首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The XbaI-BlnI-CeuI genomic cleavage map of Salmonella paratyphi B.   总被引:9,自引:6,他引:3       下载免费PDF全文
The genomic cleavage map of Salmonella paratyphi B was determined through digestion with endonucleases and separation of the fragments by pulsed-field gel electrophoresis. The chromosome has 19 XbaI sites, 10 BlnI sites, and 7 CeuI sites. The fragments were arranged in order through excision of fragments from the gel, redigestion with a second enzyme, end labelling with 32P, and reelectrophoresis. Tn10 transposons inserted in 61 different genes of S. typhimurium LT2 were transduced by use of bacteriophage P22 into S. paratyphi B. The locations of Tn10 insertions on the chromosome of S. paratyphi B were determined by use of XbaI and BlnI sites in Tn10, revealing the positions of genes with Tn10 insertions in S. paratyphi B. All seven CeuI sites (in rrl genes for 23S rRNA) and most of the XbaI and BlnI sites in rrn genes for Glt-tRNA are conserved, but only about half of the XbaI and BlnI sites outside rrn genes are conserved. Gene order is identical in the 68 genes that we could compare between S. paratyphi B and S. typhimurium LT2, and the lengths of intervals between the genes are often the same, but there are several instances of differences in interval lengths, indicating that insertions or deletions of DNA have occurred during the evolutionary divergence of these bacteria.  相似文献   

2.
Salmonella paratyphi A, a human-adapted bacterial pathogen, causes paratyphoid enteric fever. We established the genome map of strain ATCC 9150 by the use of four endonucleases, XbaI, I-CeuI, AvrII (= BlnI), and SpeI, which generated 27, 7, 19, and 38 fragments, respectively; the sum of the fragments in each case indicates a genome size of ca. 4,600 kb. With phage P22, we transduced Tn10 insertions in known genes from Salmonella typhimurium LT2 to S. paratyphi A ATCC 9150 and located these insertions on the S. paratyphi A chromosome through the XbaI and AvrII sites in Tn10 and through the increased size of the SpeI fragment bearing a Tn10. Compared with the maps of other Salmonella species, the S. paratyphi A genomic map showed two major differences: (i) an insertion of about 100 kb of DNA between rrnH/G and proB and (ii) an inversion of half the genome between rrnH and rrnG, postulated to be due to homologous recombination between the rrn genes. We propose that during the evolution of S. paratyphi A, the first rearrangement event was the 100-kb insertion, which disrupted the chromosomal balance between oriC and the termination of replication, forcing the rrnH/G inversion to restore the balance. The insertion and the inversion are both present in all 10 independent wild-type S. paratyphi A strains tested.  相似文献   

3.
A BlnI restriction map of the Salmonella typhimurium LT2 genome.   总被引:11,自引:3,他引:8       下载免费PDF全文
BlnI or AvrII (5'-CCTAGG) sites are very rare in the Salmonella typhimurium LT2 genome. BlnI was used to construct a physical map which was correlated with the genetic map by using three methods. First, Tn10 carries BlnI sites, and the extra restriction sites produced by 34 genetically mapped Tn10 insertions were physically mapped by using pulsed-field gel electrophoresis. Second, six genetically mapped Mud-P22 prophage insertions were used to assign BlnI fragments. Integration of Mud-P22 introduces 30 kb of DNA that can easily be detected by a "shift up" in all but the largest BlnI fragments. Finally, induced Mud-P22 insertions package more than 100 kb of genomic DNA adjacent to one side of the insertion. Some of the smaller BlnI fragments were localized by hybridization to a dot blot array of 52 lysates from induced Mud-P22 insertions. Of the 10 BlnI sites mapped, 6 probably occur in or near the 16S rRNA genes at about 55, 71, 83, 86, 88.5, and 89.5 min. There is one BlnI site in the 90-kb pSLT plasmid. Two additional BlnI fragments of about 7 and 4 kb have not been localized. The size of the genome was estimated as 4.78 Mb (+/- 0.1 Mb) excluding pSLT but including prophages Fels-1 and Fels-2. One BlnI fragment that maps between 55 and 59 min showed a 40-kb reduction in size in a strain cured of the approximately 40-kb Fels-2 prophage.  相似文献   

