首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Reticulon and REEP family of proteins stabilize the high curvature of endoplasmic reticulum (ER) tubules. Plasmodium berghei Yop1 (PbYop1) is a REEP5 homolog in Plasmodium. Here, we characterize its function using a gene-knockout (Pbyop1∆). Pbyop1∆ asexual stage parasites display abnormal ER architecture and an enlarged digestive vacuole. The erythrocytic cycle of Pbyop1∆ parasites is severely attenuated and the incidence of experimental cerebral malaria is significantly decreased in Pbyop1∆-infected mice. Pbyop1∆ sporozoites have reduced speed, are slower to invade host cells but give rise to equal numbers of infected HepG2 cells, as WT sporozoites. We propose that PbYOP1’s disruption may lead to defects in trafficking and secretion of a subset of proteins required for parasite development and invasion of erythrocytes. Furthermore, the maintenance of ER morphology in different parasite stages is likely to depend on different proteins.  相似文献   

2.
3.
Rab proteins are small GTPases that are essential elements of the protein transport machinery of eukaryotic cells. Each round of membrane transport requires a cycle of Rab protein nucleotide binding and hydrolysis. We have recently characterized a protein, Yip1p, which appears to play a role in Rab-mediated membrane transport in Saccharomyces cerevisiae. In this study, we report the identification of a Yip1p-associated protein, Yop1p. Yop1p is a membrane protein with a hydrophilic region at its N terminus through which it interacts specifically with the cytosolic domain of Yip1p. Yop1p could also be coprecipitated with Rab proteins from total cellular lysates. The TB2 gene is the human homolog of Yop1p (Kinzler, K. W., Nilbert, M. C., Su, L.-K., Vogelstein, B., Bryan, T. M., Levey, D. B., Smith, K. J., Preisinger, A. C., Hedge, P., McKechnie, D., Finniear, R., Markham, A., Groffen, J., Boguski, M. S., Altschul, S. F., Horii, A., Ando, H. M., Y., Miki, Y., Nishisho, I., and Nakamura, Y. (1991) Science 253, 661-665). Our data demonstrate that Yop1p negatively regulates cell growth. Disruption of YOP1 has no apparent effect on cell viability, while overexpression results in cell death, accumulation of internal cell membranes, and a block in membrane traffic. These results suggest that Yop1p acts in conjunction with Yip1p to mediate a common step in membrane traffic.  相似文献   

4.
A temperature-sensitive mutant, sec34-2, is defective in the late stages of endoplasmic reticulum (ER)-to-Golgi transport. A high-copy suppressor screen that uses the sec34-2 mutant has resulted in the identification of the SEC34 structural gene and a novel gene called GRP1. GRP1 encodes a previously unidentified hydrophilic yeast protein related to the mammalian Golgi protein golgin-160. Although GRP1 is not essential for growth, the grp1Delta mutation displays synthetic lethal interactions with several mutations that result in ER accumulation and a block in the late stages of ER-to-Golgi transport, but not with those that block the budding of vesicles from the ER. Our findings suggest that Grp1p may facilitate membrane traffic indirectly, possibly by maintaining Golgi function. In an effort to identify genes whose products physically interact with Sec34p, we also tested the ability of overexpressed SEC34 to suppress known secretory mutations that block vesicular traffic between the ER and the Golgi. This screen revealed that SEC34 specifically suppresses sec35-1. SEC34 encodes a hydrophilic protein of approximately 100 kDa. Like Sec35p, which has been implicated in the tethering of ER-derived vesicles to the Golgi, Sec34p is predominantly soluble. Sec34p and Sec35p stably associate with each other to form a multiprotein complex of approximately 480 kDa. These data indicate that Sec34p acts in conjunction with Sec35p to mediate a common step in vesicular traffic.  相似文献   

5.
Yersinia enterocolitica organisms secrete Yop proteins via the type III pathway. Translational fusion of yop genes to ubiquitin or dihydrofolate reductase results in hybrid proteins that cannot be secreted. The folding of hybrids prevents their own transport, but it does not hinder the type III secretion of other Yops.  相似文献   

