首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pathways to chronic inflammation in rheumatoid synovitis   总被引:8,自引:0,他引:8  
Postcapillary venules resembling the high endothelial venules (HEVs) of lymphoid tissues have often been observed at sites of chronic inflammation. We have therefore postulated that such venules may be an important site of lymphocyte migration into rheumatoid synovial membrane and that inflammatory cell products may act on endothelial cells (ECs) to increase lymphocyte emigration. Electron microscopic examination of rheumatoid synovial membranes showed that a strong correlation existed between the proportion of lymphocytes in perivascular tissue and the height/base ratio of the ECs in those areas. In addition, binding experiments showed that peripheral blood mononuclear cells preferentially bound to ECs in sections of rheumatoid synovial membrane that had the morphological appearance of HEVs. In vitro binding experiments, in which lymphocyte adhesion to human umbilical vein EC monolayers was measured, showed that adhesion was enhanced by preincubation of the ECs with interferon-gamma or interleukin 1 (IL 1). The central role of IL 1 in increasing lymphocyte migration into the rheumatoid synovial membrane was also supported by the findings that IL 1 is chemotactic for lymphocytes, ECs can secrete IL 1, and IL 1 activity is readily detectable in synovial fluids of rheumatoid arthritis patients.  相似文献   

2.
During normal lymphocyte recirculation and in chronic inflammation, lymphocytes emigrate from blood into the perivascular tissue. The mechanism of lymphocyte migration through the endothelial cell (EC) layer of blood vessels is poorly understood. To identify factors that control lymphocyte emigration, a method has been developed to measure human peripheral blood lymphocyte migration through monolayers of human umbilical vein EC and into nitrocellulose (NC) filters located below the EC monolayer. Counts were made of lymphocytes that had migrated into the NC filter using a particle counter. T lymphocytes attached to and migrated through EC monolayers in a T-cell-number- and time-dependent fashion. Migration required viable EC since lymphocytes failed to migrate through formaldehyde-fixed EC monolayers or monolayers of dermal fibroblasts. Interferon-gamma (IFN-gamma) markedly augmented the migration in a dose- and time-dependent manner when preincubated with the EC. When T lymphocytes were pretreated with IFN-gamma, no increase in migration was observed. Finally, IFN-gamma augmented the migration of T cells prebound to the EC, indicating that the IFN-gamma-enhanced migration was not due to increased binding of T cells to the EC, but rather to an action on the EC to facilitate subsequent migration.  相似文献   

3.
The trafficking of lymphocytes from the blood and into lymphoid organs is controlled by tissue-selective lymphocyte interactions with specialized endothelial cells lining post capillary venules, in particular the high endothelial venules (HEV) found in lymphoid tissues and sites of chronic inflammation. Lymphocyte interactions with HEV are mediated in part by lymphocyte homing receptors and tissue-specific HEV determinants, the vascular addressins. A peripheral lymph node addressin (PNAd) has been detected immunohistologically in mouse and man by monoclonal antibody MECA-79, which inhibits lymphocyte homing to lymph nodes and lymphocyte binding to lymph node and tonsillar HEV. The human MECA-79 antigen, PNAd, is molecularly distinct from the 65-kD mucosal vascular addressin. The most abundant iodinated species by SDS-PAGE is 105 kD. When affinity isolated and immobilized on glass slides, MECA-79 immunoisolated material binds human and mouse lymphocytes avidly in a calcium dependent manner. Binding is blocked by mAb MECA-79, by antibodies against mouse or human LECAM-1 (the peripheral lymph node homing receptor, the MEL-14 antigen, LAM-1), and by treatment of PNAd with neuraminidase. Expression of LECAM-1 cDNA confers PNAd binding ability on a transfected B cell line. We conclude that LECAM-1 mediates lymphocyte binding to PNAd, an interaction that involves the lectin activity of LECAM-1 and carbohydrate determinants on the addressin.  相似文献   