4.
The rrl genes for 23S rRNA of Salmonella typhimurium LT2 are known to carry intervening sequences (IVSs) at two sites, helix-25 and helix-45, which are excised by RNase III during rRNA maturation, resulting in rRNA which is fragmented but nevertheless functional. We isolated DNA fragments containing the seven rrl genes from BlnI, I-CeuI, and SpeI genomic digests following pulsed-field gel electrophoresis and used these DNA fragments as templates for PCRs utilizing primers upstream and downstream of helix-25 and helix-45. Variance in amplicon length and cycle sequencing indicated that rrlG and rrlH have IVSs in helix-25 of approximately 110 bp which are only 56% identical. rrnA, rrnB, rrnC, rrnD, rrnE, and rrnH have IVSs of approximately 90 bp in helix-45, and all have the same nucleotide sequence. Twenty-one independent wild-type strains of S. typhimurium from Salmonella Reference Collection A were analyzed for IVSs by using PCRs with genomic DNAs and by denaturing agarose electrophoresis of RNAs. Many strains resemble LT2, but some have no IVSs in helix-25 and others have IVSs in helix-45 in all seven rrl genes. However, the IVSs in individual wild-type lines are relatively stable, for several LT2 isolates separated over many years by many single-colony isolations are indistinguishable from one another, with the exception of line LB5010, which differs by one helix-25 IVS. We postulate that IVSs have entered strain LT2 by three independent lateral-transfer events and that the IVS in helix-45 was dispersed to and maintained in the same sequence in six of the seven rrl genes by the mechanism of gene conversion.  相似文献   

5.
A polylinker with rare restriction sites was introduced into a mini-Tn5 derivative. These sites include M.XbaI-DpnI (TCTAGATCTAGA), which is rare in most bacterial genomes, SwaI (ATTTAAAT) and PacI (TTAATTAA), which are rare in G+C-rich genomes, NotI (GCGGCCGC) and SfiI (GGCCN5GGCC), which are rare in A+T-rich genomes, and BlnI (CCTAGG), SpeI (ACTAGT), and XbaI (TCTAGA), which are rare in the genomes of many gram-negative bacteria. This Tn5(pfm) (pulsed-field mapping) transposon carries resistance to chloramphenicol and kanamycin to allow selection in a wide variety of background genomes. This Tn5(pfm) was integrated randomly into the Salmonella typhimurium and Serratia marcescens genomes. Integration of the new rare SwaI, PacI, BlnI, SpeI, and XbaI sites was assayed by restriction digestion and pulsed-field gel electrophoresis. Tn5(pfm) constructs could be valuable tools for pulsed-field mapping of gram-negative bacterial genomes by assisting in the production of physical maps and restriction fragment catalogs. For the first applications of a Tn5(pfm), we bisected five of the six largest BlnI fragments in the S. typhimurium genome, bisected the linearized 90-kb pSLT plasmid, and used Tn5(pfm) and Tn10 to trisect the largest BlnI fragment.  相似文献   

6.
XbaI digestion and pulsed-field gel electrophoresis of the genome of Salmonella typhimurium LT2 yields 24 fragments: 23 fragments (total size, 4,807 kb) are from the chromosome, and one fragment (90 kb) is from the virulence plasmid pSLT. Some of the 23 fragments from the chromosome were located on the linkage map by the use of cloned genes as probes and by analysis of strains which gain an XbaI site from the insertion of Tn10. Twenty-one of the fragments were arranged as a circular physical map by the use of linking probes from a set of 41 lysogens in which Mud-P22 was stably inserted at different sites of the chromosome; fragment W (6.6 kb) and fragment X (6.4 kb) were not located on the physical map. XbaI digestion of strains with Tn10 insertions allowed the physical locations of specific genes along the chromosome to be determined on the basis of analysis of new-fragment sizes. There is good agreement between the order of genes on the linkage map, which is based primarily on P22 joint transduction and F-mediated conjugation, and the physical map, but there are frequently differences in the length of the interval from the two methods. These analyses allowed the measurement of the amount of DNA packaged in phage P22 heads by Mud-P22 lysogens following induction; this varies from ca. 100 kb (2 min) to 240 kb (5 min) in different parts of the chromosome.  相似文献   

