首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Primary cultures of neuronal and glial cells from 1-day-old neonatal rats contain high affinity receptors for insulin-like growth factor I (IGF-I). The IC50 for displacement of 125I-IGF-I binding by unlabeled IGF-I was 3 nM for neuronal cells and 4 nM for glial cells. Unlabeled insulin was 20-50 times less potent. Apparent molecular mass of the alpha subunits of the IGF-I receptor was 125 kDa in neuronal and 135 kDa in glial cells. IGF-I induced autophosphorylation of the IGF-I receptor beta subunit in lectin-purified membrane preparations in a dose-dependent manner. The major phosphoamino acid of the beta subunit in both cell types was tyrosine in the IGF-I-stimulated state and serine in the basal state. Apparent molecular mass of the beta subunits of the IGF-I receptors was 91 kDa for neuronal and 95 kDa for glial cells. Tyrosine kinase activity of the IGF-I receptors was demonstrated by IGF-I-induced phosphorylation of the exogenous substrate poly(Glu, Tyr) 4:1 in both cell types. IGF-I had no effect on 2-deoxyglucose uptake in neuronal cells. In contrast, in glial cells, IGF-I stimulated 2-deoxyglucose uptake at very high doses, presumably acting via the insulin receptor. The effect of IGF-I as a neurotrophic growth factor in both neuronal and glial cells was demonstrated by its stimulation of [3H]thymidine incorporation. These findings suggest the IGF-I is an important growth factor in nervous tissue-derived cells.  相似文献   

2.
The binding of 125I-insulin-like growth factor-I (125I-IGF-I) to bovine chromaffin cells was measured. Chromaffin cell cultures contained 111,000 +/- 40,000 IGF-I binding sites/cell. These sites bound IGF-I with a KD of 1.1 +/- 0.3 nM and had a much lower affinity for insulin. Cross-linking studies showed that 125I-IGF-I bound to a protein that had an Mr of approximately 125,000, similar to the Mr of the alpha subunit of the IGF-I receptor in other tissues. Cells cultured with IGF-I (10 nM) for 4 days exhibited an almost twofold increase in high K+-evoked catecholamine secretion. Insulin was much less potent than IGF-I in enhancing catecholamine secretion. These data indicate that binding of IGF-I to its receptors on chromaffin cells can modulate the function of these cells.  相似文献   

3.
Evidence for a subtype of insulin-like growth factor I receptor in brain   总被引:2,自引:0,他引:2  
We examined the structure of receptors for insulin-like growth factor I (IGF-I), insulin, and epidermal growth factor (EGF) in human brain and human placenta using affinity cross-linking procedures and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In human brain, proteins specifically cross-linked to 125I-IGF-I, 125I-insulin, and 125I-EGF had apparent molecular weights of 120,000, 115,000 and 170,000, respectively. In human placenta, proteins cross-linked to 125I-IGF-I and 125I-insulin were 10 kDa larger than the corresponding subunits in brain. The receptor labeled by 125I-EGF in placenta was indistinguishable from the EGF receptor in brain. The size discrepancy of IGF-I receptors in brain and placenta was no longer apparent after removing the carbohydrate moieties of the proteins with endo-beta-N-acetylglucosaminidase F (EndoF). Furthermore, the brain IGF-I receptor was not cleaved by neuraminidase, whereas, the placental IGF-I receptor had increased mobility on SDS gels following neuraminidase treatment. The results indicate that receptors for IGF-I and insulin in human brain are structurally distinct from the corresponding receptors in human placenta, the structural heterogeneity of the receptors involves differences in N-linked glycosylation, particularly the terminal processing steps, and EGF receptors are present in human brain and human placenta but are structurally similar in these tissues. We conclude that there is a selective modification in the glycosylation of receptors for IGF-I and insulin in brain.  相似文献   

