首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of testosterone on half-lives of ornithine decarboxylase and its mRNA in mouse kidney was studied. In addition to the prolongation of enzyme protein half-life by androgens, excess of testosterone increases in vivo the half-life of its mRNA to about 3-fold as manifested by the change of enzyme half-life in testosterone-treated animals after alpha-amanitin or actinomycin D. These results suggest that the accumulation of ornithine decarboxylase in mouse kidney by androgens is partly due to the stabilization of its mRNA.  相似文献   

2.
Cloning and nucleotide sequence of rat ornithine decarboxylase cDNA   总被引:6,自引:0,他引:6  
The enzyme ornithine decarboxylase (ODC; EC 4.1.1.17) catalyses the first and rate-limiting step in polyamine biosynthesis. Its activity is markedly increased in rapidly growing or regenerating tissue and is subject to regulation by a variety of trophic and mitogenic stimuli. ODC is therefore believed to play an essential role in the onset of cellular proliferation. In a molecular-biological approach to investigate ODC regulation upon induction by tumor promoters in rat liver we isolated an almost full-length rat ODC cDNA clone of 2.4 kb (designated pODC.E10) from a cDNA library of testosterone-induced rat kidney poly(A)+ RNA. Characterization by restriction-endonuclease mapping and sequence analysis showed strong homology to mouse ODC cDNA sequences previously published [Gupta and Coffino, J. Biol. Chem. 260 (1985) 2941-2944; Kahana and Nathans, Proc. Natl. Acad. Sci. USA 82 (1985) 1673-1677; Hickok et al., Proc. Natl. Acad. Sci. USA 83 (1986) 594-598]. This homology is most pronounced in the 461-aa-spanning coding region, amounting to 94% and 97% at the DNA and protein levels, respectively. In the 423-nt 5' leader the rat-mouse homology (approx. 75%) is most pronounced in a region of about 175 nt directly upstream from the translational start site. The leader sequence also contains a perfect inverted repeat of 54 nt and ten additional upstream ATG triplets, which are all followed by nonsense codons before the initiating ATG. In the 633-nt 3' trailer region of pODC.E10 an additional polyadenylation signal is observed more than 300 nt upstream from the 3' end. Rat-mouse homology is about 80% up to this first polyadenylation signal and is considerably less thereafter. The presence of two alternate polyadenylation sites most likely accounts for the 3' size heterogeneity observed in the two ODC mRNAs of 2.1 and 2.6 kb, respectively. In rat liver both mRNAs are coordinately induced by different tumor promoters. Finally, Southern blot analysis of normal rat liver and rat hepatoma DNA revealed that rat ODC, as in other rodents, belongs to a multigene family.  相似文献   

3.
Ornithine decarboxylase antizyme is a unique inhibitory protein induced by polyamines and involved in the regulation of ornithine decarboxylase. A cDNA was isolated from a rat liver cDNA library by the screening with monoclonal antibodies to rat liver antizyme as probes. The expression products of the cDNA in bacterial systems inhibited rat ornithine decarboxylase activity in a manner characteristic of antizyme and rabbit antisera raised against its direct expression product reacted to rat liver antizyme, confirming the authenticity of the cDNA. On RNA blot analysis with the cDNA probe, an antizyme mRNA band of 1.3 kb was detected in rat tissues. Antizyme mRNA did not increase upon administration of putrescine, an inducer of antizyme, and its half-life after actinomycin D treatment was as long as 12 h in rat liver, suggesting that antizyme mRNA is constitutively expressed and antizyme synthesis is regulated at the translational level. Similar-sized mRNAs hybridizable to the cDNA were also found in various mammalian and non-mammalian vertebrate tissues under physiological conditions. In addition, chicken and frog antizymes showed immunocrossreactivity with rat antizyme. The ubiquitous presence and the evolutionally conserved structure of antizyme in vertebrate tissues suggest that it has an important function.  相似文献   