7.
Salmonella enterica serovar Agona is an important zoonotic pathogen, causing serious human illness worldwide, but knowledge about its genetics and evolution, especially regarding the genomic events that might have contributed to the formation of S . Agona as an important pathogen, is lacking. As a first step toward understanding this pathogen and characterizing its genomic differences with other salmonellae, we constructed a physical map of S . Agona in strain SARB1 using I-CeuI, XbaI, AvrII and Tn 10 insertions with pulsed-field gel electrophoresis techniques. On the 4815-kb genomic map, we located 82 genes, revealed one inversion of about 1000 kb and resolved seven deletions and seven insertions ranging from 10 to 67 kb relative to the genome of Salmonella typhimurium LT2. These genomic features clearly distinguish S . Agona from other previously analyzed salmonellae and provide clues to the molecular basis for its genomic divergence. Additionally, these kinds of physical maps, combined with emerging high-speed sequencing technologies, such as the Solexa or SOLiD techniques, which require a pre-existing high-resolution physical map such as the S . Agona map reported here, will play important roles in genomic comparative studies of bacteria involving large numbers of strains.  相似文献   

8.
Locations of six Tn10s, closely linked to each of the six IS200s on the genomic cleavage map of Salmonella typhimurium LT2, were determined by digestion with XbaI and BlnI and separation of the fragments by pulsed-field gel electrophoresis; the locations were then further defined by P22-mediated joint transduction. The orientation of each IS200 with respect to its linked Tn10 was determined by Southern blotting. The locations of IS200-I, IS200-III, and IS200-V were confirmed to be close to sufD, melB, and purC, as previously indicated. IS200-II is jointly transduced with cysG. IS200-IV is near fliA; the linked Tn10 is inserted in fli, making the strain nonmotile. IS200-VI is jointly transduced with aspC but not with aroA. IS200 is transposed to a seventh site in some strains, while remaining in the other six locations described above. These data indicate that genome analysis by pulsed-field gel electrophoresis can locate the positions of Tn10s with accuracy sufficient to predict P22-mediated joint transduction.  相似文献   

9.
Multiple HindIII-restriction fragments of Salmonella typhimurium and Salmonella typhi chromosomal DNA exhibited homology with the heat-labile enterotoxin (LT1) gene of Escherichia coli as determined by Southern blot analysis. A 9.4 kb HindIII restriction fragment identified in S. typhimurium and S. typhi chromosomal DNA reacted with both eltA and eltB gene probes. However, the homology of the 9.4 kb DNA fragment from these Salmonella species was greater with eltB than eltA. In addition, a synthetic oligonucleotide probe, made to a portion of the putative GM1-ganglioside binding region of cholera toxin (CT) and LT1, hybridized with the 9.4 kb DNA fragment of S. typhimurium but not with the 9.4 kb fragment found in S. typhi isolates. The hybridization of multiple restriction fragments of Salmonella DNA with eltA and eltB gene sequences further suggests duplication of the stx operon on the chromosome of these bacteria.  相似文献   

