首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Essential factors associated with hepatic angiogenesis   总被引:3,自引:0,他引:3  
Das SK  Vasudevan DM 《Life sciences》2007,81(23-24):1555-1564
  相似文献   

2.
Many beneficial proprieties have been associated with polyphenols from green tea, such as chemopreventive, anticarcinogenic, antiatherogenic and antioxidant actions. In this study, we investigated the effects of green tea polyphenols (GTPs) and their principal catechins on the function of P-glycoprotein (P-gp), which is involved in the multidrug resistance phenotype of cancer cells. GTPs (30 microg/ml) inhibit the photolabeling of P-gp by 75% and increase the accumulation of rhodamine-123 (R-123) 3-fold in the multidrug-resistant cell line CH(R)C5, indicating that GTPs interact with P-gp and inhibit its transport activity. Moreover, the modulation of P-gp transport by GTPs was a reversible process. Among the catechins present in GTPs, EGCG, ECG and CG are responsible for inhibiting P-gp. In addition, EGCG potentiates the cytotoxicity of vinblastine (VBL) in CH(R)C5 cells. The inhibitory effect of EGCG on P-gp was also observed in human Caco-2 cells, which form an intestinal epithelial-like monolayer. Our results indicate that, in addition to their anti-cancer properties, GTPs and more particularly EGCG inhibit the binding and efflux of drugs by P-gp. Thus, GTPs or EGCG might be potential agents for modulating the bioavailability of P-gp substrates at the intestine and the multidrug resistance phenotype associated with expression of this transporter in cancer cells.  相似文献   

3.
Excessive exposure of the skin to solar ultraviolet (UV) radiation is one of the major factors for the development of skin cancers, including non-melanoma. For the last several centuries the consumption of dietary phytochemicals has been linked to numerous health benefits including the photoprotection of the skin. Green tea has been consumed as a popular beverage world-wide and skin photoprotection by green tea polyphenols (GTPs) has been widely investigated. In this article, we have discussed the recent investigations and mechanistic studies which define the potential efficacy of GTPs on the prevention of non-melanoma skin cancer. UV-induced DNA damage, particularly the formation of cyclobutane pyrimidine dimers, has been implicated in immunosuppression and initiation of skin cancer. Topical application or oral administration of green tea through drinking water of mice prevents UVB-induced skin tumor development, and this prevention is mediated, at least in part, through rapid repair of DNA. The DNA repair by GTPs is mediated through the induction of interleukin (IL)-12 which has been shown to have DNA repair ability. The new mechanistic investigations support and explain the anti-photocarcinogenic activity, in particular anti-non-melanoma skin cancer, of green tea and explain the benefits of green tea for human health.  相似文献   

4.
The anticoagulant serpin antithrombin acquires a potent antiangiogenic activity upon undergoing conformational alterations to cleaved or latent forms. Here we show that antithrombin antiangiogenic activity is mediated at least in part through the ability of the conformationally altered serpin to block the proangiogenic growth factors fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF) from forming signaling competent ternary complexes with their protein receptors and heparan sulfate co-receptors on endothelial cells. Cleaved and latent but not native forms of antithrombin blocked the formation of FGF-2-FGF receptor-1 ectodomain-heparin ternary complexes, and the dimerization of these complexes in solution and similarly inhibited the formation of FGF-2-heparin binary complexes and their dimerization. Only antiangiogenic forms of antithrombin likewise inhibited (125)I-FGF-2 binding to its low affinity heparan sulfate co-receptor and blocked FGF receptor-1 autophosphorylation and p42/44 MAP kinase phosphorylation in cultured human umbilical vein endothelial cells (HUVECs). Moreover, treatment of HUVECs with heparinase III to specifically eliminate the FGF-2 heparan sulfate co-receptor suppressed the ability of antiangiogenic antithrombin to inhibit growth factor-stimulated proliferation. Antiangiogenic antithrombin inhibited full-length VEGF(165) stimulation of HUVEC proliferation but did not affect the stimulation of cells by the heparin-binding domain-deleted VEGF(121). Taken together, these results demonstrate that antiangiogenic forms of antithrombin block the proangiogenic effects of FGF-2 and VEGF on endothelial cells by competing with the growth factors for binding the heparan sulfate co-receptor, which mediates growth factor-receptor interactions. Moreover, the inability of native antithrombin to bind this co-receptor implies that native and conformationally altered forms of antithrombin differentially bind proangiogenic heparan sulfate domains.  相似文献   