4.
Androgen regulation of MAK mRNAs in mouse kidney   总被引:5,自引:0,他引:5  
  相似文献   

5.
cDNA clones containing partial sequences for beta-glucuronidase (beta G) were constructed from rat preputial gland RNA and identified by their ability to selectively hybridize beta G mRNA. One such rat clone was used to isolate several cross-hybridizing clones from a mouse-cDNA library prepared from kidney RNA from androgen-treated animals. Together, the set of mouse clones spans about 2.0 kb of the 2.6-kb beta G mRNA. Using these cDNA clones as probes, a genomic polymorphism for DNA restriction fragment size was found that proved to be genetically linked to the beta G gene complex. A fragment of beta G cDNA was subcloned into a vector carrying an SP6 polymerase promoter to provide a template for the in vitro synthesis of single-stranded RNA complementary to beta G mRNA. This provided an extremely sensitive probe for the assay of beta G mRNA sequences. Using either nick-translated cDNA or transcribed RNA as a hybridization probe, we found that mouse beta G RNA levels are strongly induced by testosterone, and that induction by testosterone is pituitary-dependent. During the lag period preceding induction, during the induction period itself, and during deinduction following removal of testosterone, beta G mRNA levels paralleled rates of beta G synthesis previously measured by in vivo pulse-labelling experiments. Genetic variation in the extent of induction affected either the level of beta G mRNA or its efficiency of translation depending on the strain of mice tested.  相似文献   

6.
7.
Antibodies were produced in rabbits to homogeneous mouse kidney ornithine decarboxylase and used to determine the amount of this protein present in kidney extracts by a competitive radioimmunoassay procedure. The labeled ligand for this assay was prepared by reacting renal ornithine decarboxylase with [5-3H] alpha-difluoromethylornithine, an enzyme-activated irreversible inhibitor. The sensitivity of the assay was such that 1 ng of protein could be quantitated and the binding to ornithine decarboxylase of a macromolecular inhibitor (antizyme) or alpha-difluoromethylornithine did not affect the reaction. It was found that treatment of female mice with testosterone produced a 400-fold increase in ornithine decarboxylase protein in the kidney within 4-5 days. Exposure to cycloheximide or to 1,3-diaminopropane led to a rapid disappearance of the protein which paralleled the loss of enzyme activity. There was no sign of any immunoreactive but enzymatically inactive form of mouse kidney ornithine decarboxylase under any of the conditions investigated. The results indicate that fluctuations of the enzyme activity in this organ are mediated via changes in the amount of enzyme protein rather than by post-translational modifications or interaction with inhibitors or activators.  相似文献   

8.
Adjustment of polyamine contents in Escherichia coli.   总被引:7,自引:2,他引:5       下载免费PDF全文
Adjustment of polyamine contents in Escherichia coli was studied with strains of Escherichia coli producing normal (DR112) and excessive amounts of ornithine decarboxylase [DR112(pODC)] or S-adenosylmethionine decarboxylase [DR112(pSAMDC)]. Although DR112(pODC) produced approximately 70 times more ornithine decarboxylase than DR112 did, the amounts of polyamines in the cells of both strains did not change significantly. The amounts of polyamines in DR112(pODC) were adjusted by excretion of excessive amounts of putrescine to the medium. When ornithine was deficient in cells, polyamine contents in DR112(pODC) were much higher than those in DR112, although polyamine contents were low in both strains. This indicates that large amounts of ornithine decarboxylase increased the utilization of ornithine for putrescine synthesis. During ornithine deficiency, strain DR112 produced 3.4 times more ornithine decarboxylase. Strain DR112(pSAMDC) produced seven times more S-adenosylmethionine decarboxylase than DR112 did. In DR112(pSAMDC) an increase (40%) in spermidine content, a decrease (35%) in putrescine content, and no significant excretion of putrescine and spermidine were observed. The amount of ornithine decarboxylase in DR112(pSAMDC) was approximately 30% less than that in DR112. In addition, S-adenosylmethionine decarboxylase activity was strongly inhibited by spermidine. A possible regulatory mechanism to maintain polyamine contents in Escherichia coli is discussed based on the results.  相似文献   

