首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The concentration of unesterified choline in the plasma in the jugular vein of the rat (0.85 nmol/ml) was found to be three times that of the arterial supply to the brain (0.25 nmol/ml), indicating a higher efflux than uptake of unesterified choline by the brain. No such difference was found for the rabbit and no arterio-venous difference for phosphatidylcholine or lysophosphatidylcholine was observed in either species. No arterio-venous difference was found for choline in blood cells. The infusion of [Me-3H]choline into the circulation of the rat or rabbit indicated an uptake of radioactive choline by the brain and an efflux of non-radioactive choline. In the rabbit such an infusion produced a steady rise in the labelling of phosphatidylcholine and lysophosphatidylcholine in the plasma. When [14C2]ethanolamine was injected intraperitoneally into the rat there was a labelling of phosphatidylcholine, lysophosphatidylcholine and sphingomyelin in the plasma and cells of blood from the jugular vein and the arterial supply, as well as in the brain tissue. However, no labelling of unesterified choline in these tissues could be detected. Unesterified choline was shown to be liberated into the plasma when whole blood from the rat or man, but not the rabbit, was incubated for short periods at 30 degrees C.  相似文献   

2.
Uptake and processing of liposomal phospholipids by Kupffer cells in vitro   总被引:5,自引:0,他引:5  
We investigated the intracellular metabolic fate of [Me-14C]choline-labeled phosphatidylcholines and sphingomyelin taken up by rat Kupffer cells in maintenance culture during interaction with large unilamellar liposomes composed of cholesterol, labeled choline-phospholipid and phosphatidylserine (molar ration 5:4:1). With both labeled compounds only small proportions of water-soluble radioactivity were found to accumulate in the cells and in the culture medium, suggesting limited phospholipid degradation. However, after a lag period of 30 min progressively increasing proportions of cell-associated liposomal phospholipid were found to be converted to cellular phospholipid, nearly all of which was phosphatidylcholine. This conversion as well as the limited release of water-soluble label from the cells was inhibited by the lysosomotropic agents ammonium chloride and chloroquine. With [Me-14C]choline-labeled lysophosphatidylcholine, label was found to become cell-associated far in excess of an encapsulated liposomal label, [3H]inulin. Without a lag period virtually all of this was rapidly converted to phosphatidylcholine, a process which was not inhibited by the lysosomotropic agents. It is concluded that Kupffer cells, after endocytosis of liposomes, degrade the liposomal phospholipids effectively but reutilize the choline moiety for de novo synthesis of cellular phosphatidylcholine.  相似文献   

3.
The metabolism of [Me-14C]choline in the brain of the rat in vivo   总被引:9,自引:7,他引:2       下载免费PDF全文
[Me-(14)C]Choline was injected intracerebrally into the adult rat, and its uptake into the lipids and their water-soluble precursors in brain was studied. The radioactivity could be detected only in the choline-containing lipids and was confined to the base choline. The results indicated that initial phosphorylation of the free choline followed by the formation of CDP-choline and the subsequent transfer of the phosphorylcholine to a diglyceride is one of the principal routes by which choline lipids in brain are formed. Further evidence for this was obtained in experiments in which either phosphoryl[Me-(14)C]choline or [(32)P]orthophosphate was injected and the radioactivity in the choline-containing water-soluble and lipidbound components studied.  相似文献   

4.
The rate-limiting reaction in the formation of phosphatidylcholine by type II cells isolated from fetal rat lung was examined. Studies on the uptake of [Me-3H]choline and its incorporation into its metabolites indicated that in these cells the choline phosphate pool was much larger than both the choline and CDPcholine pools. Chemical measurements of the pool sizes showed that the choline phosphate pool was indeed much larger than the intracellular choline and CDPcholine pools. Pulse-chase studies with [Me-3H]choline revealed that labelled choline taken up by the cells was rapidly phosphorylated to choline phosphate and that the radioactivity lost from choline phosphate during the chase period appeared in phosphatidylcholine. Little change was observed in the labelling of CDPcholine during the chase period. These results indicate that cholinephosphate cytidylyltransferase catalyzes a rate-limiting reaction in phosphatidylcholine formation by fetal rat lung type II cells.  相似文献   