5.
The lysosomal protease cathepsin B has been implicated in a variety of pathologies including pancreatitis, tumor angiogenesis, and neuronal diseases. We used a tube formation assay to investigate the role of cathepsin B in angiogenesis. When cultured between two layers of collagen I, primary endothelial cells formed tubes in response to exogenously added VEGF. Overexpressing cathepsin B reduced the VEGF-dependent tube response, whereas pharmacologically or molecularly suppressing cathepsin B eliminated the dependence on exogenous VEGF. However, tube formation still required VEGF receptor activity, which suggested that endothelial cells generated VEGF. Indeed, VEGF mRNA and protein was detectable in cells treated with cathepsin B inhibitor, which correlated with a rise in the level of HIF-1alpha. In addition to boosting the level of proangiogenic factors, blocking cathepsin B activity reduced the amount of the antiangiogenic protein endostatin. Thus endothelial cells have the intrinsic capacity to generate pro- and antiangiogenic agents. These observations complement and expand our appreciation of how endothelial cell-derived proteases regulate angiogenesis.  相似文献   

6.
An SDF-1 trap for myeloid cells stimulates angiogenesis   总被引:9,自引:0,他引:9  
In this issue of Cell, Grunewald et al. (2005) examine the role of hematopoietic cells in the formation of new blood vessels. They show that organ-specific expression of vascular endothelial growth factor (VEGF) is sufficient to mobilize and recruit hematopoietic cells from the bone marrow to the blood, but retention of the proangiogenic subpopulation of hematopoietic cells in peripheral organs requires an additional factor, stromal-derived factor 1 (SDF-1).  相似文献   

7.
Angiogenesis, the development of new blood vessels from the existing vascular network, may result as a consequence of the increase or decrease of proangiogenic or antiangiogenic factors, respectively. The tumor itself could up-regulate the production of angiogenic factors. Recently, we established that the steroidal drug betamethasone in low concentration inhibit the neovascularization promoted by TA3 Ts on CAM of chick embryos. We describe here the effects of the non-steroidal drug ketoprofen, alone or in association with betamethasone, on the angiogenesis promoted by TA3 Ts on CAM. The main finding reported here is that the formation of new blood vessels is strongly inhibited by low concentrations of ketoprofen. The association of both drugs produced a synergistic effect, significantly decreasing tumoral supernatant angiogenesis. It is known that steroidal anti-inflammatory drugs inhibit the enzymes required for the production of prostaglandins through a nuclear GR mediated mechanism. This may operate as a general mechanism in endothelial cells as well. Considering that the induction of COX 1 and COX2 are inhibited by ketoprofen, and that these enzymes are located in the stromal compartment of the CAM, we propose that its antiangiogenic effect may occur via inhibition of the two COX isoforms. In fact, we found that ketoprofen induced apoptosis in both the stromal fibroblast and endothelial cells. The potentiated effect of the combination of betamethasone and ketoprofen may have some therapeutic projections in the control of pathological angiogenesis.  相似文献   

8.
The formation of new blood vessels from pre-existing ones is required for the growth of solid tumors and for metastasis. Interaction of tumor-secreted vascular endothelial growth factor (VEGF) with its receptor(s) on endothelial cells triggers endothelial cell proliferation and migration, which facilitate tumor angiogenesis. Butyric acid (BuA), a fermentation product of dietary fibers in the colon, is shown to alter gene expression and is postulated to be anticarcinogenic. The results presented in this paper indicate that BuA can be antiangiogenic in vivo by inhibiting angiogenesis in chorioallantoic membrane assay. BuA was not cytotoxic to endothelial cells but was a potent antiproliferative agent besides being proapoptotic to endothelial cells as verified by FACS analysis. Conditioned media from BuA-treated Ehrlich ascites tumor cells showed a 30% decrease in VEGF concentration when compared with untreated cells. The decrease in VEGF mRNA and its receptor, KDR mRNA levels in EAT and endothelial cells respectively, suggests that the VEGF-KDR system of angiogenesis is the molecular target for the antiangiogenic action of BuA.  相似文献   