4.
Tissue-specific interactions with specialized high endothelial venules (HEV) direct the homing of lymphocytes from the blood into peripheral lymph nodes, mucosal lymphoid organs, and tissue sites of chronic inflammation. These interactions have been demonstrated in all mammalian species examined and thus appear highly conserved. To assess the degree of evolutionary divergence in lymphocyte-HEV recognition mechanisms, we have studied the ability of lymphocytes to interact with HEV across species barriers. By using an in vitro assay of lymphocyte binding to HEV in frozen sections of lymphoid tissues, we confirm that mouse, guinea pig, and human lymphocytes bind to xenogeneic as well as homologous HEV. In addition, we show that mouse and human lymphoid cell lines that bind selectively to either peripheral lymph node or mucosal vessels (Peyer's patches, appendix) in homologous lymphoid tissues exhibit the same organ specificity in binding to xenogeneic HEV. Furthermore, monoclonal antibodies that recognize lymphocyte "homing receptors" and block homologous lymphocyte binding to peripheral lymph node or to mucosal HEV, also inhibit lymphocyte interactions with xenogeneic HEV in a tissue-specific fashion. Similarly, anti-HEV antibodies against organ-specific mouse high endothelial cell "addressins" involved in lymphocyte homing to peripheral lymph node or mucosal lymphoid organs, not only block the adhesion of mouse lymphocytes but also of human lymphocytes to target mouse HEV. The results illustrate a remarkable degree of functional conservation of elements mediating these cell-cell recognition events involved in organ-specific lymphocyte homing.  相似文献   

5.
We wished to determine whether human lymphocytes, like their murine counterparts, show organ-specific interactions with high endothelial venules (HEV). Functional HEV-binding ability was measured by an in vitro assay of lymphocyte adherence to HEV in frozen sections of human lymphoid tissues which was adapted from rodent systems. It was found that human lymphocytes bind selectively to HEV and that, whereas mature T lymphocytes bind preferentially to HEV in peripheral lymph nodes and tonsils, B lymphocytes show preferential binding to HEV in GALT. Moreover, by analyzing the binding characteristics of T4+ and T8+ T cell populations, it was found that T8+ cells adhere preferentially to HEV in GALT and mesenteric lymph nodes and tonsil, and that T4+ cells bind slightly better to HEV in peripheral lymph nodes. The above findings indicate that organ--specific lymphocyte-endothelial cell recognition mechanisms exist also in humans, and suggest that these mechanisms play an important role in normal and pathologic lymphocyte traffic.  相似文献   

6.
Lymphoid tumors display a wide variety of growth patterns in vivo, from that of a solitary extralymphoid tumor, to a general involvement of all lymphoid organs. Normal lymphocytes are uniquely mobile cells continuously recirculating between blood and lymph throughout much of their life cycle. Therefore, it is reasonable to propose that disseminating malignant lymphocytes may express recirculation characteristics or homing properties consistent with that of their normal lymphoid counterparts. Trafficking of lymphocytes involves the expression and recognition of both lymphocyte homing receptors and their opposing receptors on endothelium, the vascular addressins. These cell surface elements direct the tissue-selective localization of lymphocyte subsets in vivo into organized lymphoid organs and sites of chronic inflammation where specific binding events occur between lymphocytes and the endothelium of specialized high endothelial venules (HEV). In a recent murine study of 13 lymphoma lines, we found that lymphomas that bind well to high endothelial venules, in the Stamper-Woodruff in vitro assay (an assay of lymphocyte binding to venules in frozen sections of peripheral lymph nodes or Peyer's patches), spread hematogenously to all high endothelial venule bearing lymphoid organs, whereas non-binding lymphomas did not. In some cases lymphomas that bound with a high degree of selectivity to peripheral lymph node (PLN) high endothelial venules exhibited only limited organ preference of metastasis, involving the mucosal lymphoid organs Peyer's patches (PP) in addition to the peripheral lymph nodes of adoptive recipients. Here we demonstrate that Peyer's patch high endothelial venules express a low but functional level of peripheral lymph node addressin (MECA-79) that can be recognized by lymphomas expressing the peripheral lymph node homing receptor (MEL-14 antigen).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Migration of blood-borne lymphocytes into tissues involves a tightly orchestrated sequence of adhesion events. Adhesion molecules and chemokine receptors on the surface of circulating lymphocytes initiate contact with specialized endothelial cells under hemodynamic shear prior to extravasation across the vascular barrier into tissues. Lymphocyte–endothelial adhesion occurs preferentially in high endothelial venules (HEV) of peripheral lymphoid organs. The continuous recirculation of naïve and central memory lymphocytes across lymph node and Peyer’s patch HEV underlies immune surveillance and immune homeostasis. Lymphocyte–endothelial interactions are markedly enhanced in HEV-like vessels of extralymphoid organs during physiological responses associated with acute and chronic inflammation. Similar adhesive mechanisms must be invoked for efficient trafficking of immune effector cells to tumor sites in order for the immune system to have an impact on tumor progression. Here we discuss recent evidence for the role of fever-range thermal stress in promoting lymphocyte–endothelial adhesion and trafficking across HEV in peripheral lymphoid organs. Findings are also presented that support the hypothesis that lymphocyte–endothelial interactions are limited within tumor microenvironments. Further understanding of the molecular mechanisms that dynamically promote lymphocyte trafficking in HEV may provide the basis for novel approaches to improve recruitment of immune effector cells to tumor sites.  相似文献   