5.
1. Injection of [Me-14C]choline into sheep indicated that the small amount of phosphatidylcholine present in abomasal digesta was largely (69%) of non-dietary or ruminal origin. 2. Long-term feeding of [Me-3H]choline to sheep produced insignificant labelling of plasma phosphatidylcholine, indicating that more than 99% of the choline body pool was of non-dietary origin. 3. In contrast, when rats were fed with [Me-3H]choline for similar periods, 18-54% of the tissue phosphatidylcholine was derived from dietary choline. 4. The loss of [14C]choline and 32P from the plasma phosphatidylcholine after a single injection of these isotopes indicated a markedly slower turnover of choline in the sheep compared with the rat. This observation, coupled with a lack of liver glycerophosphocholine diesterase, provides an explanation for the insensitivity of the sheep to an almost complete microbial destruction of dietary choline before alimentary-tract absorption.  相似文献   

6.
Isolated adrenocortical cells of guinea pigs whom injected with prolactin (PRL) during 3 days incorporated [3H] choline into phosphatidylcholine more intensively than those cells of animals in control. Labelling of intracellular pools of choline and phosphorylcholine remained unchanged, though a part of radioactivity represented by the water-soluble precursors decreased due to PRL influence. The rate of disappearance of labelled phosphatidylcholine in adrenocortical cells prelabelled with [3H] choline was lower in cells obtained from PRL-treated animals. The discharge of [3N] choline accumulated during prelabeling accelerated simultaneously. Rate of the phosphorylcholine radioactivity fall remained unchanged. The obtained data showed that prolonged influence of PRL caused a shift of the phosphatidylcholine metabolism to anabolism. That effect might be a part of the mechanism of proliferative PRL action in the adrenal cortex.  相似文献   

7.
1. The formation of phosphatidylcholine from radioactive precursors was studied in adult rat lung alveolar type II epithelial cells in primary culture. 2. The incorporation of [Me-14C]choline into total lipids and phosphatidylcholine was stimulated by addition of palmitate, whereas the incorporation of [U-14C]glucose into phosphatidylcholine and disaturated phosphatidylcholine was stimulated by addition of choline. Addition of glucose decreased the absolute rate of incorporation of [1(3)-3H]glycerol into total lipids, phosphatidylcholine and disaturated phosphatidylcholine, decreased the percentage [1(3)-3H]glycerol recovered in phosphatidylcholine, but increased the percentage phosphatidylcholine label in the disaturated species. 3. At saturating substrate concentrations, the percentages of phosphatidylcholine radioactivity found in disaturated phosphatidylcholine after incubation with [1-(14)C]acetate (in the presence of glucose) [1-(14)C]palmitate (in the presence of glucose), [Me-14C]choline (in the presence of glucose and palmitate) and [U-14C]glucose (in the presence of choline and palmitate) were 78, 75, 74 and 90%, respectively. 4. Fatty acids stimulated the incorporation of [U-14C]glucose into the glycerol moiety of phosphatidylcholine. The degree of unsaturation of the added fatty acids was reflected in the distribution of [U-14C]glucose label among the different molecular species of phosphatidylcholine. It is suggested that the glucose concentration in the blood as related to the amount of available fatty acids and their degree of unsaturation may be factors governing the synthesis of surfactant lipids.  相似文献   

8.
The effect of albumin on the release of [3H]lysophosphatidylcholine from cultured rat hepatocytes prelabelled with [Me-3H]choline was studied. In the absence of serum and albumin from the medium, the cells released essentially no [3H]lysophosphatidylcholine. Albumin stimulated this process dramatically, and it reached a plateau at 2 mg/ml. After an initial lag of 30 min, the release of [3H]lysophosphatidylcholine was linear for at least 4 h. At low concentrations, albumin slightly stimulated [3H]phosphatidylcholine release. The albumin had no measurable effect on the metabolism of cellular [3H]phosphatidylcholine, [3H]lysophosphatidylcholine or [3H]glycerophosphocholine. In addition, albumin did not alter the release of 3H-labelled water-soluble compounds, including [3H]glycerophosphocholine, into the medium. The possibility that the [3H]lysophosphatidylcholine was arising from catabolism of [3H]phosphatidylcholine in the medium by secreted enzymes was excluded. The effect on [3H]lysophosphatidylcholine secretion was also observed when the cells were incubated with alpha-cyclodextrin, a cyclic polysaccharide that has the ability to bind lysophosphatidylcholine. The albumin-released lysophosphatidylcholine was enriched in unsaturated fatty acids. Alteration of the fatty acid composition of cellular phosphatidylcholine gave rise to parallel changes in phosphatidylcholine and lysophosphatidylcholine in the medium. It is concluded that phosphatidylcholine is constantly being degraded in the rat hepatocyte to lysophosphatidylcholine which is released into the medium only when a suitable acceptor is present.  相似文献   

