首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of cytochalasin B (CB) on insulin binding has been investigated in confluent cultures of chick embryo fibroblasts. Time- and dose-dependent increases in binding of [125I]insulin was observed after incubation of fibroblasts with CB. At 10 μg/ml, CB caused a 2-fold increase in binding, due to an increase in the number of binding sites from 9.3 × 103 to 2.0 × 104 per cell. Removal of CB from the growth medium was accompanied by a decrease in [125I]insulin binding to control values in 24 h. Increase in the binding of insulin in CB-treated CEF was also accompanied by enhancement of insulin to stimulation of [3H]thymidine incorporation into acid-insoluble material. CB treatment also caused disorganization and disappearance of microfilament bundles and changes in cell shape from flat, with a few blebs and folds on the cell surface, to round with numerous blebs and folds. The data from this study suggest that changes in the number of surface insulin-binding sites may be related to the state of organization of cytoskeletal structures in chick embryo fibroblasts.  相似文献   

2.
3.
Fibroblastic cultures from the skin of nondiabetic and diabetic (db/db) mice have been used to investigate alterations in the biological responses of diabetic cells to insulin. Confluent cultures from the skin of both nondiabetic and diabetic animals possess specific receptors for insulin. Diabetic fibroblasts exhibit only 36% as much specific binding of insulin as nondiabetic fibroblasts, because of a decrease in the total number of binding sites, without a change in binding affinity. Insulin caused a time- and dose-dependent increase in the rate of 2-deoxy D-glucose (dGlc) uptake and in ornithine decarboxylase (ODC) activity of both nondiabetic and diabetic fibroblasts. In nondiabetic cells, half-maximal increase in dGlc uptake was obtained with 0.3 nM insulin, and a maximum increase of 120% was obtained with 4.1 nM insulin. In contrast, diabetic cultures required 0.8 nM insulin for a half-maximal increase in dGlc uptake, and maximum stimulation with 4.1 nM insulin was only 50% above control levels. With 4-fold higher insulin concentrations, ODC activity of diabetic cells was only 40% that of nondiabetic cells. In nondiabetic cells, down regulation of insulin receptors by insulin abolished the ability of insulin to stimulate dGlc uptake. These results demonstrate that cells cultured from diabetic animals, which possess a decreased number of insulin receptors, also exhibit decreased stimulation of deoxy D-glucose uptake and ornithin decarboxylase activity by insulin.  相似文献   

4.
The turnover of surface insulin receptors in fibroblastic cultures from genetically diabetic (db/db) mice and nondiabetic (m/m) littermates has been determined by combining a heavy isotope density shift technique with cross-linking of insulin to surface receptors. Our results indicate that the surface insulin receptors turn over faster in diabetic cells than in nondiabetic cells. In addition, fewer receptors are incorporated into the plasma membrane per hour in diabetic cells than in nondiabetic cells. It is possible to propose a model to account for the altered expression of surface insulin receptors in diabetic cells on the basis of abnormalities of receptor incorporation and turnover.  相似文献   

5.
The effect of down-regulation on the intracellular pool of insulin receptors and the role of glycosylation in recovery from down-regulation have been studied in fibroblastic cultures from the skin of non-diabetic mice. In control cultures, 55% of the total specific [125I]insulin-binding activity was in the intracellular compartment. Insulin caused a time- and concentration-dependent decrease in the number of cell surface insulin receptors, with no significant change in total insulin receptors. This decrease in surface receptors was accompanied by an increase in the specific binding of [125I]insulin in the intracellular compartment. Removal of insulin from down-regulated cells resulted in a time-dependent increase in the binding of [125I]insulin to surface receptors, reaching 90% of that in controls by 12 h. The recovery of surface insulin receptors after removal of insulin was blocked by incubation of cultures with tunicamycin, but not by cycloheximide. These results indicate that down-regulation of surface insulin receptors by insulin is associated with translocation of receptors into the intracellular pool and suggest that protein glycosylation is important in insulin receptor recycling and externalization.  相似文献   