8.
Abnormal migration of T lymphocyte clones   总被引:19,自引:0,他引:19  
Several in vitro T cell clones were markedly deficient in their ability to home to peripheral lymphoid tissue. This was found for an alloreactive noncytolytic clone, a soluble antigen- (KLH)specific line, and cytotoxic clones specific for allogeneic cells and for Abelson virus-induced lymphoma cells. This abnormal circulation pattern was probably caused by the lack of the receptors of the lymphocytes for high endothelial venules (HEV), as implied by the lack of binding of these T cells to HEV in frozen sections of mouse lymph node and Peyer's patches. The loss of surface receptors that are necessary for normal lymphocyte migration may thereby alter the in vivo function of adoptively transferred T cells.  相似文献   

9.
The common occurrence of fibrin deposits in chronic inflammatory lesions suggests a possible role for thrombin in the mobilization of mononuclear cell infiltrates. For this reason, the effect of thrombin on the binding of mononuclear cells to endothelial cells (EC) was investigated. Incubation of confluent monolayers of human umbilical vein endothelial cells with thrombin markedly enhanced EC adhesiveness for both T lymphocytes and U937 cells (a monocyte-like cell line) in a time- and dose-dependent fashion. This effect was EC specific: 1) treatment of the T cells or the U937 cells with thrombin did not stimulate their adherence to EC, and 2) treatment of human foreskin fibroblasts with thrombin did not stimulate their inherently low adhesiveness for T cells. Fixation of EC monolayers with paraformaldehyde after pre-incubation with thrombin did not affect the increased adhesiveness for T cells. mAb against the LFA-1 antigen (mAb 60.3 (anti-CD18) or mAb TS1/22 (anti-CD11a), which inhibit the binding of T cells to unstimulated EC, failed to block the increased adhesion induced by thrombin, indicating that the increased binding induced by thrombin is similar to that induced by IL-1 and TNF, which showed similar resistance. These results suggest that thrombin may have a role in the extravascular emigration of mononuclear cells from post-capillary venules by virtue of its ability to stimulate the adhesiveness of EC for both lymphocytes and monocytes.  相似文献   