9.
Photodynamic therapy (PDT) is an innovative strategy for the treatment of solid neoplasms of the brain. Aside from inducing cell death in tumor cells, PDT induces endothelial cell death and promotes formation of blood clots; however, exact mechanisms that trigger these phenomena remain largely unknown. We now used Western blotting to analyze secretion of regulators of angiogenesis to the supernatants of one glioma, one macrophage, and one endothelial cell line following Hypocrellin-A and -B photodynamic therapy. We observed induction of proangiogenic VEGF (vascular endothelial growth factor) and of antiangiogenic sFlt-1, angiostatin, p43, allograft inflammatory factor-1, and connective tissue growth factor. Release of thrombospondin-1 was diminished in a glioma cell line supernatant. Endostatin release was induced in glioma cells and reduced in macrophages and endothelial cells. These data show that a wide range of antiangiogenic factors are secreted by brain tumor cells following Hypocrellin photochemotherapy. However, VEGF release is also induced thus suggesting both favorable and deleterious effects on tumor outgrowth.  相似文献   

10.
The expansion of the synovial lining of joints in rheumatoid arthritis (RA) and the subsequent invasion by the pannus of underlying cartilage and bone necessitate an increase in the vascular supply to the synovium, to cope with the increased requirement for oxygen and nutrients. The formation of new blood vessels - termed 'angiogenesis' - is now recognised as a key event in the formation and maintenance of the pannus in RA. This pannus is highly vascularised, suggesting that targeting blood vessels in RA may be an effective future therapeutic strategy. Disruption of the formation of new blood vessels would not only prevent delivery of nutrients to the inflammatory site, but could also lead to vessel regression and possibly reversal of disease. Although many proangiogenic factors are expressed in the synovium in RA, the potent proangiogenic cytokine vascular endothelial growth factor (VEGF) has been shown to a have a central involvement in the angiogenic process in RA. The additional activity of VEGF as a vascular permeability factor may also increase oedema and hence joint swelling in RA. Several studies have shown that targeting angiogenesis in animal models of arthritis ameliorates disease. Our own study showed that inhibition of VEGF activity in murine collagen-induced arthritis, using a soluble VEGF receptor, reduced disease severity, paw swelling, and joint destruction. Although no clinical trials of anti-angiogenic therapy in RA have been reported to date, the blockade of angiogenesis - and especially of VEGF - appears to be a promising avenue for the future treatment of RA.  相似文献   

11.
12.
The formation of new blood vessels is the initial step in progressive tumour development and metastasis. The first stage in tumour angiogenesis is the activation of endothelial cells. Copper ions stimulate proliferation and migration of endothelial cells. It has been shown that serum copper concentration increases as the cancer disease progresses and correlates with tumour incidence and burden. Copper ions also activate several proangiogenic factors, e.g., vascular endothelial growth factor, basic fibroblast growth factor, tumour necrosis factor alpha and interleukin 1. This review concerns a brief introduction into the basics of tumour blood vessel development as well as the regulatory mechanisms of this process. The role of copper ions in tumour angiogenesis is discussed. The new antiangiogenic therapies based on a reduction of copper levels in tumour microenvironment are reviewed.  相似文献   

13.
Testing new antiangiogenic drugs for cancer treatment requires the use of animal models, since stromal cells and extracellular matrices mediate signals to endothelial cells that cannot be fully reproduced in vitro. Most methods used for analysis of antiangiogenic drugs in vivo utilized histologic examination of tissue specimens, which often requires large sample sizes to obtain reliable quantitative data. Furthermore, these assays rely on the analysis of murine vasculature that may not be correlated with the responses of human endothelial cells. Here, we engineered human blood vessels in immunodeficient mice with human endothelial cells expressing luciferase, demonstrated that these cells line functional blood vessels, and quantified angiogenesis over time using a photon counting-based method. In a proof-of-principle experiment with PTK/ZK, a small molecule inhibitor of vascular endothelial growth factor (VEGF) tyrosine kinase receptors, a strong correlation was observed between the decrease in bioluminescence (9.12-fold) in treated mice and the actual decrease in microvessel density (9.16-fold) measured after retrieval of the scaffolds and immunohistochemical staining of endothelial cells. The method described here allows for quantitative and noninvasive investigation into the effects of anti-cancer drugs on human angiogenesis in a murine host.  相似文献   