6.
Autophagy is an intracellular process in which a portion of cytoplasm is transported into vacuoles for recycling. Physiological roles of autophagy in plants include recycling nutrients during senescence, sustaining life during starvation, and the formation of central digestive vacuoles. The regulation of autophagy and the formation of autophagosomes, spherical double membrane structures containing cytoplasm moving toward vacuoles, are poorly understood. HVA22 is a gene originally cloned from barley (Hordeum vulgare), which is highly induced by abscisic acid and environmental stress. Homologs of HVA22 include Yop1 in yeast, TB2/DP1 in human, and AtHVA22a to -e in Arabidopsis (Arabidopsis thaliana). Reverse genetics followed by a cell biology approach were employed to study the function of HVA22 homologs. The AtHVA22d RNA interference (RNAi) Arabidopsis plants produced small siliques with reduced seed yield. This phenotype cosegregated with the RNAi transgene. Causes of the reduced seed yield include short filaments, defective carpels, and dysfunctional pollen grains. Enhanced autophagy was observed in the filament cells. The number of autophagosomes in root tips of RNAi plants was also increased dramatically. The yop1 deletion mutant of Saccharomyces cerevisiae was used to verify our hypothesis that HVA22 homologs are suppressors of autophagy. Autophagy activity of this mutant during nitrogen starvation increased in 5 min and reached a plateau after 2 h, with about 80% of cells showing autophagy, while the wild-type cells exhibited low levels of autophagy following 8 h of nitrogen starvation. We conclude that HVA22 homologs function as suppressors of autophagy in both plants and yeast. Potential mechanisms of this suppression and the roles of abscisic acid-induced HVA22 expression in vegetative and reproductive tissues are discussed.  相似文献   

7.
8.
Cell division requires an accurate partitioning of cytoplasmic organelles. The segregation of vacuoles in the budding yeast Saccharomyces cerevisaie occurs at a specific time in the cell cycle and is spatially targeted to the small bud. Several yeast vac mutants have been isolated which are defective in this process. We have now cloned the VAC1 gene, corresponding to the first of these mutants, vac1-1. This gene encodes a protein of 515 amino acids, without homolog in the current data bases. It contains neither long hydrophobic stretches nor a classical leader peptide. The most notable aspect of the sequence is the presence of three zinc fingers. Yeast in which the VAC1 gene has been entirely deleted are viable. However, they grow more slowly than wild-type cells and only form microcolonies when grown on glycerol at 37 degrees C. These yeast are defective in vacuole segregation at both the permissive and nonpermissive temperatures. The vac1 mutant was previously shown to mislocalize carboxypeptidase Y to the cell surface, suggesting that Vac1p is involved in more than one vesicular traffic pathway.  相似文献   

9.
Vesicle-mediated traffic between compartments of the yeast secretory pathway involves recruitment of multiple cytosolic proteins for budding, targeting, and membrane fusion events. The SEC7 gene product (Sec7p) is a constituent of coat structures on transport vesicles en route to the Golgi complex in the yeast Saccharomyces cerevisiae. To identify mammalian homologs of Sec7p and its interacting proteins, we used a genetic selection strategy in which a human HepG2 cDNA library was transformed into conditional-lethal yeast sec7 mutants. We isolated several clones capable of rescuing sec7 mutant growth at the restrictive temperature. The cDNA encoding the most effective suppressor was identified as human ADP ribosylation factor 4 (hARF4), a member of the GTPase family proposed to regulate recruitment of vesicle coat proteins in mammalian cells. Having identified a Sec7p-interacting protein rather than the mammalian Sec7p homolog, we provide evidence that hARF4 suppressed the sec7 mutation by restoring secretory pathway function. Shifting sec7 strains to the restrictive temperature results in the disappearance of the mutant Sec7p cytosolic pool without apparent changes in the membrane-associated fraction. The introduction of hARF4 to the cells maintained the balance between cytosolic and membrane-associated Sec7p pools. These results suggest a requirement for Sec7p cycling on and off of the membranes for cell growth and vesicular traffic. In addition, overexpression of the yeast GTPase-encoding genes ARF1 and ARF2, but not that of YPT1, suppressed the sec7 mutant growth phenotype in an allele-specific manner. This allele specificity indicates that individual ARFs are recruited to perform two different Sec7p-related functions in vesicle coat dynamics.  相似文献   

10.