10.
Interferon-gamma (IFN-gamma) is a macrophage-activating factor that has also been shown to act on endothelial cells (EC). Interleukin 1 (IL 1), first described as a monocyte product, is also produced by EC after stimulation by lipopolysaccharide (LPS). In this study, the effect of IFN-gamma on the release of IL 1 by EC stimulated with LPS has been investigated. Although IFN-gamma did not stimulate the release of IL 1 or increase the apparent intracellular pool of IL 1 when incubated with EC, there was an increase in the amount of IL 1 released when cells preincubated with IFN-gamma were stimulated with LPS. The effect of IFN-gamma increased with concentration (1 to 1000 U/ml) and with duration of preincubation (24 to 96 hr). The presence of IFN-gamma was not required during the stimulation with LPS. When EC were cultured without IFN-gamma for increasing time periods up to 96 hr, the amount of IL 1 released by EC on subsequent stimulation with LPS progressively decreased. Addition of as little as 1 U/ml of IFN-gamma, however, prevented the loss in capacity of EC to secrete IL 1 when stimulated with LPS. In vivo, EC are involved in the emigration of mononuclear cells from the blood to inflammatory sites. Because IL 1 is chemotactic for lymphocytes and also increases the binding of lymphocytes to EC, activation of EC by T cell-derived factors such as IFN-gamma may augment lymphocyte emigration by increasing the release of IL 1 at the blood-tissue interface.  相似文献   

11.
The migratory properties of Lyt-2- and Lyt-2+ T cells in the mouse have been investigated. In short-term in vivo homing studies, Lyt-2- T cells localized consistently more efficiently than Lyt-2+ T cells in Peyer's patches (about 1.5 times as well), whereas both populations localized roughly equivalently in peripheral lymph nodes. These homing characteristics of Lyt-2- and Lyt-2+ subsets are largely independent of their organ source. The specificity of migration appears to be determined by selective recognition of organ-specific determinants on the endothelial cells of high endothelial venules (HEV), specialized venules that mediate the exit of migrating lymphocytes from the blood: In an in vitro assay of lymphocyte binding to HEV in lymphoid organ frozen sections, Lyt-2- cells constituted a significantly and consistently greater proportion of T cells binding to Peyer's patch HEV than of those binding to peripheral node HEV. The homing and HEV recognition preferences of the Lyt subsets are reflected in differences in their in situ representation in mucosal vs nonmucosal lymphoid organs, which suggests that the selective migration of these populations may be an important factor in determining the character of local immune responses.  相似文献   

12.
The tissue localization or "homing" of circulating lymphocytes is directed in part by specialized vessels that define sites of lymphocyte exit from the blood. In peripheral lymph nodes, mucosal lymphoid tissues (Peyer's patches and appendix), and sites of chronic inflammation, for example, lymphocytes leave the blood by adhering to and migrating between those endothelial cells lining postcapillary high endothelial venules (HEV). Functional analyses of lymphocyte interactions with HEV have shown the lymphocytes can discriminate between HEV in different tissues, indicating that HEV express tissue-specific determinants or address signals for lymphocyte recognition. We recently described such a tissue-specific "vascular addressin" that is selectively expressed by endothelial cells supporting lymphocyte extravasation into mucosal tissues and that appears to be required for mucosa-specific lymphocyte homing (Streeter, P. R., E. L. Berg, B. N. Rouse, R. F. Bargatze, and E. C. Butcher. 1988. Nature (Lond.). 331:41-46). Here we document the existence and tissue-specific distribution of a distinct HEV differentiation antigen. Defined by monoclonal antibody MECA-79, this antigen is expressed at high levels on the lumenal surface and in the cytoplasm of HEV in peripheral lymph nodes. By contrast, although MECA-79 stains many HEV in the mucosal Peyer's patches, expression in most cases is restricted to the perivascular or ablumenal aspect of these venules. In the small intestine lamina propria, a mucosa-associated site that supports the extravasation of lymphocytes, venules do not stain with MECA-79. Finally, we demonstrate that MECA-79 blocks binding of both normal lymphocytes and a peripheral lymph node-specific lymphoma to peripheral lymph node HEV in vitro and that it also inhibits normal lymphocyte homing to peripheral lymph nodes in vivo without significantly influencing lymphocyte interactions with Peyer's patch HEV in vitro or in vivo. Thus, MECA-79 defines a novel vascular addressin involved in directing lymphocyte homing to peripheral lymph nodes.  相似文献   