9.
Utilization of very long chain saturated fatty acids by brain was studied by injecting 20-day-old and adult rats with high-density lipoprotein containing [stearic or lignoceric acid-14C, (methyl-3H)choline]sphingomyelin. Labeling was followed for 24 h. Very small amounts of 14C were recovered in the brain of all rats, and there was no preferential uptake of lignoceric acid. Approximately 20% of the entrapped 14C was located in the form of unchanged sphingomyelin 24 h after injection. This result shows that the rat brain utilizes very little very long chain fatty acids (greater than or equal to 20 C atoms) from high-density lipoprotein sphingomyelin, even during the myelinating period. The [3H]choline moiety from sphingomyelin was recovered in brain phosphatidylcholine in a higher proportion in comparison with the 14C uptake. The brain 3H increased throughout the studied period in all experiments, but was much higher in the myelinating brain than in the mature brain. From the radioactivity distribution in liver and plasma lipids, it is clear that the choline 3H in the brain originates from either double-labeled phosphatidylcholine of lipoproteins or tritiated lysophosphatidylcholine bound to albumin, both synthesized by the liver.  相似文献   

10.
1. The use of ;marker' enzymes for investigating the contamination by endoplasmic reticulum of mitochondrial and synaptosomal (nerve-ending) fractions isolated from guinea-pig brain was examined. NADPH-cytochrome c reductase appeared to be satisfactory. With the synaptosomal preparation there was a non-occluded enzymic activity believed to arise from contaminating microsomes and an occluded form released by detergent, which probably was derived from some type of intraterminal smooth endoplasmic reticulum. 2. Isolated brain mitochondria, both intact and osmotically shocked, could not synthesize more labelled phosphatidylcholine from CDP-[Me-(14)C]choline or phosphoryl[Me-(14)C]choline than could be accounted for by microsomal contamination. They could synthesize only phosphatidic acid and diphosphatidylglycerol from a [(32)P]P(i) precursor and not nitrogen-containing phosphoglycerides or phosphatidylinositol. 3. The synaptosomal outer membrane and the intraterminal mitochondria could not synthesize phosphatidylcholine from CDP-[Me-(14)C]choline but the synaptic vesicles and probably the intraterminal ;endoplasmic reticulum' appeared to be capable of catalysing the incorporation of label from this substrate into their phospholipids. 4. Microsomal fractions and synaptosomes from guinea-pig brain could incorporate [Me-(14)C]choline into their phospholipids by a non-energy-requiring exchange process, which was catalysed by Ca(2+). Fractionation of the synaptosomes after such an exchange had taken place revealed that the label was predominantly in the intraterminal mitochondria and not associated with membranes containing NADPH-cytochrome c reductase. 5. On the intraperitoneal injection of [(32)P]P(i) into guinea pigs, incorporation of radioactivity into phosphatidylinositol and phosphatidic acid was much faster than into the nitrogen-containing phosphoglycerides. Mitochondria and microsomal fractions showed a roughly equivalent incorporation into individual phospholipids, and that into synaptosomes was appreciably less, whereas the phospholipids of myelin showed little (32)P incorporation up to 10h.  相似文献   

11.
1. Either l-[4,5-(3)H]leucine or [Me-(3)H]choline, or both l-[U-(14)C]leucine and [Me-(3)H]-choline, were injected into the ninth dorsal root ganglion of the frog, and peripheral transport of labelled proteins and/or phospholipids, mostly phosphatidylcholine, was studied by analysis of consecutive segments of the sciatic nerve. 2. At 25 degrees C, approx. 5% of the (3)H-labelled protein was transported at the rate of 152mm/day. The rate was temperature-dependent with the Q(10) value of 2.6. The flow was completely blocked by the local application of colchicine, but was unaffected by cytochalasin D. 3. [Me-(3)H]-Choline was incorporated into phosphatidylcholine at a comparatively slow rate, but was transported in the nerve at a rate equivalent to that for (3)H-labelled proteins. 4. The simultaneous transport of phosphatidylcholine and the protein was further supported in the double-labelling experiments by an identical transport rate of (3)H-labelled phosphatidylcholine and (14)C-labelled proteins, by their identical temperature dependence, by simultaneous blockade with colchicine, and also by the parallel distribution of the two labels in subcellular fractions. Specific radioactivities on a protein basis of both (3)H and (14)C labels were highest in microsomal subfractions enriched with Na(+)-plus-K(+)-stimulated adenosine triphosphatase and acetylcholinesterase. It is suggested that (3)H-labelled phosphatidylcholine and (14)C-labelled proteins transported in the nerve reside in the same structural entity, most probably a membrane component.  相似文献   

