首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study determined whether muscle disuse affects mitochondrial protein import and whether changes in protein import are related to mitochondrial content and function. Protein import was measured using a model of unilateral peroneal nerve denervation in rats for 3 (n = 10), 7 (n = 12), or 14 (n = 14) days. We compared the import of preproteins into the matrix of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria isolated from the denervated and the contralateral control tibialis anterior muscles. Denervation led to 50% and 29% reductions in protein import after 14 days of disuse in SS and IMF mitochondria, respectively. This was accompanied by significant decreases in mitochondrial state 3 respiration, muscle mass, and whole muscle cytochrome c oxidase activity. To investigate the mechanisms involved, we assessed disuse-related changes in 1) protein import machinery components and 2) mitochondrial function, reflected by respiration and reactive oxygen species (ROS) production. Denervation significantly reduced the expression of translocases localized in the inner membrane (Tim23), outer membrane (Tom20), and mitochondrial heat shock protein 70 (mtHsp70), especially in the SS subfraction. Denervation also resulted in elevated ROS generation, and exogenous ROS was found to markedly reduce protein import. Thus our data indicate that protein import kinetics are closely related to alterations in mitochondrial respiratory capacity (r = 0.95) and are negatively impacted by ROS. Deleterious changes in the protein import system likely facilitate the reduction in mitochondrial content and the increase in organelle dysfunction (i.e., increased ROS production and decreased respiration) during chronic disuse, which likely contribute to the activation of degradative pathways leading to muscle atrophy.  相似文献   

2.
Skeletal muscle is highly adaptable in response to increases and decreases in contractile activity. The purpose of this study was to determine whether the preconditioning of skeletal muscle has a protective effect against subsequent denervation-induced apoptotic protein expression. To investigate this, we chronically stimulated the tibialis anterior and extensor digitorum longus muscles for 7 days (10 Hz, 3 h/day) before 7 days of denervation. Denervation reduced total cytochrome-c oxidase activity by 39%, which was likely a consequence of a decrease in subsarcolemmal (SS) mitochondria. This decrease in the SS subfraction was prevented by prior chronic stimulation and, as a result, maintained total mitochondrial content at control levels. The expression of Bax was elevated 2.2-fold by denervation, and prior chronic stimulation did not attenuate this increase. This produced a increase in the Bax-to-Bcl-2 ratio, indicating greater muscle apoptotic susceptibility. Denervation also decreased state 3 respiration in SS and intermyofibrillar mitochondria and elevated state 4 reactive oxygen species production within both mitochondrial subfractions. These changes were not prevented by prior chronic stimulation. Furthermore, the antioxidant protein MnSOD was also reduced by denervation, whereas Beclin-1 was markedly elevated. This suggests that autophagic cell death could also play a significant part in denervation-induced muscle atrophy. Thus, despite prior chronic stimulation, denervation increases the apoptotic susceptibility of skeletal muscle by altering the Bax-to-Bcl-2 ratio, by increasing reactive oxygen species production, and by reducing the expression of MnSOD. Whether a more extensive stimulation paradigm would be more effective in attenuating apoptosis before muscle disuse remains to be determined.  相似文献   

3.
Quercetin is a major dietary flavonoid in fruits and vegetables. We aimed to clarify the preventive effect of dietary quercetin on disuse muscle atrophy and the underlying mechanisms. We established a mouse denervation model by cutting the sciatic nerve in the right leg (SNX surgery) to lack of mobilization in hind-limb. Preintake of a quercetin-mixed diet for 14 days before SNX surgery prevented loss of muscle mass and atrophy of muscle fibers in the gastrocnemius muscle (GM). Phosphorylation of Akt, a key phosphorylation pathway of suppression of protein degradation, was activated in the quercetin-mixed diet group with and without SNX surgery. Intake of a quercetin-mixed diet suppressed the generation of hydrogen peroxide originating from mitochondria and elevated mitochondrial peroxisome proliferator-activated receptor-γ coactivator 1α mRNA expression as well as NADH dehydrogenase 4 expression in the GM with SNX surgery. Quercetin and its conjugated metabolites reduced hydrogen peroxide production in the mitochondrial fraction obtained from atrophied muscle. In C2C12 myotubes, quercetin reached the mitochondrial fraction. These findings suggest that dietary quercetin can prevent disuse muscle atrophy by targeting mitochondria in skeletal muscle tissue through protecting mitochondria from decreased biogenesis and reducing mitochondrial hydrogen peroxide release, which can be related to decreased hydrogen peroxide production and/or improvements on antioxidant capacity of mitochondria.  相似文献   

