isoform (NoI) on endocytosis in nonpolarized cells was examined. The absence of myosin VI in fibroblasts derived from the Snell''s waltzer mouse (myosin VI knock-out) gives rise to defective clathrin-mediated endocytosis with shallow clathrin-coated pits and a strong reduction in the internalization of clathrin-coated vesicles. To compensate for this defect in clathrin-mediated endocytosis, plasma membrane receptors such as the transferrin receptor (TfR) are internalized by a caveola-dependent pathway. Moreover the clathrin adaptor protein, AP-2, necessary for TfR internalization, follows the receptor and relocalizes in caveolae in Snell''s waltzer fibroblasts.  相似文献   

20.
CFTR (cystic fibrosis transmembrane conductance regulator) is expressed in the apical membrane of epithelial cells. Cell-surface CFTR levels are regulated by endocytosis and recycling. A number of adaptor proteins including AP-2 (μ2 subunit) and Dab2 (Disabled-2) have been proposed to modulate CFTR internalization. In the present study we have used siRNA (small interfering RNA)-mediated silencing of these adaptors to test their roles in the regulation of CFTR cell-surface trafficking and stability in human airway epithelial cells. The results indicate that?μ2 and Dab2 performed partially overlapping, but divergent, functions. While?μ2 depletion dramatically decreased CFTR endocytosis with little effect on the half-life of the CFTR protein, Dab2 depletion increased the CFTR half-life ~3-fold, in addition to inhibiting CFTR endocytosis. Furthermore, Dab2 depletion inhibited CFTR trafficking from the sorting endosome to the recycling compartment, as well as delivery of CFTR to the late endosome, thus providing a mechanistic explanation for increased CFTR expression and half-life. To test whether two E3 ligases were required for the endocytosis and/or down-regulation of surface CFTR, we siRNA-depleted CHIP [C-terminus of the Hsc (heat-shock cognate) 70-interacting protein] and c-Cbl (casitas B-lineage lymphoma). We demonstrate that CHIP and c-Cbl depletion have no effect on CFTR endocytosis, but c-Cbl depletion modestly enhanced the half-life of CFTR. The results of the present study define a significant role for Dab2 both in the endocytosis and post-endocytic fate of CFTR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号