首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently proposed that extracellular ATP (ATPo) may be involved in CTL-mediated cytotoxicity by acting in concert with yet unidentified cellular components (ATPo receptors/ATPo-binding proteins, ectoprotein kinases). The TCR-triggered ATPo accumulation by CTL has been demonstrated, whereas the resistance of CTL to ATPo was explained by the action of highly active ecto-ATPases or by the absence of relevant ATP-binding proteins. However, no data were available to discriminate between the possibilities of: i) ATPo acting alone as a "hit" molecule because of the cell-permeabilizing properties of ATP4- or ii) ATPo acting as a "messenger" (as MgATP2-) in concert with other molecules. Comparing ATPo-induced and CTL-mediated cell lysis, we found that ATPo-induced lysis of some target cells is greatly decreased at neutral and acidic pH, whereas Ca(2+)-dependent CTL-mediated lysis of the same cells is barely affected. In agreement with the observed pH dependency, at low Mg2+ concentrations, which favor ATP4- over MgATP2-, maximal ATPo-induced lysis was observed. However, CTL-mediated cytotoxicity in both Ag-specific and retargeting assays was markedly reduced at low Mg2+ concentrations. These results suggest that ATPo acting alone as a "hit" molecule cannot fully account for the extracellular Ca(2+)-dependent lethal hit delivery by CTL or that ATP4- is active at very low concentrations. This conclusion was further supported by studying the lytic effect of ATPo and CTL on the anti-TCR mAb-coupled SRBC. CTL were efficient in the SRBC lysis, whereas no lysis of SRBC by ATPo was detected. The resistance of SRBC to ATPo is not caused by a high ATPo degradation, because the ecto-ATPase activity of SRBC was much lower than in ATPo-resistant CTL OE4 cells and comparable with EL4 tumor cells, which were easily lysed by ATPo. These data suggested the need for careful consideration of the pH and cation composition of the media used for studying ATPo effects. The caveats in the use of ATP-degrading enzymes to implicate the role of extracellular ATPo in the CTL-mediated cytotoxicity are described here. A clarification of the previously described cytotoxicity inhibition by hexokinase, which is caused by an inhibitory salt effect, is presented. It is suggested that if Ca(2+)-dependent lysis of SRBC and of other target cells by CTL does involve extracellular ATP, it may function as a "messenger" in concert with other extracellular molecules.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Extracellular adenosine (Ade) interacts with cells by two pathways: by activating cell surface receptors at nanomolar/micromolar concentrations; and by interfering with the homeostasis of the intracellular nucleotide pool at millimolar concentrations. Ade shows both cytotoxic and cytoprotective effects; however, the underlying mechanisms remain unclear. In the present study, the effects of adenosine-mediated ATP on cell viability were investigated. Adenosine treatment was found to be cytoprotective in the low intracellular ATP state, but cytotoxic under the normal ATP state. Adenosine-mediated cytotoxicity and cytoprotection rely on adenosine-derived ATP formation, but not via the adenosine receptor pathway. Ade enhanced proteasome inhibition-induced cell death mediated by ATP generation. These data provide a new pathway by which adenosine exerts dual biological effects on cell viability, suggesting an important role for adenosine as an ATP precursor besides the adenosine receptor pathway.  相似文献   

3.
Recent studies have demonstrated that diphtheria toxin (DTX) also mediates target cell lysis, and the mechanism of cytotoxicity has many features similar to those of cytotoxicity mediated by TNF-alpha. Thus, we hypothesized that DTX and TNF-alpha, used in combination, may result in either additive or synergistic cytotoxic activity. This was examined on three human ovarian carcinoma cell lines chosen for their differing sensitivities to TNF-alpha and DTX, i.e., 222, which is sensitive to both TNF-alpha and DTX, 222TR, a TNF-alpha-resistant DTX-sensitive variant of 222, and SKOV-3, which is resistant to both DTX and TNF-alpha. The simultaneous use of DTX and TNF-alpha at suboptimal concentrations resulted in synergistic cytotoxic activity against all three lines tested, thus overcoming the TNF-alpha resistance of 222TR and the double resistance of SKOV-3. DNA fragmentation was observed in all three lines treated with DTX and TNF-alpha and occurred as early as 4 h after treatment. Cycloheximide, actinomycin D, or emetine, at concentrations causing greater than 90% protein synthesis inhibition, did not result in cytotoxicity alone or synergy with TNF-alpha, suggesting that synergy by DTX was not due to its ability to inhibit protein synthesis. The use of energy poisons and pH conditions that inhibit DTX-mediated cytotoxicity resulted in the abrogation of synergy. These findings show that the two cytotoxic agents TNF-alpha and DTX, when used at suboptimal concentrations, synergize in their cytotoxic activity against sensitive and resistant cell lines. Because the SKOV-3 cell line used here is also resistant to chemotherapeutic drugs, combination treatment with DTX and TNF-alpha may be beneficial in overcoming drug resistance.  相似文献   