6.
Direct associations between hyperglycemia and atherosclerosis remain unclear. We investigated the association between the amelioration of glycemia by sodium-glucose cotransporter 2 inhibitors (SGLT2is) and macrophage-driven atherosclerosis in diabetic mice. We administered dapagliflozin or ipragliflozin (1.0 mg/kg/day) for 4-weeks to apolipoprotein E-null (Apoe −/−) mice, streptozotocin-induced diabetic Apoe −/− mice, and diabetic db/db mice. We then determined aortic atherosclerosis, oxidized low-density lipoprotein (LDL)-induced foam cell formation, and related gene expression in exudate peritoneal macrophages. Dapagliflozin substantially decreased glycated hemoglobin (HbA1c) and glucose tolerance without affecting body weight, blood pressure, plasma insulin, and lipids in diabetic Apoe −/− mice. Aortic atherosclerotic lesions, atheromatous plaque size, and macrophage infiltration in the aortic root increased in diabetic Apoe −/− mice; dapagliflozin attenuated these changes by 33%, 27%, and 20%, respectively. Atherosclerotic lesions or foam cell formation highly correlated with HbA1c. Dapagliflozin did not affect atherosclerosis or plasma parameters in non-diabetic Apoe −/− mice. In db/db mice, foam cell formation increased by 4-fold compared with C57/BL6 mice, whereas ipragliflozin decreased it by 31%. Foam cell formation exhibited a strong correlation with HbA1c. Gene expression of lectin-like ox-LDL receptor-1 and acyl-coenzyme A:cholesterol acyltransferase 1 was upregulated, whereas that of ATP-binding cassette transporter A1 was downregulated in the peritoneal macrophages of both types of diabetic mice. SGLT2i normalized these gene expressions. Our study is the first to demonstrate that SGLT2i exerts anti-atherogenic effects by pure glucose lowering independent of insulin action in diabetic mice through suppressing macrophage foam cell formation, suggesting that foam cell formation is highly sensitive to glycemia ex vivo.  相似文献   

7.
Patients with diabetes are under a hypercoagulable state leading to generation of thrombin. It is not known whether thrombin plays a role in the progression of diabetic nephropathy. We analyzed gene expression of two thrombin receptors, protease-activated receptor-1 (PAR-1) and PAR-4 in the kidney of diabetic db/db mice. Mice developed hyperglycemia from 7 to 10 weeks of age and showed renal abnormalities such as mesangial expansion and urinary albumin excretion at 10 weeks of age. PAR-1 mRNA was up-regulated in isolated glomeruli in db/db mice compared with age-matched db/m littermates, but PAR-4 mRNA was not. In situ hybridization studies showed that PAR-1 mRNA was detected mainly at the glomerulus, and that intensive signals were observed in mesangial cells and podocytes. The up-regulation of PAR-1 in glomeruli in diabetic mice may play a role in the progression of glomerulosclerosis and abnormal urinary albumin excretion in diabetic nephropathy.  相似文献   

8.
Incretin therapy has emerged as one of the most popular medications for type 2 diabetes. We have previously reported that the dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin attenuates neointima formation after vascular injury in non-diabetic mice. In the present study, we examined whether combined treatment with linagliptin and the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin attenuates neointima formation in diabetic mice after vascular injury. Diabetic db/db mice were treated with 3 mg/kg/day linagliptin and/or 30 mg/kg/day empagliflozin from 5 to 10 weeks of age. Body weight was significantly decreased by empagliflozin and the combined treatment. Blood glucose levels and glucose tolerance test results were significantly improved by empagliflozin and the combined treatment, but not by linagliptin. An insulin tolerance test suggested that linagliptin and empagliflozin did not improve insulin sensitivity. In a model of guidewire-induced femoral artery injury in diabetic mice, neointima formation was significantly decreased in mice subjected to combined treatment. In an in vitro assay using rat aortic smooth muscle cells (RASMC), 100, 500, or 1000 nM empagliflozin significantly decreased the RASMC number in a dose-dependent manner. A further significant reduction in RASMC proliferation was observed after combined treatment with 10 nM linagliptin and 100 nM empagliflozin. These data suggest that combined treatment with the DPP-4 inhibitor linagliptin and SGLT2 inhibitor empagliflozin attenuates neointima formation after vascular injury in diabetic mice in vivo and smooth muscle cell proliferation in vitro.  相似文献   