12.
Accumulation of lysophosphatidylcholine in gall-bladder bile is involved in the pathogenesis of acute cholecystitis. [1-14C]oleoyl- or [1-14C]palmitoyl-lysophosphatidylcholine was thus instilled in the in situ guinea pig gall-bladder and the absorption and metabolism of the lipid were determined. We found that, after 6 h instillation, 53% of the oleoyl derivative was adsorbed by the gall-bladder, whereasee only 37% of the palmitoyl derivative was absorbed. Although some differences in the metabolism of these two lipids were observed, a major portion of the absorbed radioactivity was found in the gall-bladder wall as phosphatidylcholine. To determine the mechanism of phosphatidylcholine formation from lysophosphatidylcholine by the gall-bladder mucosa, we used lysophosphatidylcholine which was labelled in the fatty acid moiety with 14C and in the choline moiety with 3H. Our data suggest that the mechanism of phosphatidylcholine formation from lysophosphatidylcholine involved acylation with an acyl donor other than a second molecule of lysophosphatidylcholine. We hypothesize that this mechanism as well as others described serve to prevent accumulation of lysophosphatidylcholine within the gall-bladder lumen and thus prevent damage to the gall-bladder mucosa.  相似文献   

13.
It has been known for 40 years that oestrogens stimulate phospholipid metabolism in roosters. We have investigated in vivo the mechanism for this effect. Young roosters were injected daily with 1 mg of diethylstilboestrol for 1--3 days. At 4 h after the last injection, 30 microCi of [Me-3H]choline was injected into the portal vein. At periods up to 3 min the livers were freeze-clamped and choline and its metabolites were extracted and resolved by t.l.c. Hormone treatment in the first 2 days resulted in a 2-fold increase in phosphorylation of [Me-3H]choline and a decrease in the oxidation of [Me-3H]choline to [3H]betaine. The concentrations of phosphocholine in liver were increased 2-fold during the first 2 days concomitant with a 2-fold increase in the rate of phosphatidylcholine biosynthesis. After 3 days of hormone treatment, many of the above effects were reversed and the rate of phosphatidylcholine biosynthesis decreased to approx. 60% of the control value. The results suggest that the initial hormone treatments activate choline kinase within 4 h and, thereby, divert choline form oxidation to betaine. The resulting increased phosphocholine concentrations cause an increase in the activity of CTP:phosphocholine cytidylyltransferase, which results in a doubling of the rate of phosphatidylcholine biosynthesis. After 3 days of hormone treatment, the biosynthesis of phosphatidylcholine is decreased, most likely by an effect on the cytidylyltransferase reaction.  相似文献   

14.
Lipoprotein-X (Lp-X) is found in the plasma of patients with familiallecithin: cholesterol acyltransferase (LCAT) deficiency syndromes. Themajority of the patients with this disorder develop progressiveglomerulosclerosis. In this study, the effect of Lp-X on lipid metabolism inperfused rat kidney was investigated. Lp-X was isolated from plasma ofpatients with familial LCAT deficiency by sequential ultracentrifugation andgel filtration column chromatography. Rat kidneys were perfused for 1-2 hwith Krebs-Henseleit buffer containing 20 µM [1-14C]acetate or 20µM [Me-3H]choline. In the presence of Lp-X, no significant differencein the incorporation of radioactivity into triglycerides, cholesterol,phosphocholine, CDP-choline and sphingomyelin was observed. However,incorporation of radioactivity into cholesteryl esters andphosphatidylcholine was significantly elevated in Lp-X perfused kidneys. Thecontents of cholesterol, cholesteryl esters and phosphatidylcholine werealso significantly increased in Lp-X perfused kidneys. The increase in lipidcontent in the Lp-X perfused kidney is attributed to the direct depositionof Lp-X lipids into the organ. The increase in the labelling of cholesterylesters was attributed to the increase of available substrate (cholesterol)for the acyl-CoA:cholesterol acyltransferase (ACAT) reaction. The increasein phosphatidylcholine labelling was caused by a reduced turnover of thenewly synthesized labelled phosphatidylcholine during Lp-X perfusion.  相似文献   