4.
Two photoreactive apamin derivatives were prepared with an aryl azide [[(azidonitrophenyl)amino]acetate (ANPAA)] group coupled at different positions on the neurotoxin molecule. These ligands were used to identify membrane components in the environment of the neuronal binding site that is associated with a Ca2+-activated K+ channel. 125I-[alpha-ANPAA-Cys1] apamin labeled a single Mr 86 000 chain in cultured neurons whereas two bands corresponding to Mr 86 000 and 59,000 were detected in synaptic membrane preparations, suggesting that the Mr 59,000 polypeptide may be a degradation product. 125I-[epsilon-ANPAA-Lys4]apamin however incorporated uniquely into two smaller components with Mr 33,000 and 22,000 in both cultured neurons and synaptic membranes. Randomly modified 125I-ANPAA-apamin gave a cross-linking profile equivalent to the sum of those obtained with the two defined derivatives. The apamin binding site seems to be located at the frontier between three or more putative K+ channel subunits which are only accessible from limited regions of the receptor-associated photoprobe. Irradiation of frozen rat brain membranes with high-energy electrons led to a reduction in 125I-apamin receptor capacity, yielding a target size for the functional binding unit of Mr 84,000-115,000, which could be constituted by the Mr 86,000 subunit alone or by the Mr 86,000 subunit in conjuction with one of the two smaller subunits.  相似文献   

5.
Oligodendrocyte progenitor cells were prepared by mechanical dissociation of 1-day-old rat brain cultures. These cells undergo proliferation and differentiation into oligodendrocytes as demonstrated by the expression of proliferation and differentiation-related specific antigens. We have used this unique culture system to characterize insulin-like growth factor I (IGF-I) receptors and their action in the central nervous system (CNS). 125I-IGF-I specifically binds to these cultures with high affinity. Competition-inhibition data suggest that IGF-I is most potent in competing for 125I-IGF-I binding, followed by IGF-II and insulin. Scatchard analyses of the binding data indicate a curvilinear plot with a Kd for high affinity of 0.2 nM, and a Bmax of 247 fmol/mg, and a Kd for low affinity of 3.2 nM and Bmax of 1213 fmol/mg protein. Covalent cross-linking followed by SDS-PAGE analysis demonstrated a radioactive band of Mr 135,000 which corresponds to the alpha subunit of the IGF-I receptor. Solution hybridization/RNase protection assay produced a single protected band corresponding to IGF-I receptor messenger RNA, further confirming the presence of these receptors. Incubation of progenitor cells with IGF-I resulted in a time- and concentration-dependent increase in [3H]thymidine incorporation and cell numbers. This effect appears to be mediated by IGF-I receptors since IGF-II and insulin were proportionately less potent. In addition to its effect on proliferation, IGF-I also increased the number of 4E7- and GC-antigen positive cells. These observations indicate that oligodendrocytes in primary culture express specific IGF-I receptors and that the interaction of IGF-I with these receptors results in the proliferation as well as differentiation of oligodendrocytes.  相似文献   

6.
We previously identified two forms of the insulin-like growth-factor-I (IGF-I) receptor in human placenta: a lower-affinity form reactive with an autoantiserum (B-2) to the insulin receptor and a higher-affinity non-immunoreactive form [Jonas & Harrison (1985) J. Biol. Chem. 260, 2288-2294]. Evidence is now presented that the lower-affinity immunoreactive forms are convertible into higher-affinity non-immunoreactive forms via reduction of receptor disulphide bonds. Treatment of placental membranes with increasing concentrations of dithiothreitol (DTT): (1) converted native Mr-290 000 heterotetrameric IGF-I receptors into Mr-180 000 dimers (determined by chemical cross-linking of 125I-IGF-I with disuccinimidyl suberate); (2) increased 125I-IGF-I binding, owing to an increase in receptor affinity; and (3) abolished the reactivity of Triton-solubilized IGF-I receptors with antiserum B-2 and transformed the curvilinear plot of IGF-I binding to a linear form. In isolated complexes between receptor and B-2 antibody, DTT increased 125I-IGF-I binding and released a single class of higher affinity IGF-I receptors of Mr 180,000. Thus DTT-treated IGF-I receptors have similar properties to the higher-affinity non-immunoreactive forms of the native receptor, except that reduced dimeric forms are not detected by cross-linking of 125I-IGF-I to native membranes. Cleavage of the inter-dimeric disulphide bonds is therefore not a prerequisite for higher-affinity binding or loss of immunoreactivity. These observations suggest that the thiol redox state of the IGF-I receptor in vivo is an important determinant of receptor conformation and therefore of the biological responses to IGF-I.  相似文献   