4.
Lymphokine-activated killer (LAK) cells are cytotoxic for a variety of autologous and allogeneic tumor cells as well as modified autologous cells. It is assumed that LAK cells lyse their targets solely by direct cell to cell contact, possibly involving the degranulation and exocytosis of pore-forming elements, similar to that observed with cytotoxic T lymphocytes and NK cells. Reported here are studies demonstrating that LAK cells release factor(s) that are cytotoxic for a human breast carcinoma cell line, MCF-7, when stimulated with tumor cells. The factor(s) are slow acting and maximum cytotoxicity is observed only in a 72-h cytotoxic assay. The ability of LAK cells to secrete cytotoxic factor(s) is dependent on both the ratio of LAK cells to stimulating tumor cells as well as the length of their coincubation. A number of similarly slow acting cytokines that are cytostatic and/or cytotoxic for tumor cells have been described. We tested the ability of specific polyclonal antibodies directed against TNF, IFN-alpha, IFN-beta, and IFN-gamma to neutralize the cytotoxic supernatant activity. Only antibodies specific for IFN-gamma and TNF were neutralizing. We measured the amounts of IFN-gamma and TNF in the cytotoxic supernatants and determined that increased amounts of IFN-gamma and TNF were released after LAK cell-tumor cell interactions compared to supernatants of LAK cells alone or tumor cell alone. Comparable concentrations of human rIFN-gamma and rTNF resulted in similar levels (50 to 90%) of MCF-7 cell cytotoxicity as those observed with the stimulated LAK cell supernatants. We thus concluded that the majority of the cytotoxic activity released by LAK cells when stimulated with tumor cells was attributed to the synergistic activities of IFN-gamma and TNF. The significance of these observations in relation to the possible mechanisms by which LAK cells mediate cytolysis is discussed.  相似文献   

5.
Extracellular ATP (ATPo) is capable of inducing different events on cells through receptor activation. The effect produced by ATPo was studied in the cell line K562 and its multidrug resistant (MDR) counterpart, Lucena 1. Lower ATPo concentrations (1 mM and 2.5 mM) led to high 3H-thymidine incorporation but no increase in cell number. Similarly, the cell cycle profile indicated an increase of cells in S phase and a decrease in G1 and G2, suggesting that the cells did not duplicate their DNA content. Higher doses of ATP (5 mM and 10 mM), as well as UTP (5 mM) and the P2X7 agonist BzATP, were cytotoxic. However, no expression of P2X7 receptors could be detected by Western Blot nor were the cells permeabilised by ATP, suggesting that pore formation was not involved in cell death. Both ecto-ATPase and ecto-5′-nucleotidase activity could be demonstrated at the surfaces of K562 and Lucena 1 cells, the latter presenting a higher ecto-5′-nucleotidase activity. Adenosine induced cell death at lower concentrations (2.5 mM) on both cell lines. Furthermore, an increased number of dead cells could be observed when 5 mM Adenosine was used compared to the same concentrations of ATPo. It still remains to be elucidated the nature of the receptors involved in the induction of cell death in these cells.Both authors have contributed equally for this article.  相似文献   