14.
Sjogren's syndrome (SS) is an autoimmune disorder that affects the salivary glands, leading to xerostomia, and the lacrimal glands, resulting in xerophthalmia. Secondary SS is associated with other autoimmune disorders such as systemic rheumatic diseases and systemic lupus erythematosis (SLE), which can affect multiple organs, including the epidermis. Recent studies have demonstrated that green tea polyphenols (GTPs) possess both anti-inflammatory and anti-apoptotic properties in normal human cells. Epidemiological evidence has indicated that, in comparison to the United States, the incidence of SS, clinical xerostomia and lupus is considerably lower in China and Japan, the two leading green tea-consuming countries.Thus, GTPs might be responsible, in part, for geographical differences in the incidence of xerostomia by reducing the initiation or severity of SS and lupus. Consistent with this, molecular, cellular and animal studies indicate that GTPs could provide protective effects against autoimmune reactions in salivary glands and skin. Therefore, salivary tissues and epidermal keratinocytes could be primary targets for novel therapies using GTPs. This review article evaluates the currently available research data on GTPs, focusing on their potential application in the treatment of the oral manifestations of SS and skin manifestations of SLE.  相似文献   

15.
Human skin is constantly exposed to numerous noxious physical, chemical and environmental agents. Some of these agents directly or indirectly adversely affect the skin. Cutaneous overexposure to environmental solar ultraviolet (UV) radiation (290-400 nm) has a variety of adverse effects on human health, including the development of melanoma and nonmelanoma skin cancers. Therefore, there is a need to develop measures or strategies, and nutritional components are increasingly being explored for this purpose. The polyphenols present in green tea (Camellia sinensis) have been shown to have numerous health benefits, including protection from UV carcinogenesis. (-)-Epigallocatechin-3-gallate (EGCG) is the major and most photoprotective polyphenolic component of green tea. In this review article, we have discussed the most recent investigations and mechanistic studies that define and support the photoprotective efficacy of green tea polyphenols (GTPs) against UV carcinogenesis. The oral administration of GTPs in drinking water or the topical application of EGCG prevents UVB-induced skin tumor development in mice, and this prevention is mediated through: (a) the induction of immunoregulatory cytokine interleukin (IL) 12; (b) IL-12-dependent DNA repair following nucleotide excision repair mechanism; (c) the inhibition of UV-induced immunosuppression through IL-12-dependent DNA repair; (d) the inhibition of angiogenic factors; and (e) the stimulation of cytotoxic T cells in a tumor microenvironment. New mechanistic information strongly supports and explains the chemopreventive activity of GTPs against photocarcinogenesis.  相似文献   

16.

Background

Angiogenesis, the formation of new blood vessels, has become an important target in cancer therapy. Angiogenesis plays an important role in tumor growth and metastasis. Koetjapic acid (KA) is a seco-A-ring oleanene triterpene isolated from S. koetjape. The solvent extract of this plant species was shown previously to have strong antiangiogenic activity; however the active ingredient(s) that conferred the biological activity and the mode of action was not established. Given the high concentration of KA in S. koetjape, an attempt has been made in this study to investigate the antiangiogenic properties of KA.

Results

Treatment with 10-50 μg/ml KA resulted in dose dependent inhibition of new blood vessels growth in ex vivo rat aortic ring assay. KA was found to be non-cytotoxic against HUVECs with IC50 40.97 ± 0.37 μg/ml. KA inhibited major angiogenesis process steps, endothelial cell migration and differentiation as well as VEGF expression.