9.
Using a mouse cDNA probe for ornithine decarboxylase (ODC), we have identified and isolated an ODC cDNA clone from a lambda gt11 recombinant library prepared from human liver cell mRNA. The 2.0-kb insert of this clone hybridizes with several mouse genomic ODC DNA restriction fragments under conditions of low stringency, but reacts with only few human DNA fragments and a polyA+ RNA species of 2.2 kb under both nonstringent and stringent hybridization conditions. This suggests that, unlike the mouse genome, there are only few ODC genes in the human genome. The human ODC DNA fragments segregate with chromosome regions 2pter----p23 and 7cen----qter in mouse X human somatic cell hybrid clones containing normal, translocated, and deleted human chromosomes. Sequences of the short arm of chromosome 2 containing the NMYC oncogene at 2p23----p24 are often involved in DNA amplification in neuroblastomas and small-cell lung cancers. However, in at least three cases--one neuroblastoma cell line, one neuroblastoma tumor, and one lung carcinoma--the ODC sequences are not coamplified with the NMYC oncogene.  相似文献   

10.
Phorbol ester tumor promoters and growth factors rapidly stimulate ornithine decarboxylase activity in the transformed hamster fibroblast line HE68BP. We report here a close correspondence between the time courses and magnitudes of induction of ornithine decarboxylase activity and immunoreactive ornithine decarboxylase protein following treatment of HE68BP cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) and/or refeeding with fresh medium. Cycloheximide addition to induced cells caused a rapid fall in the levels of both ornithine decarboxylase activity and ornithine decarboxylase protein. Northern blot analysis of RNA isolated from HE68BP cells indicated that treatment with TPA and fresh medium increased the amount of two species of mRNA of lengths 2.4 and 2.1 kilobase. This increased accumulation of ornithine decarboxylase mRNA corresponded temporally to that observed at the protein level, with a 15-fold maximal induction 7 h after treatment followed by a rapid decline in hybridizable RNA. These data indicate that stimulation of ornithine decarboxylase activity by TPA or refeeding involves changes in levels of ornithine decarboxylase mRNA as well as changes in the rate of synthesis of ornithine decarboxylase protein.  相似文献   

11.
A method was developed for measuring in vivo rates of mRNA synthesis in mice by pulse-labeling with the RNA precursor [3H]orotate and then using hybridization to recover specific mRNAs. The efficiency of recovery is determined with synthetic RNAs as internal hybridization standards. The method is particularly applicable to the kidney since this organ shows a strong preferential uptake of the label. Rates of synthesis, expressed as a fraction of total RNA synthesis, were measured for the androgen-inducible mRNAs coding for beta-glucuronidase (GUS), ornithine decarboxylase (ODC), the protein coded by the RP-2 gene, and the so-called kidney androgen-regulated protein (KAP). Control mRNAs coded for beta-actin, phosphoenolpyruvate carboxykinase, and major urinary protein. Testosterone markedly increased the synthesis of the androgen-inducible mRNAs, but not the control mRNAs. Induction was not seen in mutant mice lacking functional androgen receptor protein. For GUS, ODC, and RP-2 mRNAs, the fold induction of synthesis was less than the fold induction of concentration, suggesting that mRNA stabilization also plays a part in the response to androgen. For GUS, ODC, and RP-2 mRNAs, but not KAP mRNA, induction of synthesis was rapidly reversed after testosterone removal. KAP mRNA was also exceptional in that its concentration was disproportionately high compared with its rate of synthesis, implying that it is a particularly stable mRNA.  相似文献   