6.
We tested the effect of extracellular adenosine 5'-triphosphate (ATPo) on the activation of human spermatozoa. ATPo, in a concentration range from 50 microM to 5 mM, induced the acrosome reaction, which, at the optimal concentration of 2.5 mM, was maximal (30-35% of spermatozoa activated) within 60 min of the addition of the nucleotide. At the end of this incubation in the presence of ATPo no decrease in cell motility and viability was observed. Among other purine/pyrimidine nucleotides only the ATP analogue adeny-5'-lyl imidodiphosphate was effective (70% of ATP); a weak (10% of ATP) effect was also observed with CTP and the ATP analogues adenosine 5'-(beta gamma-methylene)triphosphate and adenosine 5'-O-(thiotriphosphate). ATPo did not cause Ca2+ release from intracellular stores, nor it caused Ca2+ influx from the extracellular milieu; on the contrary, it caused a clear, albeit slow, plasma membrane depolarization. ATPo-activated spermatozoa showed a nearly 100% success rate in the standard hamster egg fertilization test. Our results describe a new effect of ATPo in human spermatozoa with relevant potential applications in fertility studies.  相似文献   

7.
Since extracellular ATP can exhibit cytotoxic activity in vivo and in vitro, its application has been proposed as an alternative anticancer therapy. In this study we investigated the mechanisms of ATP-induced cytotoxicity in a human leukemic cell line (U-937). ATP added as a single dose exceeding 50 microM was cytostatic or even cytotoxic for U-937 cells. Interestingly, growth inhibition by ATP (50-3500 microM) showed a biphasic dose response. Up to 800 microM, ATP was cytotoxic in a dose-dependent manner (EC(50) 90 microM). In a range between 800 and 2500 microM, cell count was markedly higher despite the higher ATP concentrations. The cytotoxic effect of ATP could be antagonized by addition of uridine as a pyrimidine source and, alternatively, by addition of the nucleoside transmembrane inhibitor dipyridamole. The apoptosis-inducing adenosine A(3) receptor was not involved in measurable quantities, since (1) adenosine did not lead to an elevation of intracellular calcium levels, and (2) an unselective A(1-3) antagonist (ULS-II-80) could not abrogate the cytotoxic effect. Experiments monitoring extracellular nucleotide metabolism confirmed the assumption that the long-term production and continuous uptake of adenosine, which is extracellularly generated by degradation of ATP, led to an intracellular nucleotide imbalance with pyrimidine starvation. The biphasic dose response to higher ATP concentrations could be explained by the rapid degradation of lower ATP concentrations (300 microM) to adenosine by serum-derived enzymes, whereas higher concentrations (900 microM) only produced small amounts of adenosine due to forward inhibition of AMP hydrolysis by prolonged high ADP levels. FACS analysis revealed that at lower adenosine concentrations (300 microM) a reversible G(1) phase arrest of the cell cycle was induced, whereas higher concentrations (1000 microM) triggered apoptosis. Considering ATP as a potential cytostatic drug, our data have important implications concerning metabolic interactions of administered nucleotides.  相似文献   

8.
NK cells mediate their cytotoxicity against tumor cells through abroad array of cytotoxic and cytostatic proteins. We investigated whether specific proteins could also be identified that contributed to NK cell-mediated antiviral immunity. Human CD16+/CD3- NK cells were obtained by using FACS and subsequently cloned by using limiting dilution. These NK cell lines, which were cytotoxic against NK-sensitive tumor targets and virally infected cells, also generated supernatants that selectively killed vesicular stomatitis virus-infected cells while sparing noninfected cells. This soluble antiviral activity was completely neutralized by antibodies specific for TNF and lymphotoxin. Purified human rTNF also duplicated this specific cytotoxicity against vesicular stomatitis virus-infected cells, as well as against CMV-, Theiler's murine encephalomyelitis virus-, and HSV-infected cells. The degree of cytotoxicity varied for the different viruses and depended on the cell type infected. These results suggest that NK cells can mediate selective and direct cytotoxicity against virally infected cells by the secretion of TNF and lymphotoxin.  相似文献   

