首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Stotzky , G., and Elsie A. Cox . (Central Research Labs., United Fruit Co., Norwood, Mass.) Seed germination studies in Musa. II. Alternating temperature requirement for the germination of Musa balbisiana. Amer. Jour. Bot. 49(7): 763–770. Illus. 1962.—Alternating temperatures were found to be required for the germination of seeds of Musa balbisiana. The temperature differentials optimal for germination in soil are dependent upon both the high and low temperatures, and range from 8–23 C. Germination is maximal when the seeds are held 6–12 hr at the high (27–35 C) and 12–18 hr at the low (12–18 C) temperatures. Some germination can be induced by short exposures to alternating temperatures followed by constant high temperatures, but continuous exposure to alternating temperatures is necessary for maximum germination. Excised embryos develop better at constant than at alternating temperatures, showing that the mechanisms affected by alternating temperatures reside elsewhere in the seed. Alternating temperatures are also required for germination of mechanically scarified seeds, although the temperature differentials are less than those necessary for intact seeds, indicating that the action of alternating temperatures is not on the permeability of the integuments.  相似文献   

2.
Patterns of seed after-ripening in Bromus tectorum L   总被引:1,自引:0,他引:1  
For grass seeds that lose dormancy through after ripening indry storage, the probability of germination following a particularwetting event can be predicted only if the relationship betweenstorage temperature and change in after-ripening status is known.This study examined patterns of seed dormancy loss in Bromustectorum L., quantifying changes in germination percentage,speed, and uniformity through time. Seed collections from threesemi-arid habitats were stored at temperatures from 10–40C. At monthly intervals, subsamples were incubated at 5/15,10/20, 15/25, and 20/30 C. For recently harvested seeds, germinationpercentage, mean germination time, and days between 10% and90% of total germination (D90–D10) ranged from 1–75%,10–24 d, and 10–20 d, respectively. Recently harvestedseeds were generally most dormant, slowest to germinate andleast uniform at high incubation temperatures. In contrast,after ripened seeds for all collections had nearly 100% germination,mean germination times <5 d, and D90–D10 values <5d. Three indices were used to characterize after-ripening ratesfor each seedlot at each incubation temperature. The mean dormancyperiod, the mean rate index, and the mean uniformity index definedthe storage period required for seedlots to become half as dormantas at harvest, to progress half-way to the fastest speed, andto progress half-way to the greatest uniformity, respectively.Seeds required longer storage to germinate uniformly than togerminate completely or quickly, because germination time-coursecurves for incompletely after-ripened seeds were positivelyskewed rather than sigmoidal. Mathematically, the three indiceswere described as negative exponential functions of storagetemperature, which suggests that after-ripening is likely completedin late summer or early autumn regardless of summer conditions. Key words: Seed dormancy, germination timing  相似文献   

3.
《Acta Oecologica》2006,29(2):187-195
Dahlia coccinea grows on fire-prone xerophilous shrubland, on a lava field located in Mexico City. Two kinds of experiments were performed to test the role of fire and environmental heterogeneity on germination. The first experiment tested the effect of environmental conditions (constant and alternating temperatures, cold stratification and light). The second one tested the effects of fire and high temperatures (dry and moist heat) on germination. Seeds of Dahlia were indifferent to light. The seeds showed physiological dormancy, which was lost by after-ripening or by gibberellins. During simulated fires, dry seeds tolerated high temperatures of short duration and also withstood prolonged exposure to 60 °C. Dry heat treatment reduced the mechanical restriction for embryo growth in dormant seeds. Ash and prolonged exposure to moist heat inhibited germination. Exogenous gibberellins reversed the deleterious effects of prolonged exposure to moist heat. The effect of cold stratification was related to the seeds' physiological stage and to light conditions; stratification in the dark reduced germination. Seeds of D. coccinea could tolerate, evade, or be slightly favored by the effects of low intensity fires occurring in their habitat. Seed responses to treatments suggest that the spatially heterogeneous lava field could provide a wide variety of micro-sites where physiological dormancy could be broken and during fires seeds could maintain their viability and subsequently germinate and/or develop a seed bank.  相似文献   