9.
Patients with diabetes have a much greater risk of developing heart failure than non-diabetic patients, particularly in response to an additional hemodynamic stress such as hypertension or infarction. Previous studies have shown that increased glucose metabolism via the hexosamine biosynthesis pathway (HBP) and associated increase in O-linked-β-N-acetylglucosamine (O-GlcNAc) levels on proteins contributed to the adverse effects of diabetes on the heart. Therefore, in this study we tested the hypothesis that diabetes leads to impaired cardiomyocyte hypertrophic and cell signaling pathways due to increased HBP flux and O-GlcNAc modification on proteins. Cardiomyocytes isolated from type 2 diabetic db/db mice and non-diabetic controls were treated with 1 μM ANG angiotensin II (ANG) and 10 μM phenylephrine (PE) for 24 h. Activation of hypertrophic and cell signaling pathways was determined by assessing protein expression levels of atrial natriuretic peptide (ANP), α-sarcomeric actin, p53, Bax and Bcl-2 and phosphorylation of p38, ERK and Akt. ANG II and PE significantly increased levels of ANP and α-actin and phosphorylation of p38 and ERK in the non-diabetic but not in the diabetic group; phosphorylation of Akt was unchanged irrespective of group or treatment. Constitutive Bcl-2 levels were lower in diabetic hearts, while there was no difference in p53 and Bax. Activation of the HBP and increased protein O-GlcNAcylation in non-diabetic cardiomyocytes exhibited a significantly decreased hypertrophic signaling response to ANG or PE compared to control cells. Inhibition of the HBP partially restored the hypertrophic signaling response of diabetic cardiomyocytes. These results suggest that activation of the HBP and protein O-GlcNAcylation modulates hypertrophic and cell signaling pathways in type 2 diabetes.  相似文献   

10.
This study used a murine model of type 2 diabetes (BKS.Cg-Dock7(m) +/+Lepr(db)/J mice) to investigate the inflammatory and cellular mechanisms predisposing to Burkholderia pseudomallei infection and co-morbid diabetes. Homozygous db/db (diabetic) mice developed extreme obesity, dyslipidaemia and glucose intolerance leading to hyperglycaemia and overt type 2 diabetes. Compared to their heterozygous db/+ (non-diabetic) littermates, diabetic mice rapidly succumbed to subcutaneous B. pseudomallei infection, paralleled by severe hypoglycaemia and increased expression of the proinflammatory cytokines, tumour necrosis factor (TNF)-α and interleukin (IL)-1β, in the spleen, despite comparable bacterial loads in the spleen of non-diabetic mice. Neutrophil oxidative burst and dendritic cell uptake and killing of B. pseudomallei were similar between diabetic and non-diabetic mice. Compared to peritoneal macrophages from non-diabetic mice, macrophages from diabetic mice were unable to contain and kill B. pseudomallei. Functional differences between macrophages of diabetic and non-diabetic mice toward B. pseudomallei may contribute to rapid dissemination and more severe disease progression in hosts with co-morbid type 2 diabetes.  相似文献   

11.
Summary Ultrastructural characteristics as well as secretory and biosynthetic behavior of monolayer pancreatic cell cultures established from 4-day-old C57BL/KsJ misty diabetic (m db/ m db) mice have been studied in comparison to normal littermate controls. Hypersecretion of glucagon by α-cells from BL/Ks misty diabetic mice after 2 days in vitro was found to precede any hyperfunction of the insulin-secreting β-cells. The increased level of glucagon-release in BL/Ks cell cultures from diabetic mice was accompanied by a greatly enhanced level of incorporation of [3H] tryptophan into glucagon-like molecules whose specific radioactivity was up to 15-fold higher than that observed in cultures from genetic controls. The finding of an α-cell dysfunction in cultures established from preweaning diabetic BL/Ks mice suggests that glucagon could play an early role in shaping the events that culminate in the expression of frank diabetes in this inbred strain. This study was supported in part by NIH Grants AM 17631 and AM 14461, and a grant from the Juvenile Diabetes Foundation. The Jackson Laboratory is fully accredited by the American Association for Accrediation of Laboratory Animal Care.  相似文献   

12.
Studies were undertaken to identify cell surface markers specific for different phases of the cell cycle. Antisera were prepared in rabbits against membrane protein preparations from synchronized BW 5147 cells, an AKR mouse T-lymphoma cell line, in the G1, S, G2 or M phases of the cell cycle. These antisera were used to precipitate radioiodinated surface proteins from synchronized cells in the different phases. The immunoprecipitates were quantitatively analyzed by sodiumdodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Cells in S phase had significantly higher concentrations of proteins weighing 70 × 103 and 165 × 103 D than cells in G1 or G2 phase. The other major labeled surface components did not vary. These results were confirmed by quantitative absorption of the antisera with synchronized cells. Comparative analysis of the antisera showed that the 165 × 103 D peak contained at least two antigens, one recognized by both a-G1 and a-S and the other by a-G1 only. Though cells in S phase had large quantities of the 70 × 103 D protein, intact and SDS-solubilized membrane preparations from S phase could not elicit in rabbits any antibody against that protein. These antisera did, however, have good antibody titers to the other major protein peaks and the antisera developed against cells in G1, G2 or M had good anti-70 × 103 activity. The results suggest a qualitative molecular change in the 70 × 103 protein during S phase.  相似文献   