7.
125I-labelled epidermal growth factor (125I-EGF) and 125I-labelled insulin-like growth factor-I (125I-IGF-I) bound to trophoderm cells from pig blastocysts obtained on days 15-19 of pregnancy. Specific binding was detected on freshly isolated cell suspensions and on cells cultured for several days. The binding of 125I-EGF was inhibited by increasing concentrations of EGF, but not by various other growth factors and hormones. Chemical cross-linking of 125I-EGF to its receptors using disuccinimidyl suberate (DSS) revealed a radiolabelled band of relative molecular mass 160,000, similar to that identified as the EGF receptor in other cell types. The binding of 125I-IGF-I was inhibited by both IGF-I and insulin, indicating that the receptors were either type I IGF receptors or insulin receptors. Cross-linking of 125I-IGF-I to serum-free supernatants from trophoderm cultures showed that the cells secreted an IGF-binding protein, giving a complex of relative molecular mass about 45,000. The presence of receptors for EGF and IGF/insulin suggests that these factors could be involved in regulating the growth and development of the early blastocyst.  相似文献   

8.
Insulin-like growth factor-I (IGF-I), synthesized by the uterine endometrium of cyclic and early pregnant gilts, accumulates in the uterine luminal fluid, where it comes in contact with the developing conceptus and the rapidly growing uterus. The uterus and the conceptus thus represent potential target sites for the biological effects of IGF-I, provided high-affinity Type I receptors are present. This study was undertaken to evaluate the expression of functional IGF-I receptors in the endometrium and myometrium of pregnant (Day 10, 12, and 15) gilts and in the endometrium of cyclic (Day 15) and pseudopregnant (Day 15) gilts and to correlate levels of these receptors with temporally regulated uterine production of IGF-I. Specific binding of 125I-IGF-I to endometrial membranes pretreated with MgCl2 (4 M) at 4 degrees C for 16 h, was saturable and membrane concentration-dependent. Competition of 125I-IGF-I binding to endometrial membranes was highest with unlabeled IGF-I greater than IGF-II much greater than insulin, whereas porcine relaxin was noncompetitive. Affinity cross-linking of endometrial membranes with 125I-IGF-I followed by SDS-PAGE and autoradiography revealed two labeled bands of Mr greater than 200,000 and Mr 135,000, with the major band being the Mr 135,000 species. Scatchard analysis of 125I-IGF-I binding to endometrial membranes from Day 12 pregnant gilts revealed a single class of binding sites with a dissociation constant (Kd) = 4.08 +/- 0.09 nM. Membranes prepared from endometrium of Day 10, 12, and 15 pregnant gilts exhibited comparable 125I-IGF-I binding (p greater than 0.05) that was higher (p less than 0.001) than that for the corresponding myometrial membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
S Gammeltoft  M Fehlmann  E Van Obberghen 《Biochimie》1985,67(10-11):1147-1153
Insulin receptors in rat and human central nervous system have been identified by binding of 125I-insulin on purified synaptic plasma membranes; affinity labelling of receptors by chemical cross-linking 125I-insulin; or phosphorylation of receptors with [gamma-32P]ATP. Brain insulin receptors showed significant differences in their binding characteristics and subunit structure when compared with receptors in other tissues like adipose and liver cells: absence of negatively cooperative interactions; a distinct binding specificity i.e. porcine proinsulin, coypu insulin and insulin-like growth factor I and II showed 2-5 times higher binding affinity in brain than in other cell types; a smaller molecular size of the brain receptor alpha-subunit than in other tissues (Mr approximately 115,000 instead of 130,000). In contrast, the size (Mr approximately 94,000) and function of the insulin receptor beta-subunit kinase was identical with that described in other cells. We conclude, that insulin receptors in mammalian brain represent a receptor subtype which may mediate growth rather than metabolic activity of insulin.  相似文献   

