首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
microRNA (miRNA) gene clusters are a group of miRNA genes clustered within a proximal distance on a chromosome. Although a large number of miRNA clusters have been uncovered in animal and plant genomes, the functional consequences of this arrangement are still poorly understood. Located in a polycistron, the coexpressed miRNA clusters are pivotal in coordinately regulating multiple processes, including embryonic development, cell cycles and cell differentiation. In this review, based on recent progress, we discuss the genomic diversity of miRNA gene clusters, the coordination of expression and function of the clustered miRNAs, and the evolutionarily adaptive processes with gain and loss of the clustering miRNA genes mediated by duplication and transposition events. Supported by State Key Program of National Natural Science of China(Grant No. 306300130)  相似文献   

3.
4.
左泽远  刘琬琳  许杰 《植物学报》2020,55(2):147-162
在植物基因组中, 除了同源基因成簇现象外, 近年来还发现一些具有共表达特性的异源基因也能够以基因簇形式存在, 但这些异源基因簇的进化和生物学功能尚不清楚。花药发育和花粉形成是植物进化出的特有的生殖生物学过程, 同时产生了一些在花药绒毡层中特异表达和特定功能的基因簇基因。该研究通过筛选和分析花药绒毡层中基因簇基因的分子特性、表达调控、基因年龄和基因重复进化等信息, 探讨花药基因簇基因与植物开花功能进化之间的关系。结果表明, 在拟南芥(Arabidopsis thaliana)中共筛选到84个(13个基因簇)花药绒毡层特异高表达的基因簇基因, 它们主要产生于串联重复事件, 76%的基因出现在开花植物分化后的阶段, 主要参与生殖发育、花粉鞘组成和脂代谢等生物学过程。研究初步解析了拟南芥花药绒毡层中基因簇基因的基本特征、生物学功能和基因进化机制, 为深入揭示植物基因簇基因的遗传学功能奠定了基础。  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
Gasch AP  Eisen MB 《Genome biology》2002,3(11):research0059.1-research005922
  相似文献   

14.
The rise and fall of Hox gene clusters   总被引:9,自引:0,他引:9  
Although all bilaterian animals have a related set of Hox genes, the genomic organization of this gene complement comes in different flavors. In some unrelated species, Hox genes are clustered; in others, they are not. This indicates that the bilaterian ancestor had a clustered Hox gene family and that, subsequently, this genomic organization was either maintained or lost. Remarkably, the tightest organization is found in vertebrates, raising the embarrassingly finalistic possibility that vertebrates have maintained best this ancestral configuration. Alternatively, could they have co-evolved with an increased ;organization' of the Hox clusters, possibly linked to their genomic amplification, which would be at odds with our current perception of evolutionary mechanisms? When discussing the why's and how's of Hox gene clustering, we need to account for three points: the mechanisms of cluster evolution; the underlying biological constraints; and the developmental modes of the animals under consideration. By integrating these parameters, general conclusions emerge that can help solve the aforementioned dilemma.  相似文献   

15.
16.
Homeobox genes encode DNA-binding proteins, many of which are implicated in the control of embryonic development. Evolutionarily, most homeobox genes fall into two related clades: the ANTP and the PRD classes. Some genes in ANTP class, notably Hox, ParaHox, and NK genes, have an intriguing arrangement into physical clusters. To investigate the evolutionary history of these gene clusters, we examined homeobox gene chromosomal locations in the cephalochordate amphioxus, Branchiostoma floridae. We deduce that 22 amphioxus ANTP class homeobox genes localize in just three chromosomes. One contains the Hox cluster plus AmphiEn, AmphiMnx, and AmphiDll. The ParaHox cluster resides in another chromosome, whereas a third chromosome contains the NK type homeobox genes, including AmphiMsx and AmphiTlx. By comparative analysis we infer that clustering of ANTP class homeobox genes evolved just once, during a series of extensive cis-duplication events of genes early in animal evolution. A trans-duplication event occurred later to yield the Hox and ParaHox gene clusters on different chromosomes. The results obtained have implications for understanding the origin of homeobox gene clustering, the diversification of the ANTP class of homeobox genes, and the evolution of animal genomes.  相似文献   

17.
Model-based clustering is a popular tool for summarizing high-dimensional data. With the number of high-throughput large-scale gene expression studies still on the rise, the need for effective data- summarizing tools has never been greater. By grouping genes according to a common experimental expression profile, we may gain new insight into the biological pathways that steer biological processes of interest. Clustering of gene profiles can also assist in assigning functions to genes that have not yet been functionally annotated. In this paper, we propose 2 model selection procedures for model-based clustering. Model selection in model-based clustering has to date focused on the identification of data dimensions that are relevant for clustering. However, in more complex data structures, with multiple experimental factors, such an approach does not provide easily interpreted clustering outcomes. We propose a mixture model with multiple levels, , that provides sparse representations both "within" and "between" cluster profiles. We explore various flexible "within-cluster" parameterizations and discuss how efficient parameterizations can greatly enhance the objective interpretability of the generated clusters. Moreover, we allow for a sparse "between-cluster" representation with a different number of clusters at different levels of an experimental factor of interest. This enhances interpretability of clusters generated in multiple-factor contexts. Interpretable cluster profiles can assist in detecting biologically relevant groups of genes that may be missed with less efficient parameterizations. We use our multilevel mixture model to mine a proliferating cell line expression data set for annotational context and regulatory motifs. We also investigate the performance of the multilevel clustering approach on several simulated data sets.  相似文献   

18.
Housekeeping genes, widely expressed genes that are required for the basal function of most cell types, are clustered in the human and worm genomes. This arrangement suggests coordinate control of housekeeping gene expression at the chromosomal level. Here we examined whether this notion is applicable to a marine chordate, Ciona intestinalis. Using microarrays, we analyzed genes that were expressed in 11 organs of the adult, including the neural complex, branchial sac, esophagus, stomach, endostyle, intestine, body-wall muscle, heart, blood cells, ovary and testis. This analysis identified 158 genes that are expressed ubiquitously in these organs. These housekeeping genes could be classified into a range of Gene Ontology categories, in particular, ribosomal protein components. Of these 158 genes, we were able to map 141 genes onto the 14 pairs of the C. intestinalis chromosomes. They were distributed rather evenly over all the chromosomes, except for small clusters containing two or three genes. Therefore, the notion of chromosomal clustering of housekeeping genes is not applicable in this chordate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号