13.
Tertiary amine local anesthetics cause a time- and dose-dependent, reversible increase in insulin binding sites in cultured chick embryo fibroblasts. Incubation of fibroblasts with 0.2 mM dibucaine for 3 h at 37°C results in a twofold to threefold increase in insulin binding, with an increase in average number of binding sites (Ka = 3.0 × 107M?1) from 9 × 103 to 29 × 103 per cell. Trypsin or ethylenegly coltetraacetic acid (EGTA) alone increases insulin binding twofold to threefold, but fails to further increase 125I-insulin binding in cells pretreated with dibucaine. Transformation of chick embryo fibroblasts with Rous sarcoma virus causes a threefold to fivefold increase in insulin binding, which is not further increased by incubation with dibucaine. As demonstrated by transmission electron microscopy, dibucaine and trypsin also induce changes in the cytoskeleton of chick embryo fibroblasts, characterized by disorganization and disappearance of microfilament and microtubule bundles. These alterations are accompanied by gross morphologic changes, including rounding of cells and appearance of numerous ruffles and blebs on the cell surface. These observations are consistent with the hypothesis that expression of surface receptors in cultured chick embryo fibroblasts is related to the organization and disorganization of cytoskeletal structures.  相似文献   

14.
This study reports on the specific binding of [3H]heparin to human adrenocortical carcinoma cell line SW-13. Heparin binding to SW-13 cells is specific, saturable, and time- and temperature-dependent with maximum binding occurring between 90 and 120 min at 22 °C. Scatchard analysis revealed two classes of binding sites. The apparent Kd for high-affinity receptors is 2.14 × 10−8 M with 1.48 × 106 sites per cells. Six other tested mammalian cell lines also have specific binding sites for heparin.  相似文献   

15.
[3H]norepinephrine binding to isolated rat fat cells was studied as a function of adipose cell age and size. Rats aged from 4 to 78 weeks were used.Scatchard analysis of norepinephrine binding revealed in old fat cells like in young ones the existence of two orders of binding sites with respectively high and low affinity for norepinephrine. The apparent association constants Ka1 and Ka2 associated with these binding sites did not differ consistently in the different groups of fat cells studied (Ka1 = 1.7 to 2.2 × 106 × M−1; Ka2 = 1.9 to 2.5 × 104 × M−1), suggesting that age and cell size do not modify the apparent affinity of norepinephrine-binding sites in rat fat cells.On the contrary, the total amount of norepinephrine bound to each of these sites was dependent upon cell age and size. In fact, maximum binding of norepinephrine to the high affinity sites was 0.9 and 9 pmol/105 cells in small (diameter: 35 μ) and large (diameter: 105 μ) adipocytes, respectively, the values found for the low affinity sites being 13 and 135 pmol/105 cells. When expressed per unit of fat cell area, however, the total binding capacity for these sites appeared practically constant (2.4 — 2.8 pmol × 10−3/mm2 and 34.2 — 38.2 pmol × 10−3/mm2 for the high and low affinity sites respectively). These data suggest that the total norepinephrine binding capacity of the fat cell is directly proportional to its surface.  相似文献   

16.
Bone marrow-derived cells were demonstrated to improve organ function, but the lack of cell retention within injured organs suggests that the protective effects are due to factors released by the cells. Herein, we tested cell therapy using early outgrowth cells (EOCs) or their conditioned media (CM) to protect the retina of diabetic animal models (type 1 and type 2) and assessed the mechanisms by in vitro study. Control and diabetic (db/db) mice (8 weeks of age) were randomized to receive a unique intravenous injection of 5×105EOCs or 0.25 ml thrice weekly tail-vein injections of 10x concentrated CM and Wystar Kyoto rats rendered diabetic were randomized to receive 0.50 ml thrice weekly tail-vein injections of 10x concentrated CM. Four weeks later, the animals were euthanized and the eyes were enucleated. Rat retinal Müller cells (rMCs) were exposed for 24 h to high glucose (HG), combined or not with EOC-conditioned medium (EOC-CM) from db/m EOC cultures. Diabetic animals showed increase in diabetic retinopathy (DR) and oxidative damage markers; the treatment with EOCs or CM infusions significantly reduced this damage and re-established the retinal function. In rMCs exposed to diabetic milieu conditions (HG), the presence of EOC-CM reduced reactive oxygen species production by modulating the NADPH-oxidase 4 system, thus upregulating SIRT1 activity and deacetylating Lys-310-p65-NFκB, decreasing GFAP and VEGF expressions. The antioxidant capacity of EOC-CM led to the prevention of carbonylation and nitrosylation posttranslational modifications on the SIRT1 molecule, preserving its activity. The pivotal role of SIRT1 on the mode of action of EOCs or their CM was also demonstrated on diabetic retina. These findings suggest that EOCs are effective as a form of systemic delivery for preventing the early molecular markers of DR and its conditioned medium is equally protective revealing a novel possibility for cell-free therapy for the treatment of DR.  相似文献   

17.