9.
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.  相似文献   

10.
This study was undertaken to characterize the phenotype and function of lymphocytes derived from endomyocardial biopsies in heart transplant patients. To this aim, tissue infiltrating lymphocytes were derived from seven heart transplant patients and were analyzed for the expression of a panel of markers, including CD3, CD4, CD8, CD16, CD56, CD45RA, CD45RO, alpha/beta and gamma/delta T cell receptor, and for their ability to lyse a series of targets, including NK-sensitive K-562 targets, NK-resistant Raji targets, donor related, and unrelated normal splenocytes. Our data show that the majority of cultured lymphocytes expressed the CD3+ phenotype and the alpha/beta T cell receptor. The CD4 and CD8 molecules were heterogeneously expressed among T cell lines tested. Concerning cytotoxic related markers, a significant percentage of cells were CD56+. The evaluation of CD45 isoforms showed that both "naive" and "memory" cells were present among heart TIL. Cytotoxic in vitro studies demonstrated that all our T cell lines showed an efficient cytotoxic machinery when tested against NK-sensitive targets. A marked lysis of donor-related splenocytes was demonstrated in all patients tested. To investigate the role of CD3 and HLA class I molecules in the cytotoxic mechanisms taking place in human heart allograft rejection mechanisms, TIL were assessed for their lytic activity against different targets in the presence of anti-CD3 and anti-HLA class I monoclonal antibodies (mAbs). Although donor-specific cytotoxicity was considerably inhibited by the anti-CD3 mAb, no inhibitory effect was displayed by this antibody on TIL-mediated cytotoxicity against donor-unrelated splenocytes. Anti-HLA class I mAb was able to inhibit both allospecific and nonallospecific cytotoxicity. These data suggest that different types of cytotoxic cells may be propagated from biopsy specimens of heart transplant patients.  相似文献   

11.
Recent investigations examining mononuclear cell antibody-dependent cell-mediated cytotoxicity against tumor cell lines suggest that K lymphocytes and not monocytes are active in this cytotoxic reaction. We have found, however, that in an allogeneic assay system, human monocyte monolayers as well as lymphocytes mediate substantial lysis of 51Cr-labeled antibody-coated CEM lymphoblast tumor cells. This cytotoxicity is temperature-dependent and rapid, with most 51Cr release occurring in the first 4 hr of co-incubation. Interaction between target cell-bound antibody and the monocyte Fc receptor is necessary as demonstrated by the marked fall in antibody-dependent cell-mediated cytotoxicity (ADCC) produced by staphylococcal protein A, high concentrations of nonspecific immunoglobulin, and dilution of the target cell antiserum. Morphologic and functional characteristics of the monocyte-monolayer preparations establish their relative purity (greater than 95%) and indicate that monocytes and not contaminating lymphocytes are responsible for tumor cell lysis. Furthermore, preincubation of monocyte and lymphocyte preparations with latex particles or low concentrations of immunoglobulin distinguished monocyte from lymphocyte ADCC. Thus, normal human monocytes have the capacity to carry out antibody-dependent cytotoxicity against nucleated malignant target cells.  相似文献   

12.
Advanced Glycation End-products (AGE-s) were shown to exhibit a number of potentially harmful properties in contact with cells and tissues. As their concentrations increases with age, faster even in hyperglycemic individuals, they are considered important for aging- and age-associated pathologies, especially for athero-arteriosclerosis and type II diabetes. We describe here the methods used for the demonstration of a direct cytotoxicity of several AGE-products when added to human skin fibroblast cultures. This cytotoxicity was still demonstrable when cells, previously cultured with AGE-s, were transferred to new medium without AGE-s. This effect, the remanence of cytotoxicity in absence of AGE-s, suggests a certain degree of inheritance, possibly by epigenetic mechanisms, of the cytotoxic effect of AGE-s, mediated by the AGE-receptors (RAGE-s) and inhibited by free radical-scavengers, such as L-Carnosine, Catalase and Rhamnose-rich oligo- and polysaccharides. Such cytotoxicity can occur not only on the skin but also in other tissues. It appears thus that besides the crosslinking of collagen and other macromolecules, the products of the Maillard reaction can exert their harmful cytotoxic effects directly on the cells.  相似文献   