4.
Abstract

The germination of spring and winter wheat lines of exaploid Triticum « Denti de Cani ». — The dormancy in the seeds of two lines of Triticum « Denti de Cani » (which is spontaneous in Sardinia), one with solid stem (CP line), a spring line, the other with hollow stem (CV line), an winter line, has been studied. Germination was carried out in the dark, in Petri dishes at the constant temperatures of 5°, 10°, 20°, 23°, 26°, 30° and 35°C, using full ripe seeds, and seeds in different stages of after-ripening up to one year of age. The increase in % germination, for increasing temperatures above 5°C, is clearly conditioned by the progress of after-ripening in the seeds. In fact it was seen that, in general for the two lines, percentages over 50% of seeds germinated at 3 days were reached: at 10° and 20° after 15 days from the full ripening; at 23°C after 30 days; at 26°C after 50 days; at 30°C after about 100 days and at 35°C only after about 4–5 months from the harvest. During the experiment at 5°C it was observed that, during the first year of life of seeds and especially in the CP line, this temperature produces a clear slowing down in germinations after first year from the ripening, only the CV seeds — not the CP which remain very much inhibited — reach germination values over 50% at 3 days. It has also been demonstrated that the CV are more sensitive than the CP, in the first initial period of after-ripening (15 and 30 days), to the non-inhibiting activity of low temperatures (5° and 10°C) and that, between these, the 10°C temperature promotes the germination more clearly than the 5°C temperature. The results obtained have shown that the dormancy wears off in the spring CP-line much more slowly than in the winter CV-line. The CP-seeds remain in a relative dormancy condition for a long time, which causes a significative delay in germination, up to 100 days from the full ripening stage.  相似文献   

5.
Ephemeral wetland vegetation (EWV) in the Mediterranean Basin appears in temporary wetlands where favourable hydrological conditions exist only for a short time and year-to-year variability is high. Here, we report results of the seed germination, dormancy and desiccation tolerance of eight annual species living in this vulnerable habitat. Experiments were performed in laboratory conditions under constant and alternating temperatures and using a 12-h daily photoperiod or continuous darkness. Whilst germination and dormancy differed between the species, seeds demonstrated an absolute light requirement and prefer cool temperatures to germinate (mean ≤15 °C). Logistic regression analysis showed significant effects of alternating temperature in all the species except in Tillaea vaillantii whose germination was stimulated by constant temperature. Mean temperature was a significant term in the logistic models for the dormant species Cicendia filiformis, Linum radiola and T. vaillantii for which after-ripening was an effective dormancy-breaking treatment. From these results we infer three strategies of regeneration by seeds: (1) species germinating during the whole vegetative season (2) species germinating in a narrow temperature niche and (3) species requiring flooding (T. vaillantii). Seeds possessed orthodox storage behaviour (tolerating drying to 15 % relative humidity) and may be amenable to seed banking as a means of ex-situ conservation. We conclude that EWV species are adapted to the irregular presence of water with characteristics that are typical of neither truly aquatic nor wetland plants. These EWV species showed a more plastic germination response based on alternating and constant temperature sensitivity and a low proportion of dormant seeds.  相似文献   

6.
7.
Summary Laboratory-stored seeds ofDiamorpha cymosa (Nutt.) Britton (Crassulaceae) were germinated at monthly intervals starting shortly after maturity in late May and ending at approximately the time germination is completed in the field (November). Seeds were placed at 5, 10, 15, 20, 25, 30, 15/6, 20/10, 30/15 and 35/20°C at a 14-hr photoperiod (12/12 hr thermoperiods at the alternating temperature regimes) and in constant darkness. In June, seeds were almost completely dormant and thus germinated poorly or not at all under all conditions. As seeds aged from late May to November 1. germination at the 14-hr photoperiod increased in rate and total percentage, 2. the maximum germination temperature increased from 15 to 25°C at constant temperatures and from 20/10 to 30/15°C at the alternating temperature regimes and 3. the optimum temperature for germination increased from 15 to 15–20°C at constant temperatures but remained at20/10°C at alternating temperature regimes throughout the study. During the same period germination in constant darkness was negligible at constant and alternating temperature regimes. This pattern of physiological after-ripening apparently is an adaptation to summer-dry,winter-wet habitats such as rock outcrops of southeastern United States.A short period of illumination with white light given after a 12-hr imbibition period in darkness promoted germination in the dark at 25/10°C but not at 15 or 25°C. A short period of illumination given during the imbibition period was much less effective in promoting germination in the dark. Drying up to 7 days did not cause light-stimulated seeds to lose their ability to germinate in darkness. The light requirement for seed germination probably does not play a role in restrictingD. cymosa to its well-lighted habitats on granite and sandstone outcrops.This research was supported by funds from the University of Kentucky Research Foundation and by an NIH Biomedical Sciences Support Grant to the University of Kentucky.  相似文献   