10.
The insulin like growth factors (IGFs), potent mitogens for a variety of normal and transformed cells, have been reported to be secreted by several human breast cancer cell lines (BC). We have investigated the binding characteristics of IGF-I and -II in four human BC: MCF-7, T-47D, MDA 231 and Hs578T. Binding studies in microsomal membrane preparations detected high specific binding for both IGF in all four BC studied. Cross-linking with 125I-IGF-I, followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under reduced conditions, revealed the presence of an alpha subunit of apparent Mr = 130,000 in MCF-7, T-47D and MDA 213 cells. When 125I-IGF-II was cross-linked, a major band of apparent Mr = 260,000 was seen in all BC. This band was inhibited by IGF-II, but not by insulin. Cross-linking of 125I-IGF-I to conditioned media from BC demonstrated the presence of three binding proteins of apparent Mr = 45,000, 36,000 and 29,000 in all BC but T-47D, in which the 36,000 band was not seen. These data demonstrate that BC possess classical receptors for both IGF-I and -II and, furthermore, that BC produce specific binding proteins for these growth factors.  相似文献   

11.
Two species of insulin-like growth factor-I (IGF-I) receptors in human placenta have been delineated on the basis of their immunoreactivity with an autoantiserum (B-2) to the insulin receptor. When all the IGF-I binding sites in solubilized human placenta were assayed by polyethylene glycol precipitation, a curvilinear Scatchard plot was obtained which could be resolved into two single classes of binding sites: one immunoprecipitable by B-2 IgG and the other, nonimmunoprecipitable. The B-2 reactive sites bound IGF-I with lower affinity (Kd = 7.1 X 10(-10) M) than the B-2 nonreactive sites (Kd = 2.1 X 10(-10) M) and cross-reacted more readily with insulin, the IGF-I/insulin-binding potencies being congruent to 120 and congruent to 1100, respectively. Both receptor subtypes bound IGF-I with congruent to 30-fold higher affinity than multiplication-stimulating activity, and, after affinity cross-linking with 125I-IGF-I, migrated as specific reduced bands of Mr = 138,000 during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The subunit sizes of the B-2 reactive IGF-I receptor were similar to those of the insulin receptor. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 125I-labeled receptors immunoprecipitated by autoantiserum B-2 or autoantiserum B-10 (which recognizes only insulin receptors) revealed, in both cases, specific reduced bands of Mr = 130,000 and 90,000; the same bands were also seen after sequential precipitation with B-10 and B-2 antisera to enrich the proportion of IGF-I receptors recovered. The presence of two distinct binding and immunoreactive species of IGF-I receptors in human placenta raises the possibility that cell- or tissue-specific isotypes of the IGF-I receptor could mediate the different biological actions of IGF-I.  相似文献   