10.
Salmonella typhimurium causes systemic and fatal infection in inbred mice, while the related serotype Salmonella typhi is avirulent for mammals other than humans. In order to identify genes from the virulent strain S. typhimurium ATCC 14028 that are absent in S. typhi Ty2, and therefore might be involved in S. typhimurium mouse virulence, a PCR-supported genomic subtractive hybridization procedure was employed. We have identified a novel putative fimbrial operon, stfACDEFG, located at centisome 5 of the S. typhimurium chromosome, which is absent in S. typhi, Salmonella arizonae, and Salmonella bongori but was detected in several other Salmonella serotypes. The fimbrial genes represent a genomic insertion in S. typhimurium compared to the respective region between fhuB and hemL in Escherichia coli K-12. In addition, the subtraction procedure yielded F plasmid-related sequences from the S. typhimurium virulence plasmid, a number of DNA fragments representing parts of lambdoid prophages and putative sugar transporters, and several fragments with unknown sequences. The majority of subtracted chromosomal sequences map to three distinct locations, around centisomes 5, 27, and 57.  相似文献   

11.
A genetic strategy identified Salmonella typhimurium strains carrying large (>40 kb) Tn10-catalyzed inversions; the inverted segments were characterized by XbaI digestion and pulsed field gel electrophoresis. Two size classes of large inversions were found. More than half of the inversions extended 40-80 kb either clockwise or counterclockwise of the original Tn10 site. The remaining inversions extended up to 1620 kb (33% of the genome), but the distal endpoints of these inversions were not randomly scattered throughout the chromosome. Rather, each Tn10 repeatedly yielded similar (though not identical) inversions. The biased endpoint selection may reflect the limited search for target DNA sequences by the Tn10 transposase, and the spatial proximity of the donor and target regions in the folded S. typhimurium nucleoid. Using this interpretation, the data suggest that DNA sequences 40-80 kb clockwise and counterclockwise of the insertion site are in spatial proximity with the insertion, perhaps reflecting the organization of DNA into ~120-kb nucleoid domains. In addition, the data predict the spatial proximity of several distant DNA regions, including DNA sequences equidistant from the origin of DNA replication.  相似文献   

12.
Genetic Mapping of Is200 Copies in SALMONELLA TYPHIMURIM Strain Lt2   总被引:9,自引:2,他引:7       下载免费PDF全文
Stephen Lam  John R. Roth 《Genetics》1983,105(4):801-811
The wild-type Salmonella typhimurium strain LT2 contains six copies of the insertion sequence element IS200 which is unique to Salmonella. We have determined the chromosomal locations of all six copies of IS200 in strain LT2. This was done by mapping the positions of Tn10 elements inserted near each copy of IS200. Such Tn10 insertions were detected by Southern hybridization as IS200-containing restriction fragments with altered electrophoretic mobility. The copies are located at quite evenly spaced sites in the chromosome. Some are found in regions with many known genes; others are in regions with few known functions. There is no indication of a possible function for IS200. The method described here should be applicable to the mapping of IS elements in general.  相似文献   

13.
Genetic map of Salmonella typhimurium, edition VIII.   总被引:25,自引:0,他引:25       下载免费PDF全文
We present edition VIII of the genetic map of Salmonella typhimurium LT2. We list a total of 1,159 genes, 1,080 of which have been located on the circular chromosome and 29 of which are on pSLT, the 90-kb plasmid usually found in LT2 lines. The remaining 50 genes are not yet mapped. The coordinate system used in this edition is neither minutes of transfer time in conjugation crosses nor units representing "phage lengths" of DNA of the transducing phage P22, as used in earlier editions, but centisomes and kilobases based on physical analysis of the lengths of DNA segments between genes. Some of these lengths have been determined by digestion of DNA by rare-cutting endonucleases and separation of fragments by pulsed-field gel electrophoresis. Other lengths have been determined by analysis of DNA sequences in GenBank. We have constructed StySeq1, which incorporates all Salmonella DNA sequence data known to us. StySeq1 comprises over 548 kb of nonredundant chromosomal genomic sequences, representing 11.4% of the chromosome, which is estimated to be just over 4,800 kb in length. Most of these sequences were assigned locations on the chromosome, in some cases by analogy with mapped Escherichia coli sequences.  相似文献   