8.
Day length control can effectively limit seed germination to favorable seasons, but this phenomenon has been studied in relatively few wild plants. I tested species from interior Alaska for day length control of germination under controlled conditions, and I also monitored germination phenology in natural habitats. Unstratified and cold-stratified seeds were germinated on short (13 h) and long (22 h) day length and in the dark at constant and alternating temperatures. On long day length, unstratified Ledum decumbens and Saxifraga tricuspidata seeds germinated from 5 C to 20 C, but on short day length few or no seeds germinated at 5 C and 10 C and germination was reduced at higher temperatures. Unstratified seeds of Diapensia lapponica and Chamaedaphne calyculata germinated only at 15 C and 20 C on long day length, and short day length completely inhibited germination. Cold stratification widened the temperature range for germination on both long and short day lengths, but germination was still lower on short than long day length. Germination phenology in natural habitats was consistent with germination in controlled conditions. In these species, short day length and low temperatures interact to inhibit germination in the fall. After overwintering, seeds germinate in the spring at low temperatures and on long day lengths. The inhibitory effect of short day length is not important in the spring because day length is already long at snowmelt.  相似文献   

9.
The dormancy-breaking effect of several known germination promoters was studied in 9 genetically pure lines of Avena fatua L. during a period of controlled after-ripening. Changes in the germination response show at least two dormancy states in the caryopses of these lines. The first state is overcome by a short period of after-ripening and is insensitive to nitrate and azide, while the second state is more persistent and is sensitive to nitrate and azide. Both states are sensitive to gibberellic acid (OA,) and ethanol. In the most dormant lines a third ethanol-insensitive dormancy state is present. The duration of both major dormancy states was related to several environmental factors influencing plant growth and seed storage. Duration was increased in caryopses produced from plants matured under low temperatures (15°C) and decreased in caryopses produced from plants matured under high temperatures (25°C). Duration was increased in caryopses after-ripened under low temperatures (4°C) and decreased in caryopses after-ripened under high temperatures (45°C). Dehulling the seeds prior to after-ripening reduced the duration of both major dormancy states. The multiple state dormancy system and its environmentally induced plasticity are discussed with reference to previous explanations of the dormancy mechanism in wild oats.  相似文献   

10.
Festuca idahoensis (Idaho fescue) was a common native perennial bunchgrass in the sagebrush steppe of the western United States until the introductions of domestic livestock and alien plants. Restoration of Idaho fescue to degraded sites will likely involve reseeding, and one of the factors affecting reseeding success is germinability of the seeds employed. We investigated effects of after-ripening and storage temperature on germinability of Idaho fescue seeds collected from a central Oregon site. Six months of after-ripening were required before maximum germination was obtained. Storage of dry seeds at either room temperature (20°C) or at cooler, alternating temperatures (5/15°C) did not alter the rate at which dormancy was lost. Storage at the warmer temperature promoted rapid germination in seeds that had broken dormancy. Seed longevity varied greatly from year to year. Seeds produced in a very dry year had poorer germination and shorter longevity than seeds produced during a year with near normal precipitation. Because seed dispersal occurs in late July and early August for Idaho fescue in central Oregon, a six-month after-ripening requirement ensures that the greatest potential germination coincides with the spring period most likely to provide sufficient moisture for seedling establishment.  相似文献   