13.
After an inflammatory stimulus, lymphocyte migration into draining lymph nodes increases dramatically to facilitate the encounter of naive T cells with Ag-loaded dendritic cells. In this study, we show that CD73 (ecto-5'-nucleotidase) plays an important role in regulating this process. CD73 produces adenosine from AMP and is expressed on high endothelial venules (HEV) and subsets of lymphocytes. Cd73(-/-) mice have normal sized lymphoid organs in the steady state, but approximately 1.5-fold larger draining lymph nodes and 2.5-fold increased rates of L-selectin-dependent lymphocyte migration from the blood through HEV compared with wild-type mice 24 h after LPS administration. Migration rates of cd73(+/+) and cd73(-/-) lymphocytes into lymph nodes of wild-type mice are equal, suggesting that it is CD73 on HEV that regulates lymphocyte migration into draining lymph nodes. The A(2B) receptor is a likely target of CD73-generated adenosine, because it is the only adenosine receptor expressed on the HEV-like cell line KOP2.16 and it is up-regulated by TNF-alpha. Furthermore, increased lymphocyte migration into draining lymph nodes of cd73(-/-) mice is largely normalized by pretreatment with the selective A(2B) receptor agonist BAY 60-6583. Adenosine receptor signaling to restrict lymphocyte migration across HEV may be an important mechanism to control the magnitude of an inflammatory response.  相似文献   

14.
Lymphocyte rolling velocity is determined largely by interactions between leukocyte alpha(4)-integrin (CD49d) and L-selectin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in mesenteric postcapillary venules and Peyer's patch high endothelial venules (HEVs). The role of these interactions in other tissue sites of lymphocyte emigration is not known. With the use of real-time intravital confocal microscopy, we found that rolling velocities of T lymphocytes in the murine mesenteric lymph node (MLN) HEV also depend on L-selectin and CD49d. However, in the murine spleen, rolling velocities of T lymphocytes are not influenced by the loss of L-selectin and CD49d. With the use of FITC-dextran and TIE2-GFP mice, we further defined the microvascular compartments of the spleen and showed that adherence of T cells is localized to regions in the white pulp that are not lined by endothelial cells and have shear rates similar to bone marrow sinusoids. These results establish that T cell trafficking to the spleen differs from trafficking to other secondary lymphoid organs and suggest that the mechanical properties of the blood-filtering role of the spleen are important in T cell accumulation in the organ.  相似文献   

15.
Nasal-associated lymphoid tissue (NALT), a mucosal inductive site for the upper respiratory tract, is important for the development of mucosal immunity locally and distally to intranasally introduced Ag. To more fully understand the induction of nasal mucosal immunity, we investigated the addressins that allow for lymphocyte trafficking to this tissue. To investigate the addressins responsible for naive lymphocyte binding, immunofluorescent and immunoperoxidase staining of frozen NALT sections were performed using anti-mucosal addressin cell adhesion molecule-1 (MAdCAM-1), anti-peripheral node addressin (PNAd), and anti-VCAM-1 mAbs. All NALT high endothelial venules (HEV) expressed PNAd, either associated with MAdCAM-1 or alone, whereas NALT follicular dendritic cells expressed both MAdCAM-1 and VCAM-1. These expression profiles were distinct from those of the gut mucosal inductive site, Peyer's patches (PP). The functionality of NALT HEV was determined using a Stamper-Woodruff ex vivo assay. The anti-L-selectin MEL-14 mAb blocked >90% of naive lymphocyte binding to NALT HEV, whereas the anti-MAdCAM-1 mAb, which blocks almost all naive lymphocyte binding to PP, minimally blocked binding to NALT HEV. NALT lymphocytes exhibited a unique L-selectin expression profile, differing from both PP and peripheral lymph nodes. Finally, NALT HEV were found in increased amounts in the B cell zones, unlike PP HEV. These results suggest that NALT is distinct from the intestinal PP, that initial naive lymphocyte binding to NALT HEV involves predominantly L-selectin and PNAd rather than alpha4beta7-MAdCAM-1 interactions, and that MAdCAM-1 and VCAM-1 expressed by NALT follicular dendritic cells may play an important role in lymphocyte recruitment and retention.  相似文献   