14.
A hierarchical approach allows the completion of contiguous sets of overlapping clones for small regions of a genome, one at a time rather than tackling the whole genome at once. On the basis of the BlnI restriction map for Salmonella typhimurium LT2, we dissected the chromosome into 21 different fragments by using a Tn5 transposon carrying a BlnI site. Dissected chromosomal fragments were purified by pulsed-field gel electrophoresis and used as probes for sorting a lambda DASHII genomic library of 2,304 primary clones. A total of 129 clones identified as spanning the region from 91 min to 98 min were partly ordered on the basis of the intensity of hybridization with mitomycin-induced Mud-P22 phage DNAs from insertions with pac sites in opposite orientations at 93 min used as probes. Decreased signal intensity with the Mud-P22 probes corresponded to the increased distance of the clone from the site of Mud-P22 insertion and allowed the clones to be placed in two groups from 91 min to 93 min and from 93 min to 98 min and into four intensity categories within the two groups. A member of each category was used to generate a riboprobe from the T3 promoter flanking the insert. This probe identified overlapping clones among the 129 clones. This subchromosomal library was then screened again with riboprobes from nonoverlapping clones. After four cycles of this strategy, a minimal contiguous sequence of 19 partly overlapping clones was selected for restriction mapping. A detailed map of 378 sites for eight restriction enzymes is presented for a region of about 240 kb. Working clockwise, the following genes were placed on this physical map on the basis of their restriction maps: malFEK, lamB, malM, lexA, qor, dnaB, alr, uvrA, proP, pmrB, pmrA, melA, melB, phoN, amiB, mutL, and miaA.  相似文献   

15.
The gene products of the mutL and mutS loci play essential roles in the dam-directed mismatch repair in both Salmonella typhimurium LT2 and Escherichia coli K-12. Mutations in these genes result in a spontaneous mutator phenotype. We have cloned the mutL and mutS genes from S. typhimurium by generating mutL- and mutS-specific probes from an S. typhimurium mutL::Tn10 and an mutS::Tn10 strain and using these to screen an S. typhimurium library. Both the mutL and mutS genes from S. typhimurium were able to complement E. coli mutL and mutS strains, respectively. By a combination of Tn1000 insertion mutagenesis and the maxicell technique, the products of the mutL and mutS genes were shown to have molecular weights of 70,000 and 98,000 respectively. A phi (mutL'-lacZ+) gene fusion was constructed; no change in the expression of the fusion could be detected by treatment with DNA-damaging agents. In crude extracts, the MutS protein binds single-stranded DNA, but not double-stranded DNA, with high affinity.  相似文献   

16.
The evolving genome of Salmonella enterica serovar Pullorum   总被引:9,自引:0,他引:9       下载免费PDF全文
Salmonella enterica serovar Pullorum is a fowl-adapted bacterial pathogen that causes dysentery (pullorum disease). Host adaptation and special pathogenesis make S. enterica serovar Pullorum an exceptionally good system for studies of bacterial evolution and speciation, especially regarding pathogen-host interactions and the acquisition of pathogenicity. We constructed a genome map of S. enterica serovar Pullorum RKS5078, using I-CeuI, XbaI, AvrII, and SpeI and Tn10 insertions. Pulsed-field gel electrophoresis was employed to separate the large DNA fragments generated by the endonucleases. The genome is 4,930 kb, which is similar to most salmonellas. However, the genome of S. enterica serovar Pullorum RKS5078 is organized very differently from the majority of salmonellas, with three major inversions and one translocation. This extraordinary genome structure was seen in most S. enterica serovar Pullorum strains examined, with different structures in a minority of S. enterica serovar Pullorum strains. We describe the coexistence of different genome structures among the same bacteria as genomic plasticity. Through comparisons with S. enterica serovar Typhimurium, we resolved seven putative insertions and eight deletions ranging in size from 12 to 157 kb. The genomic plasticity seen among S. enterica serovar Pullorum strains supported our hypothesis about its association with bacterial evolution: a large genomic insertion (157 kb in this case) disrupted the genomic balance, and rebalancing by independent recombination events in individual lineages resulted in diverse genome structures. As far as the structural plasticity exists, the S. enterica serovar Pullorum genome will continue evolving to reach a further streamlined and balanced structure.  相似文献   