12.
Screening of a bacteriophage lambda gt11 cDNA expression library with a polyclonal anti-microtubule associated protein (MAP) antiserum resulted in the isolation of two non-cross-hybridizing sets of cDNA clones. One set was shown to encode MAP2 (Lewis, S. A., A. Villasante, P. Sherline, and N. J. Cowan, 1986, J. Cell Biol., 102:2098-2105). To determine the specificity of the second set, three non-overlapping fragments cloned from the same mRNA molecule via a series of "walking" experiments were separately subcloned into inducible plasmid expression vectors in the appropriate orientation and reading frame. Upon induction and analysis by immunoblotting, two of the fusion proteins synthesized were shown to be immunoreactive with an anti-MAP1-specific antibody, but not with an anti-MAP2-specific antibody. Since these MAP1-specific epitopes are encoded in non-overlapping cDNAs cloned from a single contiguous mRNA, these clones cannot encode polypeptides that contain adventitiously cross-reactive epitopes. Furthermore, these cDNA clones detected an abundant mRNA species of greater than 10 kb in mouse brain, consistent with the coding requirement of a 350,000-D polypeptide and the known abundance of MAP1 in that tissue. The MAP1-specific cDNA probes were used in blot transfer experiments with RNA prepared from brain, liver, kidney, stomach, spleen, and thymus. While detectable quantities of MAP1-specific mRNA were observed in these tissues, the level of MAP1 expression was approximately 500-fold lower than in brain. The levels of both MAP1-specific and MAP2-specific mRNAs decline in the postnatal developing brain; the level of MAP1-specific mRNA also increases slightly in rat PC12 cells upon exposure to nerve growth factor. These surprising results contrast sharply with reported dramatic developmental increases in the amount of MAP1 in brain and in nerve growth factor-induced PC12 cells. The cDNA clones encoding MAP1 detect a single copy sequence in mouse DNA, even under conditions of low stringency that would allow the detection of related but mismatched sequences. The cDNAs cross-hybridize with genomic sequences in rat, human, and chicken DNA, but not with DNA from frog, Drosophila, or sea urchin. These data are discussed in terms of the evolution and possible biological role of MAP1.  相似文献   

13.
L Persson  J E Seely  A E Pegg 《Biochemistry》1984,23(16):3777-3783
An immunoblotting technique was used to study the forms of ornithine decarboxylase present in androgen-induced mouse kidney. Two forms were detected which differed slightly in isoelectric point but not in subunit molecular weight (approximately 55 000). Both forms were enzymatically active and could be labeled by reaction with radioactive alpha-(difluoromethyl)-ornithine, an enzyme-activated irreversible inhibitor. On storage of crude kidney homogenates or partially purified preparations of ornithine decarboxylase, the enzyme protein was degraded to a smaller size (Mr approximately 53 000) without substantial loss of enzyme activity. The synthesis and degradation of ornithine decarboxylase protein were studied by labeling the protein by intraperitoneal injection of [35S]methionine and immunoprecipitation using both monoclonal and polyclonal antibodies. The fraction of total protein synthesis represented by renal ornithine decarboxylase was increased at least 25-fold by testosterone treatment of female mice and was found to be about 1.1% in the fully induced androgen-treated female. Both forms of the enzyme were rapidly labeled in vivo, and the immunoprecipitable ornithine decarboxylase protein was almost completely lost after 4-h exposure to cycloheximide, confirming directly the very rapid turnover of this enzyme. Treatment with 1,3-diaminopropane which is known to cause a great reduction in ornithine decarboxylase activity did not greatly selectively inhibit the synthesis of the enzyme. However, 1,3-diaminopropane did produce an increase in the rate of degradation of ornithine decarboxylase and a general reduction in protein synthesis. These two factors, therefore, appear to be responsible for the loss of ornithine decarboxylase activity and protein in response to 1,3-diaminopropane.  相似文献   