Conclusions

The non-cytotoxic compound, KA, may be a potent antiangiogenic agent; its activity may be attributed to inhibition of endothelial cells migration and differentiation as well VEGF suppression.  相似文献   

17.
Angiogenesis, the formation of new blood vessels from preexisting vessels, is a highly complex process. It is regulated in a finely-tuned manner by numerous molecules including not only soluble growth factors such as vascular endothelial growth factor and several other growth factors, but also a diverse set of insoluble molecules, particularly collagenous and non-collagenous matrix constituents. In this review we have focused on the role and potential mechanisms of a multifunctional small leucine-rich proteoglycan decorin in angiogenesis. Depending on the cellular and molecular microenvironment where angiogenesis occurs, decorin can exhibit either a proangiogenic or an antiangiogenic activity. Nevertheless, in tumorigenesis-associated angiogenesis and in various inflammatory processes, particularly foreign body reactions and scarring, decorin exhibits an antiangiogenic activity, thus providing a potential basis for the development of decorin-based therapies in these pathological situations.  相似文献   

18.
血管内皮生长因子和抗肿瘤血管新生药物研究进展   总被引:1,自引:0,他引:1  
肿瘤的生长与迁移离不开新血管的形成,这使得抗血管新生成为肿瘤治疗的重要途径之一。血管内皮生长因子(VEGF)是针对内皮细胞作用最强、特异性最高的血管新生促进因子,因而VEGF是抗肿瘤治疗的重要靶点。我们简要介绍了VEGF的一些生物学特点及肿瘤血管新生,着重介绍了一些抗血管新生药物的最新研究成果及其临床应用。  相似文献   

19.
In embryogenesis, coronary blood vessels are formed by vasculogenesis from epicardium-derived progenitors. Subsequently, growing or regenerating myocardium increases its vasculature by angiogenesis, forming new vessels from the pre-existing ones. Recently, cell therapies for myocardium ischemia that used different protocols have given promising results, using either extra-cardiac blood vessel cell progenitors or stimulating the cardiac angiogenesis. We have questioned whether cardiomyocytes could sustain both vasculogenesis and angiogenesis. We used a 3D culture model of tissue-like spheroids in co-cultures of cardiomyocytes supplemented either with endothelial cells or with bone marrow-derived mesenchymal stroma cells. Murine foetal cardiomyocytes introduced into non-adherent U-wells formed 3D contractile structures. They were coupled by gap junctions. Cardiomyocytes segregated inside the 3D structure into clumps separated by connective tissue septa, rich in fibronectin. Three vascular endothelial growth factor isoforms were produced (VEGF 120, 164 and 188). When co-cultured with human umbilical cord endothelial cells, vascular structures were produced in fibronectin-rich external layer and in radial septa, followed by angiogenic sprouting into the cardiomyocyte microtissue. Presence of vascular structures led to the maintenance of long-term survival and contractile capacity of cardiac microtissues. Conversely, bone marrow mesenchymal cells formed isolated cell aggregates, which progressively expressed the endothelial markers von Willebrand's antigen and CD31. They proceeded to typical vasculogenesis forming new blood vessels organised in radial pattern. Our results indicate that the in vitro 3D model of cardiomyocyte spheroids provides the two basic elements for formation of new blood vessels: fibronectin and VEGF. Within the myocardial environment, endothelial and mesenchymal cells can proceed to formation of new blood vessels either through angiogenesis or vasculogenesis, respectively.  相似文献   

20.
In our study, resveratrol (polyphenol) has been identified as a very important stimulus/agent for the induction of new vessel growth. Occlusion of a main coronary depletes the blood supply to the myocardium and subsequently reduces cardiac function, which ultimately leads to heart failure. Progressive, chronic coronary artery occlusion has been shown to induce development of collateral arteries to re-establish and maintain blood flow to the myocardium at risk via the growth of new capillary vessels or angiogenesis. Studies from our laboratory, as well as from others, have already confirmed the protective role of collaterals against myocardial ischemia and cell death. We have successfully demonstrated in rat myocardial infarction (MI) model an effect of resveratrol on significant upregulation of the protein expression profiles of vascular endothelial growth factor (VEGF) and its tyrosine kinase receptor Flk-1, 3 wk after MI. Pretreatment with resveratrol also increased nitric-oxide synthase (inducible NOS and endothelial NOS) along with increased antiapoptotic and proangiogenic factors nuclear factor (NF)-kappaB and specificity protein (SP)-1. We also were able to demonstrate increased capillary density as well as improved left ventricular function by pharmacological preconditioning with resveratrol 3 wk after MI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号