17.
A chromosomal region present in Salmonella typhimurium but absent from related species was identified by hybridization. A DNA probe originating from 78 min on the S. typhimurium chromosome hybridized with DNA from Salmonella enteritidis, Salmonella heidelberg, and Salmonella dublin but not with DNA from Salmonella typhi, Salmonella arizonae, Escherichia coli, and Shigella serotypes. Cloning and sequence analysis revealed that the corresponding region of the S. typhimurium chromosome encodes a fimbrial operon. Long fimbriae inserted at the poles of the bacterium were observed by electron microscopy when this fimbrial operon was introduced into a nonpiliated E. coli strain. The genes encoding these fimbriae were therefore termed lpfABCDE, for long polar fimbriae. Genetically, the lpf operon was found to be most closely related to the fim operon of S. typhimurium, both in gene order and in conservation of the deduced amino acid sequences.  相似文献   

18.
Abstract The susceptibility of Salmonella typhimurium LT2 and of S. typhi 1079 to oxygen metabolites were compared. S. typhimurium LT2 and S. typhi 1079 were killed to an equal extent (about 40%) by the xanthine-xanthine oxidase (200 mU/ml) system. Among the various scavengers of oxygen metabolites, catalase alone inhibited the killing of S. typhimurium LT2 and S. typhi 1079 by the xanthine-xanthine oxidase system, indicating that hydrogen peroxide contributed to the killing of Salmonellae . The respiratory burst of murine macrophages was efficiently triggered by the ingestion of S. typhimurium LT2, S. typhimurium SL1102, and S. typhi 1079 and all to the same extent. However, in the range of the concentration of hydrogen peroxide produced by murine macrophages, neither S. typhimurium LT2 nor S. typhi 1079 were killed. Only S. typhimurium SL1102, a rough mutant of S. typhimurium LT2, was markedly susceptible under these conditions. The findings suggest that both S. typhimurium LT2 and S. typhi 1079 are resistant to oxygen-dependent killing mechanisms.  相似文献   

19.
Salmonella typhi Ty2 rrl genes contain intervening sequences (IVSs) in helix-25 but not in helix-45 on the basis of observed 23S rRNA fragmentation caused by IVS excision. We have confirmed this and shown all seven IVSs to be identical by isolating genomic DNA fragments containing each of the seven rrl genes from S. typhi Ty2 by use of pulsed-field gel electrophoresis; each rrl gene was amplified by PCR in the helix-25 and helix-45 regions and cycle sequenced. Thirty independent wild-type S. typhi strains, tested by genomic PCR and DraI restriction, also have seven rrl genes with helix-25 IVSs and no helix-45 IVSs. We propose that IVS homogeneity in S. typhi occurs because gene conversion drives IVS sequence maintenance and because adaptation to human hosts results in limited clonal diversity.  相似文献   

20.
The susceptibility of Salmonella typhimurium LT2 and S. typhi 1079 to oxygen metabolites were compared. S. typhimurium LT2 and S. typhi 1079 were killed to an equal extent (about 40%) by the xanthine-xanthine oxidase (200 mU/ml) system. Among the various scavengers of oxygen metabolites, catalase alone inhibited the killing of S. typhimurium LT2 and S. typhi 1079 by the xanthine-xanthine oxidase system, indicating that hydrogen peroxide contributed to the killing of Salmonellae. The respiratory burst of murine macrophages was efficiently triggered by the ingestion of S. typhimurium LT2, S. typhimurium SL1102, and S. typhi 1079 and all to the same extent. However, in the range of the concentration of hydrogen peroxide produced by murine macrophages, neither S. typhimurium LT2 nor S. typhi 1079 were killed. Only S. typhimurium SL1102, a rough mutant of S. typhimurium LT2, was markedly susceptible under these conditions. The findings suggest that both S. typhimurium LT2 and S. typhi 1079 are resistant to oxygen-dependent killing mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号