Background

Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown.

Methodology/Principal Findings

We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100–300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells.

Conclusions/Significance

Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the complexity of this process in the biology of yeast cells.  相似文献   

11.
M J Lewis  J C Rayner    H R Pelham 《The EMBO journal》1997,16(11):3017-3024
Intracellular vesicular traffic is controlled in part by v- and t-SNAREs, integral membrane proteins which allow specific interaction and fusion between vesicles (v-SNAREs) and their target membranes (t-SNAREs). In yeast, retrograde transport from the Golgi complex to the ER is mediated by the ER t-SNARE Ufe1p, and also requires two other ER proteins, Sec20p and Tip20p, which bind each other. Although Sec20p is not a typical SNARE, we show that both it and Tip20p can be co-precipitated with Ufe1p, and that a growth-inhibiting mutation in Ufe1p can be compensated by a mutation in Sec20p. Furthermore, Sec22p, a v-SNARE implicated in forward transport from ER to Golgi, co-precipitates with Ufe1p and Sec20p, and SEC22 acts as an allele-specific multicopy suppressor of a temperature-sensitive ufe1 mutation. These results define a new functional SNARE complex, with features distinct from the plasma membrane and cis-Golgi complexes previously identified. They also show that a single v-SNARE can be involved in both anterograde and retrograde transport, which suggests that the mere presence of a particular v-SNARE may not be sufficient to determine the preferred target for a transport vesicle.  相似文献   

12.
13.
Fructose-1,6-bisphosphatase (FBPase) is synthesized in yeast during glucose starvation but is rapidly degraded in the vacuole following the addition of glucose. FBPase trafficking to the vacuole involves two distinct steps, import into intermediate transport vesicles (Vid vesicles) and Vid vesicle trafficking to the vacuole. FBPase import into Vid vesicles requires the VID22 gene. However, VID22 affects FBPase import indirectly through a cytosolic factor. To identify the required cytosolic component, wild type cytosol was fractionated and screened for proteins that complement Deltavid22 mutant cytosol using an in vitro assay that reproduces FBPase import into Vid vesicles. Cyclophilin A (Cpr1p) was identified as a cytosolic protein that mediates Vid22p function in FBPase import. Mutants lacking Cpr1p were defective in FBPase import. Furthermore, the addition of purified Cpr1p restored FBPase import in both the Deltacpr1 and the Deltavid22 mutants. The cyclosporin A binding pocket is important for Cpr1p function, since cyclosporin A binding-deficient mutants failed to complement FBPase import in Deltacpr1 and Deltavid22 mutants. The levels of Cpr1p were reduced in the Deltavid22 mutants, implying that the expression of Cpr1p is regulated by Vid22p. Our results suggest that Cpr1p mediates Vid22p function and is directly involved in the import of FBPase into Vid vesicles.  相似文献   

14.
15.
Bud growth in yeast is guided by myosin-driven delivery of secretory vesicles from the mother cell to the bud. We find transport occurs along two sets of actin cables assembled by two formin isoforms. The Bnr1p formin assembles cables that radiate from the bud neck into the mother, providing a stable mother-bud axis. These cables also depend on septins at the neck and are required for efficient transport from the mother to the bud. The Bni1p formin assembles cables that line the bud cortex and target vesicles to varying locations in the bud. Loss of these cables results in morphological defects as vesicles accumulate at the neck. Assembly of these cables depends on continued polarized secretion, suggesting vesicular transport provides a positive feedback signal for Bni1p activation, possibly by rho-proteins. By coupling different formin isoforms to unique cortical landmarks, yeast uses common cytoskeletal elements to maintain stable and dynamic axes in the same cell.  相似文献   