11.
Seed anatomy, dormancy breakage, the temperature effect to seed germination and seed life-span of Cimicifuga nanchuanensis Hsiao were studied and the endangerment of this plant in association to these biological characteristics was explored. The embryos were at the globular stage at the time of seed shedding in late November. Low temperature and humid conditions or treatment with exogenous GA3 stimulated the development of embryos and sped up the process of seed germination. The optimum temperature of germination was 20 ℃, but the seeds almost lost their viability after 9 months of storage. Nevertheless, in its natural habitation, the seeds could not acquire enough environmental humidity to accomplish their after-ripening during the dry and cold winter from late November to the following March; after then the temperature in the spring (averaged 10.1 ℃ in April and May) was much lower than 20 ℃ or so which is favorable for seed germination. Moreover, the testa could not provide adequate protection for the embryos and the short life-span of the seeds prevents their survival until the next germination. Therefore it seems reasonable to infer that the unfavorable environmental condition during the process of after-ripening until seed maturation is involved in the cause of endangerment of this plant species.  相似文献   

12.
Studies on seed storage of Chionanthus retusus Lindl. & Paxt. revealed an orthodox behavior, one which showed both desiccation and freezing tolerance. An epicotyl after-ripening dormancy was expressed in C. retusus seeds by slow growth of the shoot apex relative to more rapid growth of the radicle when seeds were germinated at 30/20 degrees C. Although these seeds exhibit radicle protrusion, they must be after-ripened for another 8-10 weeks at 30/20 degrees C in order to obtain normal shoot growth. Removal of the endosperm, however, quickly stimulated cotyledon and shoot emergence without the additional after-ripening. Water-soluble glucoside phenolics, GL-3, Nuzhenide, ligustroside and oleoside dimethyl ester are present at relatively high levels in endosperm of freshly harvested seeds. These glucoside phenolics are excreted from the endosperm during subsequent after-ripening. Embryo and endosperm tissue from seed germinating at 30/20 degrees C (germination being defined by protrusion of the radicle) had a 10 times lower abscisic acid (ABA) content than similar tissues from freshly harvested mature seed. However, no shoot growth occurred even with the 10-fold reduction in ABA and a concomitant increase in endogenous gibberellins A1, A4 and A20. Thus, epicotyl dormancy during the first 8 weeks of after-ripening at 30/20 degrees C may be controlled by factors other than high ABA, i.e., the slow development of the shoot apex following radicle protrusion may be controlled more by high levels of glucoside phenolics than by diminished ABA and elevated GA levels.  相似文献   

13.
Seed germination of two local Greek endemics was studied (Erysimum naxense, Erysimum krendlii). Seed viability was determined by using the tetrazolium method and germination was studied in synchronized cycles of five and four alternating temperatures [10/5 (for E. naxense only) and 15/10, 20/15, 25/20, and 30/25°C for both species, in cycles of 16 h day/8 h night], and in five light regimes (red, blue, green, white, and dark). Germination of E. naxense and E. krendlii seeds was determined daily for six and five weeks, respectively, with the data analyzed as viability adjusted accumulative seed germination at the end of each week. E. naxense’s seed viability was higher (90%) than that of E. krendlii (64%); seed germination (%) of both increased at low alternating temperatures (10/5°C, 15/10°C, 20/15°C). Germination of E. naxense seeds at low temperatures was light-independent, whereas at high temperatures it was increased with red light. Germination of E. krendlii seeds was inconsistently affected by light at the temperatures studied. Percentages of seed germination of both species were higher in experimental conditions similar to the ones of their natural habitats during autumn and/or spring (facilitated with Geographic Information Systems). These conclusions provide guidelines for species-specific propagation protocols and ex situ conservation.  相似文献   