15.
1. Cholinephosphosphotransferase catalyzes the conversion of diacylglycerol and CDPcholine into phosphatidylcholine and CMP. Incubation of rat lung microsomes containing phosphatidyl[Me-14C]choline with CMP resulted in an increase in water-soluble radioactivity, suggesting that also in rat lung microsomes the cholinephosphotransferase reaction is reversible. 2. Microsomes containing 14C-labeled disaturated and 3H-labeled monoenoic phosphatidylcholine were prepared by incubation of these organelles with [1-14C]palmitate and [9,10-3H2]oleate in the presence of 1-palmitoyl-sn-glycero-3-phosphocholine, ATP, coenzyme A and MgCl2. Incubation of these microsomes with CMP resulted in an equal formation of 14C- and 3H-labeled diacylglycerols, indicating that disaturated and monoenoic phosphatidylcholines were used without preference by the backward reaction of the cholinephosphotransferase. When in a similar experiment the phosphatidylcholine was labeled with [9,10-3H2]palmitate and [1-14C]linoleate, somewhat more 14C- than 3H-labeled diacylglycerol was formed. 3. The backward reaction was used to generate membrane-bound mixtures of [1-14C]palmitate- and [9,10-3H2]oleate- or of [9,10-3H2]palmitate- and [1-14C]linoleate-labeled diacylglycerols. When the microsomes containing diacylglycerols were incubated with CDPcholine, both 3H- and 14C-labeled diacylglycerols were used for the formation of phosphatidylcholine, indicating that there is no absolute discrimination against disaturated diacylglycerols. This observation is in line with our previous findings and indicates that also the CDPcholine pathway may contribute to dipalmitoylphosphatidylcholine synthesis in lung.  相似文献   

16.
Radioactivity from intraperitoneally or intraportally injected 1-acyl-snglycero-3-phosphorylcholine, doubly labelled in either palmitoyl, glycerol or phosphoryl moities, was incorporated largely into disaturated or mixed disaturated-oligoenoic fractions of phosphatidylcholine in guinea pig liver. In rat liver the tetraenoic class was the most highly labelled and only very low radioactivity was recovered from disaturated or monoenoic species. The methylation of phosphatidylethanolamine to phosphatidylcholine, as judged by the incorporation of intraperitoneally injected L-[Me-14 C] methionine, involved selectively tetraenoic and polyenoic (greater than 4 double bonds) classes in rat liver. In guinea pig liver, methylation activity was much lower and led to the formation principally of dienoic classes of phosphatidylcholine. These experiments confirm the work of others that in rat liver, which has a high level of polyunsaturated classes of phosphatidylcholine, the "indirect" pathways of synthesis give rise chiefly to these classes. However, the priorties in guinea pig liver are different, since the levels of polyunsaturated classes are much lower, and although the "indirect" pathways of synthesis are operative they are directed mainly toward the formation of more saturated classes.  相似文献   