12.
Endothelial cells were cultured from bovine fat capillaries, aortae and pulmonary arteries and their interactions with 125I-IGF-I, 125I-MSA (an IGF-II), 125I-insulin and the corresponding unlabeled hormones were evaluated. Each endothelial culture showed similar binding parameters. With 125I-insulin, unlabeled insulin competed with high affinity while IGF-I and MSA were approximately 1% as potent. With 125I-MSA, MSA was greater than or equal to IGF-I in potency and insulin did not compete for binding. Using 125I-IGF-I, IGF-I was greater than or equal to MSA whereas insulin decreased 125I-IGF-I binding by up to 72%. Exposing cells to anti-insulin receptor antibodies inhibited 125I-insulin binding by greater than 90%, did not change 125I-MSA binding, while 125I-IGF-I binding was decreased by 30-44%, suggesting overlapping antigenic determinants between IGF-I and insulin receptors that were not present on MSA receptors. We conclude that cultured capillary and large vessel endothelial cells have distinct receptors for insulin, IGF-I and MSA (IGF-II).  相似文献   

13.
Insulin-like growth factor I receptors in retinal rod outer segments   总被引:3,自引:0,他引:3  
We have previously reported that the GDP-bound alpha-subunit of the GTP-binding protein transducin, present in outer segments of retinal rod cells (ROS), serves as a high affinity in vitro substrate (Km = 1 microM) for the insulin receptor kinase. The present study demonstrates that transducin also serves as in vitro substrate for an endogenous IGF-I receptor kinase isolated from ROS membranes. The presence of insulin-like growth factor I (IGF-I) receptors in ROS is evident from the high affinity and specific binding of 125I-IGF-I to ROS membranes (Kd = 3 nM) which contain 110 fmol of IGF-I binding sites/mg of membrane protein. Furthermore, cross-linking of 125I-IGF-I labels the 135-kDa alpha-subunit of this receptor. 125I-Insulin binding capacity to ROS membranes is less than 5% that of IGF-I. The IGF-I-stimulated tyrosine kinase activity in solubilized and partially purified receptors from ROS autophosphorylates its own 95-kDa beta-subunits as well as other substrates like transducin. Insulin, which is 200-fold less potent than IGF-I in competing for 125I-IGF-I binding, is only 5-fold less potent than IGF-I in stimulating the receptor kinase activity. This suggests that insulin is much more potent than IGF-I in coupling ligand binding with kinase activation. The previously reported presence of IGF-I in the vitreous, together with our present studies, strongly suggest that the IGF-I receptor kinase, through phosphorylation of endogenous proteins like transducin, could play a role in mediating transmembrane signal transduction in ROS.  相似文献   

14.
Purification and characterization of the human brain insulin receptor   总被引:2,自引:0,他引:2  
The insulin receptor from human brain cortex was purified by a combination monoclonal antibody affinity column and a wheat germ agglutinin column. This purified receptor preparation exhibited major protein bands of apparent Mr = 135,000 and 95,000, molecular weights comparable to those for the alpha and beta subunits of the purified human placental and rat liver receptors. A minor protein band of apparent Mr = 120,000 was also observed in the brain receptor preparation. Crosslinking of 125I-insulin to all three receptor preparations was found to preferentially label a protein of apparent Mr = 135,000. In contrast, cross-linking of 125I-labeled insulin-like growth factor I to the brain preparation preferentially labeled the protein of apparent Mr = 120,000. The purified brain insulin receptor was found to be identical with the placental insulin receptor in the amount of neuraminidase-sensitive sialic acid and reaction with three monoclonal antibodies to the beta subunit of the placental receptor. In contrast, a monoclonal antibody to the insulin binding site recognized the placental receptor approximately 300 times better than the brain receptor. These results indicate that the brain insulin receptor differs from the receptor in other tissues and suggests that this difference is not simply due to the amount of sialic acid on the receptor.  相似文献   