4.
Skeletal muscle undergoes remarkable adaptations in response to chronic decreases in contractile activity, such as a loss of muscle mass, decreases in both mitochondrial content and function, as well as the activation of apoptosis. Although these adaptations are well known, questions remain regarding the signaling pathways that mediated these changes. Autophagy is an organelle turnover pathway that could contribute to these adaptations. The purpose of this study was to determine whether denervation-induced muscle disuse would result in the activation of autophagy gene expression in both wild-type (WT) and Bax/Bak double knockout (DKO) animals, which display an attenuated apoptotic response. Denervation caused a reduction in muscle mass for WT and DKO animals; however, there was a 40% attenuation in muscle atrophy in DKO animals. Mitochondrial state 3 respiration was significantly reduced, and reactive oxygen species production was increased by two- to threefold in both WT and DKO animals. Apoptotic markers, including cytosolic AIF and DNA fragmentation, were elevated in WT, but not in DKO animals following denervation. Autophagy proteins including LC3II, ULK1, ATG7, p62, and Beclin1 were increased similarly following denervation for both WT and DKO. Interestingly, denervation markedly increased the localization of LC3II to subsarcolemmal mitochondria, and this was more pronounced in the DKO animals. Thus denervation-induced muscle disuse activates both apoptotic and autophagic signaling pathways in muscle, and autophagic protein expression does not exhibit a compensatory increase in the presence of attenuated apoptosis. However, the absence of Bax and Bak may represent a potential signal to trigger mitophagy in muscle.  相似文献   

5.
To differentiate the effect of muscle contractile activity from that of motor nerve on oxidative processes in type I muscle, oxidative processes were studied in muscle after immobilization and after denervation. The two processes led to similar atrophy of muscle weight and of the mean diameter of muscle fibers. Disuse of soleus muscle (type I) did not affect rates of oxidation of 14C-labeled substrates although these were reduced by disuse of the vastus lateralis (type II). Disuse of the soleus did not affect activities of several mitochondrial enzymes assayed by histochemical or biochemical methods. However, denervation of the soleus did lead to a fall in metabolic rates and enzyme activities. The activity of 3-hydroxybutyrate dehydrogenase fell more than did the activities of succinic dehydrogenase, lipoamide dehydrogenase, or cytochrome-c oxidase in both homogenates and in mitochondrial fractions. These results suggest nerve may regulate mitochondrial enzymes in type I muscle. The mechanism appears to be different from that which regulates oxidative processes in type II muscle.  相似文献   

6.
Counteracting the atrophy of skeletal muscle associated with disuse has significant implications for minimizing the wasting and weakness in plaster casting, joint immobilization, and other forms of limb unloading, with relevance to orthopedics, sports medicine, and plastic and reconstructive surgery. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the loss of muscle mass and functional capacity in mice during 14 or 21 days of unilateral hindlimb casting. Twelve-week-old C57BL/10 mice were subjected to unilateral hindlimb plaster casting or served as controls. Mice received subcutaneous injections of saline or a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg; n = 6-9) on days 0 and 7 and were tested for muscle function on day 14, or were treated on days 0, 7, and 14 and tested for muscle function on day 21. Hindlimb casting reduced muscle mass, fiber size, and function of isolated soleus and extensor digitorum longus (EDL) muscles (P < 0.05). PF-354 attenuated the loss of muscle mass, fiber size, and function with greater effects after 14 days than after 21 days of casting, when wasting and weakness had plateaued (P < 0.05). Antibody-directed myostatin inhibition therefore attenuated the atrophy and loss of functional capacity in muscles from mice subjected to unilateral hindlimb casting with reductions in muscle size and strength being most apparent during the first 14 days of disuse. These findings highlight the therapeutic potential of antibody-directed myostatin inhibition for disuse atrophy especially within the first 2 wk of disuse.  相似文献   