16.
Multiple yop mutant strains of Yersinia pseudotuberculosis not expressing several virulence effector Yop proteins (YopH, M, E, K and YpkA) were engineered. When high-copy-number plasmids carrying the ypkA or the yopE gene with their endogenous promoters were introduced into the engineered strains, the corresponding Yop protein was secreted at high levels in vitro . These multiple yop mutant strains, when harbouring the yopE gene in trans , behaved as the wild-type strain with respect to YopB-dependent translocation of YopE through the HeLa cell plasma membrane. Using these multiple yop mutant strains, it was demonstrated that the YpkA Ser/Thr protein kinase mediates morphological alterations of infected cultured HeLa cells different from those mediated by YopE and YopH. Furthermore, YpkA is shown to be translocated by a YopB-dependent translocation mechanism from surface-located bacteria and subsequently targeted to the inner surface of the target-cell plasma membrane. The pattern of YpkA localization after infection suggests that this Yop effector is involved in interference with signal transduction.  相似文献   

17.
GTP binding proteins of the Sec4/Ypt/rab family regulate distinct vesicular traffic events in eukaryotic cells. We have cloned GDI1, an essential homolog of bovine rab GDI (GDP dissociation inhibitor) from the yeast Saccharomyces cerevisiae. Analogous to the bovine protein, purified Gdi1p slows the dissociation of GDP from Sec4p and releases the GDP-bound form from yeast membranes. Depletion of Gdi1p in vivo leads to loss of the soluble pool of Sec4p and inhibition of protein transport at multiple stages of the secretory pathway. Complementation analysis indicates that GDI1 is allelic to sec19-1. These results establish that Gdi1p plays an essential function in membrane traffic and are consistent with a role for Gdi1p in the recycling of proteins of the Sec4/Ypt/rab family from their target membranes back to their vesicular pools.  相似文献   

18.
Secretion by the type III pathway of Gram-negative microbes transports polypeptides into the extracellular medium or into the cytoplasm of host cells during infection. In pathogenic Yersinia spp., type III machines recognize 14 different Yop protein substrates via discrete signals genetically encoded in 7-15 codons at the 5' portion of yop genes. Although the signals necessary and sufficient for substrate recognition of Yop proteins have been mapped, a clear mechanism on how proteins are recognized by the machinery and then initiated into the transport pathway has not yet emerged. As synonymous substitutions, mutations that alter mRNA sequence but not codon specificity, affect the function of some secretion signals, recent work with several different microbes tested the hypothesis of an RNA-encoded secretion signal for polypeptides that travel the type III pathway. This review summarizes experimental observations and mechanistic models for substrate recognition in this field.  相似文献   

19.
20.
The SEC17 gene of Saccharomyces cerevisiae is required for vesicular transport between the endoplasmic reticulum and the Golgi apparatus. Here we report that the product of the SEC17 gene has the exact biochemical properties expected for a yeast homologue of the mammalian transport factor, alpha-SNAP. The DNA sequence of SEC17 codes for a protein of predicted molecular mass of 33 kDa. Immunoblotting indicates that Sec17p fractionates as a peripheral membrane protein and is mostly soluble when overexpressed, suggesting the presence of a saturable membrane receptor for Sec17p. Sec17p was purified from yeast cytosol using a SNAP-dependent in vitro mammalian Golgi transport assay. Kinetic analysis using this assay shows Sec17p acts temporally close to the fusion of transport vesicles with the medial Golgi compartment. In yeast extracts, Sec17p binds to Sec18p with a 1:1 stoichiometry. The interaction between Sec17p and Sec18p requires an activity provided by yeast membranes, and this putative membrane receptor activity is not extracted by high salt treatment of membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号