17.
Digestion and absorption of phosphatidylcholine by Aeshna cyanea larvae were studied in vivo and in vitro with the isolated digestive juice and isolated midgut. The experiments were performed with stable ether analogues (1-alkyl-2-acyl-,1,2-dialkyl phosphatidylcholine, and 1-monoalkyl-lysophosphati-dylcholine), with radioactive 1,2-diacylphosphatidylcholine alternatively labelled in the acyl- and choline moieties, and with several phosphatidylcholine derivatives (1-[1-14C]acyl- and 1-[3H] alkyl-lysophosphatidylcholine, [1-14C]oleic acid, [2-14C]glycerol, phosphoryl[methyl-14C]choline, and [methyl-14C]choline). Chromatographic analyses of the digestion products revealed that phosphatidylcholine was degraded via two interconnected hydrolytic pathways involving phospholipase C, phospholipase A2, lipase, and alkaline phosphatase. Complete hydrolysis by these pathways yielded the same four end products: free fatty acid, glycerol, choline, and Pi, which were absorbed by the midgut enterocytes. Of the intermediate hydrolysates, lysophosphatidylcholine, monoacylglycerol, and possibly phosphorylcholine were also absorbed. Radiolabelled oleic acid, glycerol, lysophosphatidylcholine and monoacylglycerol (as judged from monoalkylglycerol absorption) were incorporated into phospholipids and acylglycerols of the midgut enterocytes and were released into the haemolymph primarily in the form of diacylglycerols. In the case of glycerol ingestion, a small fraction of haemolymph radioactivity was associated with free glycerol and glycerolphosphate. After absorption by the enterocytes, radiolabelled choline was partly oxidized to betaine, partly phosphorylated, and partly incorporated into lyso- and phosphatidylcholine. It was recovered from the haemolymph predominantly as free choline, phosphorylcholine, and betaine. Arch. Insect Biochem. Physiol. 36:273–293, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Utilization of stearic and lignoceric acids supplied by high-density lipoprotein (HDL) sphingomyelin to different tissues was followed for 24 h after rats were injected with HDL containing [[1-14C]stearic (18:0) or [1-14C]lignoceric (24:0) acid [Me-3H]choline]sphingomyelin. Both isotopes reached a maximum in tissue lipids 3-12 h after injection and were recovered mainly in the liver (30%) and small intestine (3%), whereas the other tissues contained approx. 1% or less of the injected dose. All the tissues were able to take up some intact sphingomyelin from HDL and hydrolyze it. In the lung and erythrocytes, the 3H:14C ratio of sphingomyelin remained unchanged throughout the studied period, while an increase in the isotopic ratio was observed in the kidney due to the 3H choline moiety re-used for synthesis of new sphingomyelin. Conversely, the isotopic ratio of sphingomyelin decreased in the liver, indicating a saving of the 14C-labelled fatty acids, especially 24:0. Furthermore, [24:0]ceramide in the liver remained at a high level (6% of the injected dose), whereas [18:0]ceramide decreased to 1%. When the tissues were examined 24 h after injection, the proportion of the 14C linked to sphingomyelin in the total 14C was always higher for both kinds of sphingomyelin than the molar proportion of sphingomyelin in the whole of lipid classes. However, in the majority of the extra-hepatic tissues, more [14C]18:0 than [14C]24:0 was recovered in sphingomyelin, and more 14C radioactivity from 18:0 than from 24:0 was redistributed in the other lipids. The choline moiety from both kinds of sphingomyelin was re-used to synthesize phosphatidylcholine, especially in the liver (up to 20% of the injected dose). All these results show that utilization of sphingomyelin from HDL by tissues normally occurs in vivo and that this phenomenon should be taken into account in the study of the phospholipid turnover of cell membranes. They also show that metabolism of sphingomyelin from HDL in the liver and other tissues is dependent on the sphingomyelin acyl moiety.  相似文献   

19.
Rat liver membranes were labelled by intraperitoneal injection of [Me-14C]choline chloride. Isolated microsomal membranes were briefly treated with pancreatic phospholipase A2 to produce different levels of membrane-bound lysophosphatidylcholine. The hydrolysis of this lysophosphatidylcholine by two purified lysophospholipases from beef liver was studied. The specific activity of enzyme I at saturating membrane concentrations appeared to increase linearly with the lysophosphatidylcholine level in the membranes until the lysoderivative represented 15% of the original phosphatidylcholine. In contrast, the specific activity of enzyme II was independent of the lysophosphatidylcholine level, at least in the range of 4.9-34.0% tested. These different kinetics are discussed in terms of the possible functions of both enzymes in liver.  相似文献   

20.
Phospholipid metabolism was studied in rat sciatic nerve during Wallerian degeneration induced by crush injury. Portions of crushed sciatic nerve, incubated with labeled substrates, showed significantly higher phosphatidylcholine synthesis than normal nerve, prior to any measurable alterations of phospholipid composition. Maximum synthesis occurred 3 days after crush injury, at which time the metabolism of other phospholipids was unchanged. After a rapid decrease in biosynthetic activity, a second phase of enhanced phosphatidylcholine synthesis occurred, beginning 6 days after crush injury. Increased incorporation of [33P]phosphate, [2-3H]glycerol, and [Me-14C]choline indicated stimulation of de novo synthesis of phosphatidylcholine 3 days after injury. Neither base exchange reactions nor sequential methylation of ethanolamine phospholipids contributed significantly to phosphatidylcholine synthesis. Assay of certain key enzymes under optimal conditions in subcellular fractions of sciatic nerve revealed higher activities of cholinephosphate cytidyltransferase, choline phosphotransferase, and acyl-CoA:lysophosphatidylcholine acyltransferase in injured nerve, while choline kinase activity remained unchanged. This indicates that stimulation of phosphatidylcholine synthesis occurs via the cytidine nucleotide pathway, as well as by increased acylation of lysophosphatidylcholine. Although the cause of stimulated phosphatidylcholine synthesis remains unexplained, it is possible that trace amounts of lysophospholipids or other metabolites produced by injury-enhanced phospholipase activity may be responsible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号