Aim

We recently reported that glucose-dependent insulinotropic polypeptide (GIP) prevents the development of atherosclerosis in apolipoprotein E-null (Apoe −/−) mice. GIP receptors (GIPRs) are found to be severely down-regulated in diabetic animals. We examined whether GIP can exert anti-atherogenic effects in diabetes.

Methods

Nondiabetic Apoe −/− mice, streptozotocin-induced diabetic Apoe −/− mice, and db/db mice were administered GIP (25 nmol/kg/day) or saline (vehicle) through osmotic mini-pumps for 4 weeks. The animals were assessed for aortic atherosclerosis and for oxidized low-density lipoprotein-induced foam cell formation in exudate peritoneal macrophages.

Results

Diabetic Apoe −/− mice of 21 weeks of age exhibited more advanced atherosclerosis than nondiabetic Apoe −/− mice of the same age. GIP infusion in diabetic Apoe −/− mice increased plasma total GIP levels by 4-fold without improving plasma insulin, glucose, or lipid profiles. GIP infusion significantly suppressed macrophage-driven atherosclerotic lesions, but this effect was abolished by co-infusions with [Pro3]GIP, a GIPR antagonist. Foam cell formation was stimulated by 3-fold in diabetic Apoe −/− mice compared with their nondiabetic counterparts, but this effect was halved by GIP infusion. GIP infusion also attenuated the foam cell formation in db/db mice. In vitro treatment with GIP (1 nM) reduced foam cell formation by 15% in macrophages from diabetic Apoe −/− mice, and this attenuating effect was weaker than that attained by the same treatment of macrophages from nondiabetic counterparts (35%). While GIPR expression was reduced by only about a half in macrophages from diabetic mice, it was reduced much more dramatically in pancreatic islets from the same animals. Incubation with high glucose (500 mg/dl) for 9–10 days markedly reduced GIPR expression in pancreatic islet cells, but not in macrophages.

Conclusions

Long-term infusion of GIP conferred significant anti-atherogenic effects in diabetic mice even though the GIPR expression in macrophages was mildly down-regulated in the diabetic state.  相似文献   

18.
19.
In an initial effort to determine whether circulating retinol might promote differentiation of embryonal carcinoma (EC) cells in tumor form, we have assessed the ability of retinol to stimulate differentiation of cultured EC cells. We found that retinol induces several murine EC cell lines to differentiate in vitro. Differentiated derivatives were distinguishable from parental EC cells by morphology, cell surface antigenic properties and levels of secretion of plasminogen activator. Retinol effects could be seen at concentrations as low as 8.7 × 10−8 M (0.025 (μg/ml). Only two of eight EC lines tested failed to differentiate in response to retinol: PCC4-azaIR, which dies at retinol concentrations above 3.5 × 10−7 M; and PCC4(RA)-1, a mutant line derived from PCC4-azaIR cells, which also fails to differentiate in response to retinoic acid.  相似文献   

20.
To ascertain whether prostaglandins (PG) may play a role in the secretion of glucagon and in an attempt to elucidate the conflicting observations on the effects of PG on insulin release, the isolated intact rat pancreas was perfused with solutions containing 1.1 × 10−9 to 1.8 × 10−5M PGE2. In the presence of 5.6 mM glucose significant increments in portal venous effluent levels of glucagon and insulin were observed in response to minimal concentrations of 2.8 × 10−8 and 1.4 × 10−7M PGE2, respectively; a dose-response relationship was evident for both hormones at higher concentrations of PGE2. When administered over 60 seconds, 1.4 × 10−6M PGE2 resulted in a significant increase in glucagon levels within 24 seconds and in insulin within 48 seconds. Ten-minute perfusions of 1.4 × 10−6M PGE2 elicited biphasic release of both islet hormones; Phase I glucagon release preceded that of insulin. Both phases of the biphasic glucagon and insulin release which occurred in response to 15-minute perfusions of 10 mM arginine were augmented by PGE2. These observations indicate that PGE2 can evoke glucagon and insulin release at concentrations close to those observed by others in the extracts of rat pancreas. We conclude that PG may be involved in the regulation of secretion of glucagon and insulin and may mediate and/or modify the pancreatic islet hormone response to other secretagogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号