7.
8.
Chronic contractile activity of skeletal muscle induces an increase in mitochondria located in proximity to the sarcolemma [subsarcolemmal (SS)] and in mitochondria interspersed between the myofibrils [intermyofibrillar (IMF)]. These are energetically favorable metabolic adaptations, but because mitochondria are also involved in apoptosis, we investigated the effect of chronic contractile activity on mitochondrially mediated apoptotic signaling in muscle. We hypothesized that chronic contractile activity would provide protection against mitochondrially mediated apoptosis despite an elevation in the expression of proapoptotic proteins. To induce mitochondrial biogenesis, we chronically stimulated (10 Hz; 3 h/day) rat muscle for 7 days. Chronic contractile activity did not alter the Bax/Bcl-2 ratio, an index of apoptotic susceptibility, and did not affect manganese superoxide dismutase levels. However, contractile activity increased antiapoptotic 70-kDa heat shock protein and apoptosis repressor with a caspase recruitment domain by 1.3- and 1.4-fold (P<0.05), respectively. Contractile activity elevated SS mitochondrial reactive oxygen species (ROS) production 1.4- and 1.9-fold (P<0.05) during states IV and III respiration, respectively, whereas IMF mitochondrial state IV ROS production was suppressed by 28% (P<0.05) and was unaffected during state III respiration. Following stimulation, exogenous ROS treatment produced less cytochrome c release (25-40%) from SS and IMF mitochondria, and also reduced apoptosis-inducing factor release (approximately 30%) from IMF mitochondria, despite higher inherent cytochrome c and apoptosis-inducing factor expression. Chronic contractile activity did not alter mitochondrial permeability transition pore (mtPTP) components in either subfraction. However, SS mitochondria exhibited a significant increase in the time to Vmax of mtPTP opening. Thus, chronic contractile activity induces predominantly antiapoptotic adaptations in both mitochondrial subfractions. Our data suggest the possibility that chronic contractile activity can exert a protective effect on mitochondrially mediated apoptosis in muscle.  相似文献   

9.
In the present study, we examined the responses of apoptosis and apoptotic regulatory factors to muscle hypertrophy induced by stretch overload in quail slow-tonic muscles. The wings from one side of young and aged Japanese quails were loaded by attaching a tube weight corresponding to 12% of the bird's body weight for 7 or 21 days. Muscle from the contralateral side served as the intraanimal control. Relative to the intraanimal contralateral control side, the muscle wet weight increased by 96% in young birds, whereas the muscle weight gain in aged birds was not significant after 7 days of loading. After 21 days of loading, muscle weight significantly increased by 179% and 102% in young and aged birds, respectively. Heat shock protein (HSP)72 and HSP27 protein contents in the loaded sides were higher than on the control sides exclusively in young birds after 7 days of loading. Compared with the contralateral control muscle, the extent of apoptotic DNA fragmentation and the total cytosolic apoptosis-inducing factor protein content were reduced in all loaded muscles except for the 7-day-loaded muscles from the aged birds. Bax protein content was diminished in the loaded muscle relative to the control side from all groups, whereas Bcl-2 protein content was reduced in the young and aged muscles after 21 days of loading. The total cytosolic cytochrome c protein content was decreased and the X chromosome-linked inhibitor of apoptosis protein content was elevated in 7- and 21-day-loaded muscles relative to the intraanimal control muscle from young birds. Furthermore, after 7 days of loading the muscles of aged birds, H2O2 content and the total cytosolic protein content of second mitochondrial activator of caspases/direct inhibitor of apoptosis-binding protein with low isoelectric point were elevated compared with the intraanimal control side. These data suggest that stretch overload-induced muscle hypertrophy is associated with changes in apoptosis in slow-tonic skeletal muscle. Moreover, discrepant apoptotic responses to muscle overload in young and aged muscles may account in part for the age-related decline in the capability for muscle hypertrophy. aging; sarcopenia; Bcl-2; Bax; heat shock proteins; apoptosis-inducing factor  相似文献   

10.
The occurrence of skeletal muscle atrophy, a devastating complication of a large number of disease states and inactivity/disuse conditions, provides a never ending quest to identify novel targets for its therapy. Proinflammatory cytokines are considered the mediators of muscle wasting in chronic diseases; however, their role in disuse atrophy has just begun to be elucidated. An inflammatory cytokine, tumor necrosis factor (TNF)- like weak inducer of apoptosis (TWEAK), has recently been identified as a potent inducer of skeletal muscle wasting. TWEAK activates various proteolytic pathways and stimulates the degradation of myofibril protein both in vitro and in vivo. Moreover, TWEAK mediates the loss of skeletal muscle mass and function in response to denervation, a model of disuse atrophy. Adult skeletal muscle express very low to minimal levels of TWEAK receptor, Fn14. Specific catabolic conditions such as denervation, immobilization, or unloading rapidly increase the expression of Fn14 in skeletal muscle which in turn stimulates the TWEAK activation of various catabolic pathways leading to muscle atrophy. In this article, we have discussed the emerging roles and the mechanisms of action of TWEAK-Fn14 system in skeletal muscle with particular reference to different models of muscle atrophy and injury and its potential to be used as a therapeutic target for prevention of muscle loss.  相似文献   