13.
The effect of adenosine and its analogues on the cytotoxic activity of IL-2-activated NK cells was investigated. Adenosine is an endogenous ligand for four different adenosine receptor (AdoR) subtypes (AdoRA1, AdoRA2A, AdoRA2B, and AdoRA3). Increased concentrations of adenosine were found in ascites of MethA sarcoma or in culture medium of 3LL Lewis lung carcinoma growing under hypoxic conditions. We hypothesize that intratumor adenosine impairs the ability of lymphokine-activated killer (LAK) cells to kill tumor cells. The effect of AdoR engagement on LAK cells cytotoxic activity was analyzed using AdoR agonists and antagonists as well as LAK cells generated from AdoR knockout mice. Adenosine and its analogues efficiently inhibited the cytotoxic activity of LAK cells. CGS21680 (AdoRA2A agonist) and 5-N-ethylcarboxamide adenosine (NECA) (AdoRA2A/ADoRA2B agonist) inhibited LAK cell cytotoxicity in parallel with their ability to increase cAMP production. The inhibitory effects of stable adenosine analog 2-chloroadenosine (CADO) and AdoRA2 agonists were blocked by AdoRA2 antagonist ZM 241385. Adenosine and its analogues impair LAK cell function by interfering with both perforin-mediated and Fas ligand-mediated killing pathways. Studies with LAK cells generated from AdoRA1-/- and AdoRA3-/- mice ruled out any involvement of these AdoRs in the inhibitory effects of adenosine. LAK cells with genetically disrupted AdoRA2A were resistant to the inhibitory effects of adenosine, CADO and NECA. However, with extremely high concentrations of CADO or NECA, mild inhibition of LAK cytotoxicity was observed that was probably mediated via AdoRA2B signaling. Thus, by using pharmacological and genetic blockage of AdoRs, our results clearly indicate the prime importance of cAMP elevating AdoR2A in the inhibitory effect of adenosine on LAK cell cytotoxicity. The elevated intratumor levels of adenosine might inhibit the antitumor effects of activated NK cells.  相似文献   

14.
Extracellular ATP (ATPo) caused dose-dependent lysis of YAC-1 and P-815 mouse tumor cells. This event, assessed by 51Cr release, was accompanied by sustained depolarization of the plasma membrane potential and Ca2+ influx. Plasma membrane depolarization and Ca2+ influx occurred within a few seconds of ATPo addition to both cell types, whereas 51Cr was released without apparent lag in YAC-1 cells and after 2 h in P-815 cells. Furthermore, a rise in [Ca2+]i was required for ATPo-dependent lysis of YAC-1 but not P-815 cells. In P-815 cells, ATPo caused an early and [Ca2+]i-independent DNA fragmentation that occurred at lower nucleotide concentrations than those required to trigger 51Cr release. Instead in YAC-1 cells very low concentrations of ATPo caused early lysis (ED50 for lysis about 200 microM) accompanied by only barely detectable DNA fragmentation. Previous studies disclosed that lymphokine-activated killer cells are fully resistant to the membrane-perturbing effects of ATPo. We show that lymphokine-activated killer cells also do not undergo DNA fragmentation even in the presence of high ATPo concentrations. This study complements previous observations on the lytic effects of ATPo and shows that this nucleotide can also cause DNA fragmentation, one of the earliest target cell alterations observed during CTL-mediated lysis.  相似文献   