15.
The cells of the IM-9 human lymphocyte-derived line contain a sub-population of insulin-binding sites whose immunological and hormone-binding characteristics closely resemble those of the atypical insulin-binding sites of human placenta. These binding sites, which have moderately high affinity for multiplication-stimulating activity [MSA, the rat homologue of insulin-like growth factor (IGF) II] and IGF-I, are identified on IM-9 cells by 125I-MSA binding. They account for approximately 30% of the total insulin-receptor population, and do not react with a monoclonal antibody to the type I IGF receptor (alpha IR-3). The relative concentrations of unlabelled insulin, MSA and IGF-I required to displace 50% of 125I-MSA from these binding sites (1:4.7:29 respectively) are maintained for cells, particulate membranes, Triton-solubilized membranes precipitated either by poly(ethylene glycol) or a polyclonal antibody (B-10) to the insulin receptor, and receptors purified by insulin affinity chromatography. Because the atypical insulin/MSA-binding sites outnumber the type I IGF receptors in IM-9 cells by approximately 10-fold, they also compete with the latter receptors for 125I-IGF-I binding. Thus 125I-IGF-I binding to IM-9 cells is inhibited by moderately low concentrations of insulin (relative potency ratios for insulin compared with IGF-I are approx. 1/14 to 1/4) and is partially displaced (65-80%) by alpha IR-3. When type I IGF receptors are blocked by alpha IR-3 or removed by B-10 immunoprecipitation or insulin affinity chromatography, the hormone-displacement patterns for 125I-IGF-I binding resemble those of the atypical insulin/MSA-binding sites.  相似文献   

16.
Competitive binding studies indicated that PC12 cells have receptors for insulin-like growth factor-I (IGF-I). There are approximately 11,000 +/- 1,500 IGF-I receptors/cell; these receptors have an apparent KD for IGF-I of 7.2 +/- 0.6 nM. Covalent cross-linking of 125I-IGF-I to PC12 cells labeled a 125,000-130,000-Mr protein, presumably the alpha-subunit of the IGF-I receptor. Although PC12 cells also have insulin receptors, the 125I-IGF-I appeared to be cross-linked to IGF-I receptors, because 100 nM IGF-I competed for labeling but 100 nM insulin did not. Bovine chromaffin cells also have IGF-I receptors. The protein tyrosyl kinase activity of IGF-I receptors from bovine adrenal medulla and PC12 cells was examined after purification of the receptors by wheat germ agglutinin-Sepharose chromatography. IGF-I (10 nM) stimulated autophosphorylation of the beta-subunits of the IGF-I receptors from both preparations; the beta-subunits from both sources had Mr values of approximately 97,000. IGF-I also stimulated phosphorylation of the synthetic substrate poly(Glu:Tyr)4:1 by both receptor preparations. IGF-I (IC50 of approximately 0.2 nM) was much more potent than insulin at stimulating phosphorylation of poly(Glu:Tyr) by the bovine adrenal medulla preparation. A maximal concentration of IGF-I (10 nM) increased phosphorylation approximately threefold. IGF-I was slightly more effective than insulin at stimulating the phosphorylation of poly(Glu:Tyr) by the PC12 cell receptor preparation, but neither ligand produced a maximal effect at concentrations up to 100 nM. This result probably reflects the presence of comparable numbers of IGF-I and insulin receptors on PC12 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Binding of insulin-like growth factor I (IGF-I) to cultured resting, proliferative and hypertrophic growth plate chondrocytes was investigated. The optimal binding conditions and the extent of degradation of the 125I-IGF-I at 20 degrees C were analyzed in a time-course study. The maximal binding without noticeable degradation was observed after 3 h. The binding of IGF-I to the proliferative cells was 2-fold higher than to the resting and the hypertrophic cells. On the proliferative chondrocytes two classes of receptors with different affinities were found. 125I-IGF-I could be displaced from the proliferative cells by unlabelled IGF-I, IGF-II and insulin, respectively. Half maximal binding was observed at 0.3 nmol/l (= 2.2 micrograms/l) of IGF-I, 4.3 nmol/l (= 32 micrograms/l) of IGF-II and 350 nmol/l (= 2000 micrograms/l) of insulin. No specific binding of human growth hormone (hGH) could be demonstrated. When binding of epidermal growth factor (EGF) to the proliferative cells was assessed, little, but specific binding was observed.  相似文献   