16.
During the process of lymphocyte recirculation, lymphocytes bind via L-selectin to sulfated sialyl-Lewisx (sLex)–containing carbohydrate ligands expressed on the surface of high endothelial venules (HEV). We have examined the expression of sLex on HEV using a panel of mAbs specific for sLex and sLex-related structures, and have examined the function of different sLex-bearing structures using an in vitro assay of lymphocyte rolling on HEV. We report that three sLex mAbs, 2F3, 2H5, and CSLEX-1, previously noted to bind with high affinity to glycolipid-linked sLex, vary in their ability to stain HEV in different lymphoid tissues and bind differentially to O-linked versus N-linked sLex on glycoproteins. Treatment of tissue sections with neuraminidase abolished staining with all three mAbs but slightly increased staining with MECA-79, a mAb to a sulfation-dependent HEV-associated carbohydrate determinant. Treatment of tissue sections with O-sialoglycoprotease under conditions that removed the vast majority of MECA-79 staining, only partially reduced staining with the 2F3 and 2H5 mAbs. Using a novel rolling assay in which cells bind under flow to HEV of frozen tissue sections, we demonstrate that a pool of O-sialoglycoprotease–resistant molecules is present on HEV that is sufficient for attachment and rolling of lymphocytes via L-selectin. This interaction is not inhibited by the mAb MECA-79. Furthermore, MECA-79 mAb blocks binding to untreated sections by only 30%, whereas the sLex mAb 2H5 blocks binding by ~60% and a combination of MECA-79 and 2H5 mAb blocks binding by 75%. We conclude that a pool of O-glycoprotease-resistant sLex-like L-selectin ligands exist on human HEV that is distinct from the mucin-associated moieties recognized by MECA-79 mAb. We postulate that these ligands may participate in lymphocyte binding to HEV.  相似文献   

17.
The tissue-specific homing of lymphocytes is directed by specialized high endothelial venules (HEV). At least three functionally independent lymphocyte/HEV recognition systems exist, controlling the extravasation of circulating lymphocytes into peripheral lymph nodes, mucosal lymphoid tissues (Peyer's patches or appendix), and the synovium of inflamed joints. We report here that antibodies capable of inhibiting human lymphocyte binding to one or more HEV types recognize a common 85-95-kD lymphocyte surface glycoprotein antigen, defined by the non-blocking monoclonal antibody, Hermes-1. We demonstrate that MEL-14, a monoclonal antibody against putative lymph node "homing receptors" in the mouse, functionally inhibits human lymphocyte binding to lymph node HEV but not to mucosal or synovial HEV, and cross-reacts with the 85-95-kD Hermes-1 antigen. Furthermore, we show that Hermes-3, a novel antibody produced by immunization with Hermes-1 antigen isolated from a mucosal HEV-specific cell line, selectively blocks lymphocyte binding to mucosal HEV. Such tissue specificity of inhibition suggests that MEL-14 and Hermes-3 block the function of specific lymphocyte recognition elements for lymph node and mucosal HEV, respectively. Recognition of synovial HEV also involves the 85-95-kD Hermes-1 antigen, in that a polyclonal antiserum produced against the isolated antigen blocks all three classes of lymphocyte-HEV interaction. From these studies, it is likely that the Hermes-1-defined 85-95-kD glycoprotein class either comprises a family of related but functionally independent receptors for HEV, or associates both physically and functionally with such receptors. The findings imply that related molecular mechanisms are involved in several functionally independent cell-cell recognition events that direct lymphocyte traffic.  相似文献   