14.
The recombinant plasmid M6 contains a DNA sequence from the cellular slime mold Dictyostelium discoideum which hybridizes to actin messenger RNA. The plasmid contains 6 kilobase pairs (kb) of Dictyostelium DNA inserted into a pMB9 vector. Ten cleavage sites for four different restriction enzymes have been mapped. Other work has shown that a central restriction fragment, 1.7 kb in length, contains sequences repeated about fifteen times in the genome, and that this fragment hybridizes to actin mRNA. Heteroduplexes between M6 and pDd actin 2, a chromosomal plasmid which contains two copies of the actin repeated sequence, were used to define the position of this repeat in M6. Two plasmids with inserts of cDNA made from actin mRNA were heteroduplexed to M6 to define the position and orientation of the message complementary region. This orientation was confirmed by inserting the fragment into phage λ and determining which of the separated λ strands was complementary to actin mRNA. An electron microscope technique has been developed for identifying poly(dA) sequences by hybridizing to them dBrU polymers attached to suitable markers. The mapping of the (dA) tracts that occur in the Dictyostelium insert of M6 is described here. The positions of the A:T tracts do not correlate in any simple way with the position of the actin gene sequence.  相似文献   

15.
16.
17.
We have constructed a cDNA library from the highly hydroxyurea-resistant hamster cell line 600H in which the activity of ribonucleotide reductase is elevated more than 80-fold. Using the technique of differential hybridization, we have isolated a number of cDNA clones from this library which are homologous to genomic DNA sequences amplified in the 600H cell line compared to the V79 parental line. One of these cDNA clones by sequence analysis was found to code for ornithine decarboxylase. This was confirmed by in vitro translation of poly(A+) RNA isolated by hybridization-selection followed by immunoprecipitation with antiserum specific for mouse ornithine decarboxylase. Genomic sequences homologous to the cDNA clone were shown to be sequentially amplified 6-20-fold in hamster cell lines selected stepwise for resistance to increasing concentrations of hydroxyurea. Genomic sequences homologous to a cDNA for the M2 subunit of ribonucleotide reductase were also amplified in these cell lines, and the degree of M2 sequence amplification corresponded to the degree of amplification of ornithine decarboxylase sequences, suggesting that the two genes had been co-amplified during the selection of the hydroxyurea-resistant phenotype.  相似文献   

18.
19.
Incubation with protein kinase NII did not result in phosphorylation or inactivation of mouse kidney ornithine decarboxylase. Partially purified ornithine decarboxylase preparations contained a protein kinase activity and stimulated the activity of RNA polymerase I. However, these properties were due to contaminating protein(s) since further purification reduced the kinase activity and removal of the ornithine decarboxylase with a specific antiserum did not abolish the ability to stimulate RNA polymerase I. Antibodies to RNA polymerase I did not interact with ornithine decarboxylase and antibodies to ornithine decarboxylase did not interact with RNA polymerase I. These results indicate that: a) mammalian ornithine decarboxylase activity is not regulated by phosphorylation by protein kinase NII or the contaminating kinase, and b) the ability of impure preparations of ornithine decarboxylase to stimulate RNA polymerase I is due to a contaminating unrelated protein.  相似文献   

20.
The specific activities of ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase were determined during growth of the rat epididymis. Ornithine decarboxylase activity was first detectable on day 21 and increased 10-fold in both the head and tail of epididymis prior to their rapid growth responses. Hypophysectomy reduced ornithine decarboxylase activity to undetectable levels, but enzyme activity was restored by treatment with gonadotropins or testosterone. Testosterone also induced a precocious 10-fold increase of epididymal ornithine decarboxylase in the pre-pubertal rat. In contrast, the specific activity of S-adenosyl-L-methionine decarboxylase changed little during development and merely doubled in response to hormonal treatments. The results describe a pattern of changes in these enzyme activities during hormone-dependent development of the epididymis, and suggest that ornithine decarboxylase is the rate-limiting activity in the regulation of spermidine biosynthesis by testosterone in this organ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号