11.
Accelerated apoptosis in skeletal muscle is increasingly recognized as a potential mechanism contributing to the development of sarcopenia of aging and disuse muscle atrophy. Given their central role in the regulation of apoptosis, mitochondria are regarded as key players in the pathogenesis of myocyte loss during aging and other atrophying conditions. Oxidative damage to mitochondrial constituents, impaired respiration and altered mitochondrial turnover have been proposed as potential triggering events for mitochondrial apoptotic signaling. In addition, iron accumulation within mitochondria may enhance the susceptibility to apoptosis during the development of sarcopenia and possibly acute muscle atrophy, likely through exacerbation of oxidative stress. Mitochondria can induce myocyte apoptosis via both caspase-dependent and independent pathways, although the apoptogenic mediators involved may be different depending on age, muscle type and specific atrophying conditions. Despite the considerable advances made, additional research is necessary to establish a definite causal link between apoptotic signaling and the development of sarcopenia and acute atrophy. Furthermore, a translational effort is required to determine the role played by apoptosis in the pathogenesis of sarcopenia and disuse-induced muscle loss in human subjects.  相似文献   

12.
The ubiquitin-proteasome system is the primary proteolytic pathway implicated in skeletal muscle atrophy under catabolic conditions. Although several studies showed that proteasome inhibitors reduced proteolysis under catabolic conditions, few studies have demonstrated the ability of these inhibitors to preserve skeletal muscle mass and architecture in vivo. To explore this, we studied the effect of the proteasome inhibitor Velcade (also known as PS-341 and bortezomib) in denervated skeletal muscle in rats. Rats were given vehicle or Velcade (3 mg/kg po) daily for 7 days beginning immediately after induction of muscle atrophy by crushing the sciatic nerve. At the end of the study, the rats were euthanized and the soleus and extensor digitorum longus (EDL) muscles were harvested. In vehicle-treated rats, denervation caused a 33.5 +/- 2.8% and 16.2 +/- 2.7% decrease in the soleus and EDL muscle wet weights (% atrophy), respectively, compared to muscles from the contralateral (innervated) limb. Velcade significantly reduced denervation-induced atrophy to 17.1 +/- 3.3% in the soleus (P < 0.01), a 51.6% reduction in atrophy associated with denervation, with little effect on the EDL (9.8 +/- 3.2% atrophy). Histology showed a preservation of muscle mass and preservation of normal cellular architecture after Velcade treatment. Ubiquitin mRNA levels in denervated soleus muscle at the end of the study were significantly elevated 120 +/- 25% above sham control levels and were reduced to control levels by Velcade. In contrast, testosterone proprionate (3 mg/kg sc) did not alleviate denervation-induced skeletal muscle atrophy but did prevent castration-induced levator ani atrophy, while Velcade was without effect. These results show that proteasome inhibition attenuates denervation-induced muscle atrophy in vivo in soleus muscles. However, this mechanism may not be operative in all types of atrophy.  相似文献   

13.
14.
《Autophagy》2013,9(2):230-231
Alterations in contractile activity influence the intracellular homeostasis of muscle which results in adaptations in the performance and the phenotype of this tissue. Denervation is an effective disuse model which functions to change the intracellular environment of muscle leading to a rapid loss in mass, a decrease in mitochondrial content, and an elevation in both pro-apoptotic protein expression and myonuclear apoptosis. Recent investigations have shown that alternative degradation pathways such as autophagy are activated in conjunction with apoptosis during chronic muscle disuse. We have previously shown that 7 days of muscle disuse increases the expression of Beclin 1. Furthermore, we have also detected a significant increase in the expression of LC3-II, a known component of autophagy. In addition to its upregulation, denervation appears to induce the translocation of LC3-II to mitochondrial membranes. Collectively, these increases in protein expression suggest that autophagy signaling is upregulated in response to denervation, and that these pathways may preferentially target mitochondria for degradation in skeletal muscle.  相似文献   