18.
An altered IGF-I receptor is present in human leukemic cells.   总被引:2,自引:0,他引:2  
We have characterized and analyzed IGF-I- and insulin-stimulated cell growth, receptor binding, and autophosphorylation in the human leukemic cell line HL-60. IGF-I-stimulated cell growth occurred at low (5 ng/ml) and insulin stimulated only at high (500 ng/ml) concentrations. Binding of 125I-IGF-I to partially purified plasma membrane proteins followed the characteristics of IGF-I receptor binding. 125I-IGF-I binding, as determined by chemical cross-linking, occurred to a 145-kDa protein. IGF-I, as well as insulin, stimulated the autophosphorylation of a 105-kDa band (pp105), but we could not detect a 95-kDa band corresponding to the known molecular mass of the IGF-I and insulin receptor beta-subunits. Phosphorylation of pp105 followed the dose-response characteristics of the IGF-I receptor. The phosphorylation of pp105 occurred at tyrosine and threonine, and the pattern of HPLC tryptic peptide maps showed marked differences when compared with that of a phosphorylated insulin receptor beta-subunit. Enzymatic deglycosylation of pp105 resulted only in a slight reduction of the molecular weight. These data suggest that pp105 is the beta-subunit of an IGF-I receptor variant with a higher molecular weight, similar to that found in fetal tissue. The HL-60 cell may acquire, at least in part, malignant growth characteristics through reexpression of the fetal version of the IGF-I receptor.  相似文献   

19.
Specific receptors for insulin-like growth factors (IGF) I and II on microvessel-free rat brain cell membranes (RBCM) and in the microvessels that constitute the blood-brain barrier (BBB) were identified and characterized by means of affinity cross-linking techniques and specific anti-receptor antibodies. Two different models of BBB were examined: isolated rat brain capillaries and cultured bovine brain microvessel endothelial cells. Cross-linking with 125-I-IGF-I, followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), revealed an alpha subunit of apparent Mr = 138,000 in both BBB preparations, compared to 120,000 in RBCM. Cross-linking was inhibited by unlabeled IGF and insulin, but not by antibody directed against the IGF-II receptor. When 125-I-IGF-II was cross-linked, followed by SDS-PAGE under reducing conditions, a major band of apparent Mr = 250,000 was identified in RBCM and both BBB preparations. This band, which migrated with an approximately equivalent Mr in both brain and BBB membranes, was inhibited by unlabeled IGF and by antibody specific for the IGF-II receptor. Thus, both rat and bovine brain microvessels possess classical Type I and II IGF receptors. While the alpha subunit of the Type I receptor of brain is smaller than that of the BBB, the Type II receptor of brain and BBB appear to be structurally and immunologically identical.  相似文献   

20.
125I-Labeled colony-stimulating factor (CSF) 2 alpha (interleukin 3, multi-CSF, and mast cell growth factor) was used to characterize receptors specific for this lymphokine on the cell surface of the factor-dependent cell line FDC-P2. CSF-2 alpha binding to these cells was specific and saturable. Among a panel of lymphokines and growth factors, only unlabeled CSF-2 alpha was able to compete for the binding of 125I-labeled CSF-2 alpha to cells. Equilibrium binding studies revealed that CSF-2 alpha bound to 434 +/- 281 receptors/cell with a Ka of 8.7 +/- 3.9 X 10(9) M-1. Affinity cross-linking experiments with the homobifunctional cross-linking reagents disuccinimidyl suberate, disuccinimidyl tartrate, and dithiobis(succinimidyl propionate) produced a radiolabeled band of Mr = 97,000 on intact cells and in purified cell membranes, while an additional band of Mr = 138,000 was produced upon cross-linking to intact cells only. The relationship between these two bands is discussed. The results indicate that the receptor for CSF-2 alpha on FDC-P2 cells consists at a minimum of a subunit of Mr = 72,500.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号