18.
CCR7 expression and memory T cell diversity in humans   总被引:22,自引:0,他引:22  
CCR7, along with L-selectin and LFA-1, mediates homing of T cells to secondary lymphoid organs via high endothelial venules (HEV). CCR7 has also been implicated in microenvironmental positioning of lymphocytes within secondary lymphoid organs and in return of lymphocytes and dendritic cells to the lymph after passage through nonlymphoid tissues. We have generated mAbs to human CCR7, whose specificities correlate with functional migration of lymphocyte subsets to known CCR7 ligands. We find that CCR7 is expressed on the vast majority of peripheral blood T cells, including most cells that express adhesion molecules (cutaneous lymphocyte Ag alpha(4)beta(7) integrin) required for homing to nonlymphoid tissues. A subset of CD27(neg) memory CD4 T cells from human peripheral blood is greatly enriched in the CCR7(neg) population, as well as L-selectin(neg) cells, suggesting that these cells are incapable of homing to secondary lymphoid organs. Accordingly, CD27(neg) T cells are rare within tonsil, a representative secondary lymphoid organ. All resting T cells within secondary lymphoid organs express high levels of CCR7, but many activated cells lack CCR7. CCR7 loss in activated CD4 cells accompanies CXC chemokine receptor (CXCR)5 gain, suggesting that the reciprocal expression of these two receptors may contribute to differential positioning of resting vs activated cells within the organ. Lymphocytes isolated from nonlymphoid tissues (such as skin, lung, or intestine) contain many CD27(neg) cells lacking CCR7. The ratio of CD27(neg)/CCR7(neg) cells to CD27(pos)/CCR7(pos) cells varies from tissue to tissue, and may correlate with the number of cells actively engaged in Ag recognition within a given tissue.  相似文献   

19.
In the present study we examine the functional distribution of the human endothelial L-selectin ligand, which determines the sites of extravasation of L-selectin-positive cells. A murine cell line transfected with human L-selectin adhered preferentially to the high endothelial venules (HEV) of human peripheral lymph nodes compared to the HEV of mucosal lymphoid tissues (mean of 0.83 compared to a mean of 0.07 cells per HEV respectively). In addition, an antibody against L-selectin differentially inhibited the adhesion of human lymphocytes to peripheral lymphoid tissue versus mucosal lymphoid tissue HEV (mean 41 and 5% inhibition respectively). Although both sulfoglucuronyl-containing glycolipids and sialyl-Lewis X have been proposed as endothelial ligands for L-selectin, an antibody against the former did not bind to peripheral lymph node endothelium, and an antibody against the latter did not block adhesion of L-selectin-expressing cells. The enzyme O-sialoglycoprotein endopeptidase caused up to an 84% reduction in L-selectin-dependent binding, indicating that sialylated glycoproteins containing O-linked glycans are essential for a large majority of adhesion via L-selectin.  相似文献   

20.
L-selectin functions as an important adhesion molecule that mediates tethering and rolling of lymphocytes by binding to high endothelial venule (HEV)-expressed ligands during recirculation. Subsequent lymphocyte arrest and transmigration require activation through binding of HEV-decorated homeostatic chemokines such as secondary lymphoid tissue chemokine (SLC; CCL21) to its counterreceptor, CCR7. Importantly, L-selectin also functions as a signaling molecule. In this study, signaling induced by ligation of L-selectin using mAb or endothelial cell-expressed ligand significantly enhanced the chemotaxis of murine T cells and B cells to SLC but not to other homeostatic chemokines. Consistent with the expression levels of L-selectin in different lymphocyte subsets, L-selectin-mediated enhancement of chemotaxis to SLC was observed for all naive lymphocytes and effector/memory CD8(+) T cells, whereas only a subpopulation of effector/memory CD4(+) T cells responded. During in vivo mesenteric lymph node migration assays, the absence of L-selectin on lymphocytes significantly attenuated both their ability to migrate out of the HEV and their chemotaxis away from the vessel wall. Notably, ligation of L-selectin and/or CCR7 did not result in increased CCR7 expression levels, internalization, or re-expression. Pharmacologic inhibitor studies showed that L-selectin-mediated enhanced chemotaxis to SLC required intact intracellular kinase function. Furthermore, treatment of lymphocytes with the spleen tyrosine kinase family inhibitor piceatannol reduced their ability to migrate across the HEV in peripheral lymph nodes. Therefore, these results suggest that "cross-talk" in the signaling pathways initiated by L-selectin and CCR7 provides a novel mechanism for functional synergy between these two molecules during lymphocyte migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号