14.
The germination characteristics of a population of the winter annual Phacelia dubia (L.) Trel. var. dubia from the middle Tennessee cedar glades were investigated in an attempt to define the factor(s) regulating germination in nature. Factors considered were changes in physiological response of the seeds (after-ripening), temperature, age, light and darkness, and soil moisture. At seed dispersal (late May to early June), approximately 50 % of the seeds were non-dormant but, would germinate only at low temperatures (10–15 C). As the seeds aged from June to September, there was an increase in rate and total percent of germination at 10, 15, and 20 C, and the maximum temperature for germination increased to 25 C. Little or no germination occurred at the June, July, and August temperatures in 0- to 2-month-old seeds, even in seeds on soil that was kept continuously moist during this 3-month period. At the September, October, and November temperatures 3- to 5-month-old seeds germinated to high percentages. In all experiments seeds germinated better at a 14-hr photoperiod than in constant darkness. Inability of 0- to 2-month-old seeds to germinate at high summer temperatures allows P. dubia dubia to pass the dry summer in the seed stage, while increase in optimum and maximum temperatures for germination during the summer permits seeds to germinate in late summer and early fall when conditions are favorable for seedling survival and eventual maturation.  相似文献   

15.
  • Seed germination responsiveness to environmental cues is crucial for plant species living in changeable habitats and can vary among populations within the same species as a result of adaptation or modulation to local climates. Here, we investigate the germination response to environmental cues of Sisymbrella dentata (L.) O.E. Schulz, an annual endemic to Sicily living in Mediterranean Temporary Ponds (MTP), a vulnerable ecosystem.
  • Germination of the only two known populations, Gurrida and Pantano, was assessed over a broad range of conditions to understand the role of temperatures, nitrate, hormones (abscisic acid – ABA and gibberellins – GA) and after‐ripening in dormancy release in this species.
  • Seed germination responsiveness varied between the two populations, with seeds from Gurrida germinating under a narrower range of conditions. Overall, this process in S. dentata consisted of testa and endosperm rupture as two sequential events, influenced by ABA and GA biosynthesis. Nitrate addition caused an earlier testa rupture, after‐ripening broadened the thermal conditions that allow germination, and alternating temperatures significantly promoted germination of non‐after‐ripened seeds.
  • Primary dormancy in S. dentata seeds likely allows this plant to form a persistent seed bank that is responsive to specific environmental cues characteristic of MTP habitats.
  相似文献   

16.
Probert, R. J., Gajjar, K. H. and Haslam, I. K. 1987. The interactiveeffects of phytochrome, nitrate and thiourea on the germinationresponse to alternating temperatures in seeds of Ranunculussceleratus L.: A quantal approach.—J. exp. Bot. 38: 1012–1025. The interactive effects of phytochrome, potassium nitrate andthiourea on the germination response to alternating temperaturesin achenes (seeds) of Ranunculus sceleratus L. were studied.Using thermogradient bars, high levels of germination were recordedover a broad range of alternating temperatures providing seedsreceived daily irradiations. Reduced germination in temperaturecycles with a relatively long warm phase was related to thelevel of the active form of phytochrome (Pfr). Dose-responseexperiments to red light (R) and temperature shifts showed thatthe actions of Pfr and alternating temperatures were interdependent.Maximum germination was recorded when intermittent pulses ofR were combined with daily 4 h temperature shifts from 16°Cto 26°C. Whilst probit analysis showed that potassium nitrateand thiourea both increased population sensitivity to temperatureshifts, thiourea was a more potent stimulant. Although the effectof both chemicals was dependent on phytochrome photo-equilibriumthe threshold level of Pfr required for thiourea action wasclearly much lower than that required for nitrate action. Thioureapotentiated a response to daily temperature shifts even whenPfr was at a low, normally inhibitory level. These results indicatedifferent mechanisms of action for potassium nitrate and thioureain relation to phytochrome controlled seed germination. Key words: Phytochrome, nitrate, thiourea, alternating temperatures, germination  相似文献   