15.
Skeletal muscle atrophy occurs in a variety of clinical settings, including cachexia, disuse, and denervation. Inflammatory cytokines have been shown to be mediators of cancer cachexia; however, the role of cytokines in denervation- and immobilization-induced skeletal muscle loss remains unknown. In this study, we demonstrate that a single cytokine, TNF-like weak inducer of apoptosis (TWEAK), mediates skeletal muscle atrophy that occurs under denervation conditions. Transgenic expression of TWEAK induces atrophy, fibrosis, fiber-type switching, and the degradation of muscle proteins. Importantly, genetic ablation of TWEAK decreases the loss of muscle proteins and spared fiber cross-sectional area, muscle mass, and strength after denervation. Expression of the TWEAK receptor Fn14 (fibroblast growth factor–inducible receptor 14) and not the cytokine is significantly increased in muscle upon denervation, demonstrating an unexpected inside-out signaling pathway; the receptor up-regulation allows for TWEAK activation of nuclear factor κB, causing an increase in the expression of the E3 ubiquitin ligase MuRF1. This study reveals a novel mediator of skeletal muscle atrophy and indicates that the TWEAK–Fn14 system is an important target for preventing skeletal muscle wasting.  相似文献   

16.
Immobilization produces morphological, physiological, and biochemical alterations in skeletal muscle leading to muscle atrophy and long periods of recovery. Muscle atrophy during disuse results from an imbalance between protein synthesis and proteolysis but also between apoptosis and regeneration processes. This work aimed to characterize the mechanisms underlying muscle atrophy and recovery following immobilization by studying the regulation of the mitochondria-associated apoptotic and the ubiquitin-proteasome-dependent proteolytic pathways. Animals were subjected to hindlimb immobilization for 4-8 days (I4 to I8) and allowed to recover after cast removal for 10-40 days (R10 to R40). Soleus and gastrocnemius muscles atrophied from I4 to I8 to a greater extent than extensor digitorum longus and tibialis anterior muscles. Gastrocnemius muscle atrophy was first stabilized at R10 before being progressively reduced until R40. Polyubiquitinated proteins accumulated from I4, whereas the increased ubiquitination rates and chymotrypsin-like activity of the proteasome were detectable from I6 to I8. Apoptosome and caspase-3 or -9 activities increased at I6 and I8, respectively. The ubiquitin-proteasome-dependent pathway was normalized early when muscle stops to atrophy (R10). By contrast, the mitochondria-associated apoptotic pathway was first downregulated below basal levels when muscle started to recover at R15 and completely normalized at R20. Myf 5 protein levels decreased from I4 to I8 and were normalized at R10. Altogether, our results suggest a two-stage process in which the ubiquitin-proteasome pathway is rapidly up- and downregulated when muscle atrophies and recovers, respectively, whereas apoptotic processes may be involved in the late stages of atrophy and recovery.  相似文献   

17.
18.
A normal muscle at rest emits no detectable electric current, but in action, in diseases of the muscle and in denervation it emits electric impulses characteristic of these states. The impulses can be amplified and studied through the sonic and oscilloscopic patterns they create. These patterns are sufficiently different so that simple atrophy of disuse can be distinguished from the denervation that may be associated with it. Since denervation can be localized to individual muscles and thence to the nerves controlling them, electromyography serves much the same function as myelography, with comparable accuracy and with greater safety and simplicity. It aids in the diagnosis of several muscular diseases of children and adults. Because electromyographic changes due to injury do not appear until 18 to 21 days later, a study made soon after injury can either disclose or rule out preexisting lesions. Then a later study indicating denervation is objective evidence that any disability is due to the injury in question.  相似文献   

19.
A normal muscle at rest emits no detectable electric current, but in action, in diseases of the muscle and in denervation it emits electric impulses characteristic of these states. The impulses can be amplified and studied through the sonic and oscilloscopic patterns they create. These patterns are sufficiently different so that simple atrophy of disuse can be distinguished from the denervation that may be associated with it. Since denervation can be localized to individual muscles and thence to the nerves controlling them, electromyography serves much the same function as myelography, with comparable accuracy and with greater safety and simplicity. It aids in the diagnosis of several muscular diseases of children and adults.Because electromyographic changes due to injury do not appear until 18 to 21 days later, a study made soon after injury can either disclose or rule out preexisting lesions. Then a later study indicating denervation is objective evidence that any disability is due to the injury in question.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号