15.
Regional hyperthermia has potential for human cancer treatment, particularly in combination with systemic chemotherapy or radiotherapy. The mechanisms involved in heat-induced cell killing are currently unknown. Hyperthermia may increase oxidative stress in cells, and thus, oxidative stress could have a role in the mechanism of cell death. We use hydrogen peroxide as a model oxidant to improve understanding of interactions between heat and oxidative stress. Heat increased cytotoxicity of hydrogen peroxide in Chinese hamster ovary cells. Altered levels of cellular antioxidants should create an imbalance between prooxidant and antioxidant systems, thus modifying cytotoxic responses to heat and to oxidants. We determine the involvement of the two cellular antioxidant defenses against peroxides, catalase and the glutathione redox cycle, in cellular sensitivity to heat, to hydrogen peroxide, and to heat combined with the oxidant. Defense systems were either inhibited or increased. For inhibition studies, intracellular glutathione was diminished to less than 15% of its initial level by treatment with L-buthionine sulfoximine (1 mM, 24 h). Inhibition of catalase was achieved with 3-amino-1,2,4-triazole (20 mM, 2 h), which caused a 80% decrease in endogenous enzyme activity. To increase antioxidants, cells were pretreated with the thiol-containing reducing agents, N-acetyl-L-cysteine, 2-oxo-4-thiazolidine carboxylate, and 2-mercaptoethane sulfonate. These compounds increased intracellular glutathione levels by 30%. Catalase activity was increased by addition of exogenous enzyme to cells. We show that levels of glutathione and catalase affect cellular cytotoxic responses to heat and hydrogen peroxide, either used separately or in combination. These findings are relevant to mechanisms of cell killing at elevated temperatures and suggest the involvement of oxidative stress.  相似文献   

16.
Acrolein is an environmental toxicant, mainly found in smoke released from incomplete combustion of organic matter. Several studies showed that exposure to acrolein can lead to liver damage. The mechanisms involved in acrolein-induced hepatocellular toxicity, however, are not completely understood. This study examined the cytotoxic mechanisms of acrolein on HepG2 cells. Acrolein at pathophysiological concentrations was shown to cause apoptotic cell death and an increase in levels of protein carbonyl and thiobarbituric acid reactive acid substances. Acrolein also rapidly depleted intracellular glutathione (GSH), GSH-linked glutathione-S-transferases, and aldose reductase, three critical cellular defenses that detoxify reactive aldehydes. Results further showed that depletion of cellular GSH by acrolein preceded the loss of cell viability. To further determine the role of cellular GSH in acrolein-mediated cytotoxicity, buthionine sulfoximine (BSO) was used to inhibit cellular GSH biosynthesis. It was observed that depletion of cellular GSH by BSO led to a marked potentiation of acrolein-mediated cytotoxicity in HepG2 cells. To further assess the contribution of these events to acrolein-induced cytotoxicity, triterpenoid compound 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) was used for induction of GSH. Induction of GSH by CDDO-Im afforded cytoprotection against acrolein toxicity in HepG2 cells. Furthermore, BSO significantly inhibited CDDO-Im-mediated induction in cellular GSH levels and also reversed cytoprotective effects of CDDO-Im in HepG2 cells. These results suggest that GSH is a predominant mechanism underlying acrolein-induced cytotoxicity as well as CDDO-Im-mediated cytoprotection. This study may provide understanding on the molecular action of acrolein which may be important to develop novel strategies for the prevention of acrolein-mediated toxicity.  相似文献   

17.
Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets   总被引:29,自引:0,他引:29  
Inhibitory receptors have been proposed to modulate the in vivo cytotoxic response against tumor targets for both spontaneous and antibody-dependent pathways. Using a variety of syngenic and xenograft models, we demonstrate here that the inhibitory FcgammaRIIB molecule is a potent regulator of antibody-dependent cell-mediated cytotoxicity in vivo, modulating the activity of FcgammaRIII on effector cells. Although many mechanisms have been proposed to account for the anti-tumor activities of therapeutic antibodies, including extended half-life, blockade of signaling pathways, activation of apoptosis and effector-cell-mediated cytotoxicity, we show here that engagement of Fcgamma receptors on effector cells is a dominant component of the in vivo activity of antibodies against tumors. Mouse monoclonal antibodies, as well as the humanized, clinically effective therapeutic agents trastuzumab (Herceptin(R)) and rituximab (Rituxan(R)), engaged both activation (FcgammaRIII) and inhibitory (FcgammaRIIB) antibody receptors on myeloid cells, thus modulating their cytotoxic potential. Mice deficient in FcgammaRIIB showed much more antibody-dependent cell-mediated cytotoxicity; in contrast, mice deficient in activating Fc receptors as well as antibodies engineered to disrupt Fc binding to those receptors were unable to arrest tumor growth in vivo. These results demonstrate that Fc-receptor-dependent mechanisms contribute substantially to the action of cytotoxic antibodies against tumors and indicate that an optimal antibody against tumors would bind preferentially to activation Fc receptors and minimally to the inhibitory partner FcgammaRIIB.  相似文献   