17.
PHYSIOLOGY OF LIGHT-REQUIRING GERMINATION IN ERAGROSTIS SEEDS   总被引:1,自引:0,他引:1  
The photorequirement for the germination of Eragrostis seedsdecreases with the progress of their after-ripening, and thegermination occurs whether in continuous light or in darknessat the final stage of after-ripening. The dehydration of seedsor the puncturing of seed coats also results in a decrease ofphotorequirement for germination. The rate of water absorptionof seeds increases with the germination capacity under continuousdark condition. However, there is no correlation between therespiration rate and the germination capacity; respiration isstimulated in the punctured seeds, but not in the after-ripenedseeds. The after-ripened or punctured seeds which no longer have aphotorequirement become light-sensitive again, when they areallowed to germinate in the air of low oxygen concentrations.The assumption is presented that the permeability to oxygenof the seed coat may be a factor controlling the seed germinationof this species. (Received August 21, 1964; )  相似文献   

18.
Germination studies were carried out with seeds of Spergularia marina L. Griseb produced over an interval of six months (June-November). The response of the seeds to light and dark, various constant and alternating temperature regimes, and salinity were determined. In addition, the effects of soil moisture status at the time of seed production on the subsequent germination response of seeds were also determined. Light was an absolute requirement for germination. While a constant temperature regime did not generally favour germination of seed of any month, alternating temperature greatly enhanced germination with an optimum at 5/15°C in all seeds. When imbibed in solutions of different salinities, seeds collected in July and October behaved like true halophyte seeds whereas those collected in June. August, September and November behaved like glycophyte seeds.
High concentration of gibberellic acid (3 000 μ M ) stimulated dark germination in the June and November seed lots, but in light, low GA3 concentration (300 μ M ) stimulated germination most. The addition of kinetin (30 μ M ) plus gibberellic acid enhanced germination in the dark in contrast to GA3 alone; kinetin alone stimulated a very low percentage germination.
The moisture status of the soil at the time seeds were produced did not affect the germination response of an early seed crop (July) but affected that of the later seeds (August).
Judging from the different germination responses, it appears that the seeds belong to at least two physiological groups, one which appears to need either a dark-wet or cold-wet pretreatmem for high germination to occur; and the other group which does not need pretreatmem. The ecological significance of these varied responses is discussed in relation to the survival of the species in its habitat.  相似文献   

19.
We explore the roles of gibberellin (GA) signaling genes SLEEPY1 (SLY1) and RGA-LIKE2 (RGL2) in regulation of seed germination in Arabidopsis thaliana, a plant in which the hormone GA is required for seed germination. Seed germination failure in the GA biosynthesis mutant ga1-3 is rescued by GA and by mutations in the DELLA gene RGL2, suggesting that RGL2 represses seed germination. RGL2 protein disappears before wild-type seed germination, consistent with the model that GA stimulates germination by causing the SCF(SLY1) E3 ubiquitin ligase complex to trigger ubiquitination and destruction of RGL2. Unlike ga1-3, the GA-insensitive sly1 mutants show variable seed dormancy. Seed lots with high seed dormancy after-ripened slowly, with stronger alleles requiring more time. We expected that if RGL2 negatively controls seed germination, sly1 mutant seeds that germinate well should accumulate lower RGL2 levels than those failing to germinate. Surprisingly, RGL2 accumulated at high levels even in after-ripened sly1 mutant seeds with 100% germination, suggesting that RGL2 disappearance is not a prerequisite for seed germination in the sly1 background. Without GA, several GA-induced genes show increased accumulation in sly1 seeds compared with ga1-3. It is possible that the RGL2 repressor of seed germination is inactivated by after-ripening of sly1 mutant seeds.  相似文献   

20.
The seeds ofFraxinus excelsior L. were stratified at 17-20 °C (warm stratification), at 4-6 °C (cold stratification) and at alternating temperature (warm — cold stratification). The seeds subjected to warm stratification only, remained dormant. The seeds stratified only at 4-6 °C germinated gradually during a long period of time. The seeds subjected to warm — cold stratification, however, germinated with great intensity within a relatively short period of time. GA3 was shown to stimulate the growth of embryos markedly, and its effect on the germination of seeds depended on the temperature of stratification. GA3 applied during the cold stratification accelerated the removal of dormancy by shortening the period of stratification and by influencing the germination of seeds. The results obtained indicate a similarity between the effect of temperature 17-20 °C during the warm stratification and that of gibberellic acid. Both those factors applied separately affect favourably after-ripening of the embryos and accelerate the germination of seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号