18.
Extracellular adenosine-5′-triphosphate (ATP) regulates cell death and survival of neighboring cells. The detailed effects are diverse depending on cell types and extracellular ATP concentration. We addressed the effect of ATP on ethanol-induced cytotoxicity in epithelial cells, the cell type that experiences the highest concentrations of alcohol. Using pancreatic duct epithelial cells (PDEC), we found that a micromolar range of ATP reverses all intracellular toxicity mechanisms triggered by exceptionally high doses of ethanol and, thus, improves cell viability dramatically. Out of the many purinergic receptors expressed in PDEC, the P2Y1 receptor was identified to mediate the protective effect, based on pharmacological and siRNA assays. Activation of P2Y1 receptors increased intracellular cyclic adenosine monophosphate (cAMP). The protective effect of ATP was mimicked by forskolin and 8-Br-cAMP but inhibited by a protein kinase A (PKA) inhibitor, H-89. Finally, ATP reverted leakiness of PDEC monolayers induced by ethanol and helped to maintain epithelial integrity. We suggest that purinergic receptors reduce extreme alcohol-induced cell damage via the cAMP signal pathway in PDEC and some other types of cells.  相似文献   

19.
Nonspecific cytotoxic cells (NCC) may be the teleost fish equivalent of mammalian natural killer (NK) cells. Although significant differences exist between species regarding many characteristics of these cells, both NCC and NK cells share similarities: in the types of target cells sensitive to lysis; in mechanisms of target cell recognition; in the requirements for a competent lytic cycle; and both types of effectors participate in mediating the lysis of infectious microorganisms. A putative antigen binding receptor obtained from catfish NCC has now been characterized using monoclonal antibodies (mabs). This receptor is a vimentin-like protein. Preliminary studies indicate that NCC recognize a 40 kD protein on the membranes of susceptible target cells. Solubilized target cell protein can specifically bind to NCC and inhibit killing.Similar to NK cells, NCC require cell contact with the target cell to deliver the lethal cytotoxic hit. NCC appear to be the more potent cytotoxic cells because fewer are required to kill an individual target cell and less time is required for this action to occur than for NK cells. Unlike NK cells, NCC do not recycle under experimental conditions. Preliminary studies were also reviewed to characterize signal transduction responses. Monoclonal antibody against the vimentin-like protein receptor activates NCC cytotoxicity, initiates the production of significant increased levels of free cytoplasmic calcium, and causes the production of inositol lipid intermediates (specifically phosphotidylinositol 1, 4–5 trisphosphate). NCC may be important effectors of anti-parasite immunity. Although these cells probably do not elicit memory responses, data suggest that they do recognize antigen and can be activated and recruited into peripheral tissue where they mediate cytolytic responses.  相似文献   

20.
CD8+ T cells have been shown to be required for acute resistance to infection with the protozoan parasite, Trypanosoma cruzi, the causative agent of Chagas' disease. However, to date, the mechanism by which CD8+ T cells mediate protection in vivo has not been determined. While CD8+ T cells can exhibit cytolytic function, they also secrete cytokines such as IFN-gamma, which is known to mediate protection against T. cruzi infections. To determine whether cytolysis is an important effector function in vivo, we have compared outcomes of T. cruzi infection in normal and perforin-deficient mice. Our results indicate that while perforin-dependent cytolytic mechanisms clearly make a major contribution to acute resistance to T. cruzi infection, this contribution may be strain and challenge dose-dependent, since perforin-deficient mice challenged with lower doses of a less virulent strain survived and were subsequently resistant to challenge with virulent organisms. In vivo depletion studies demonstrated that survival of perforin-deficient mice challenged with low doses of T. cruzi requires both CD4+ and CD8+ T cells and is dependent on IFN-gamma secretion. These studies document the participation of both perforin-dependent cytotoxic and perforin-independent, IFN-gamma-dependent immune mechanisms in acute resistance to T. cruzi infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号