首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhomboid-1 is a serine protease that cleaves the membrane domain of the Drosophila EGF-family protein, Spitz, to release a soluble growth factor. Several vertebrate rhomboid-like proteins have been identified, although their substrates and functions remain unknown. The human rhomboid, RHBDL2, cleaves the membrane domain of Drosophila Spitz when the proteins are co-expressed in mammalian cells. However, the membrane domains of several mammalian EGF-family proteins were not cleaved by RHBDL2, suggesting that the endogenous targets of the human protease are not EGF-related factors. We demonstrate that the amino acid sequence at the luminal face of the membrane domain of a substrate protein determines whether it is cleaved by RHBDL2. Based on this finding, we predicted B-type ephrins as potential RHBDL2 substrates. We found that one of these, ephrinB3, was cleaved so efficiently by the protease that little ephrinB3 was detected on the surface of cells co-expressing RHBDL2. These results raise the possibility that RHBDL2-mediated proteolytic processing may regulate intercellular interactions between ephrinB3 and eph receptors.  相似文献   

2.
3.
Our previous research has shown that the Ca2+-dependent protease within platelets is activated when platelets aggregate, resulting in the production of three polypeptides (Mr = 200,000, 100,000, and 91,000). We have now shown that these three polypeptides arise from the hydrolysis of actin-binding protein. An antibody against actin-binding protein raised in rabbits was shown to be specific for actin-binding protein on immunoblots of total platelet proteins. This antibody reacted with additional polypeptides of Mr = 200,000, 100,000, and 91,000 on immunoblots of the proteins of thrombin-activated platelets. Actin-binding protein was purified from fresh, human platelet concentrate and hydrolyzed with platelet-derived Ca2+-dependent protease; hydrolysis resulted in the appearance of three polypeptides with molecular weights and isoelectric points identical to those of the three polypeptides generated within intact, aggregating platelets. Production of these polypeptides was inhibited by leupeptin and by the chelation of Ca2+. Hydrolysis of actin-binding protein was observed at micromolar Ca2+ concentrations, demonstrating that the level of Ca2+ in aggregated platelets is sufficient to account for the hydrolysis of actin-binding protein by the Ca2+-dependent protease. P235 was also purified and tested for its susceptibility to the protease. It was hydrolyzed by the Ca2+-dependent protease, and two polypeptides (Mr = 200,000 and 46,000) were produced. Antibodies against P235 raised in rabbits reacted only with P235 on immunoblots of total platelet proteins. These antibodies also reacted with polypeptides of Mr = 200,000 and 46,000 on immunoblots of thrombin-activated platelets. These data show that both actin-binding protein and P235 are cleaved during thrombin-induced platelet aggregation and suggest that the activation of the Ca2+-dependent protease may permit reorganization of the platelet cytoskeleton in aggregating platelets.  相似文献   

4.
Rabbit muscle has been found to contain an activity that catalyzes the specific removal of Ac-Met from acetylated peptides. The activity is associated with free ribosomes and microsomes in the rabbit muscle extract but can be removed from these subcellular fractions by exposure to 0.5 M NaCl in the presence of 2 mM MgCl2; only partial removal was achieved with microsomes, but complete removal with ribosomes. A nearly 200-fold enrichment of the activity was achieved by this simple succession of differential centrifugation and salt extraction. Eighteen 14C-acetylpeptides have been tested as substrates for the partially purified activity assaying for the production of free 14C-acetylamino acid by high performance liquid chromatography. None of the peptides containing N-terminal acetylated Ala, Asp, Ser, or Gly were cleaved at a significant rate. Six of a total of eight peptides containing N-terminal Ac-Met were cleaved by the ribosomal extract at different rates. The active substrates varied in length from tri- to undecapeptides. The activity is inhibited by high concentrations of the protease inhibitor phenylmethylsulfonyl fluoride. Based on these observations, we tentatively conclude that the activity satisfy the criteria of a general N-terminal protein processing enzyme: it can remove Ac-Met from most, but not all, N-terminal sequences and appears to be inactive toward the N-terminal acetylamino acids most commonly found in eukaryotic proteins.  相似文献   

5.
6.
We present a study of the cleavage specificity of IRCM-serine protease 1 from frozen porcine pituitary neurointermediate lobes using polypeptide substrates representing different segments of human pro-opiomelanocortin. Using 125I-labeled ACTH(11-24) and a 125I-labeled model beta-lipotropin (beta-LPH) peptide, the preference of this protease for cleavage C-terminal to the pairs of basic residues Lys-Arg and Lys-Lys was clearly seen. This study was extended to larger unlabeled natural human polypeptides including ACTH(1-39), beta-LPH(1-89), and the N-terminal glycopeptide (1-76), which are known to serve as substrates for further cleavage in vivo. In these substrates IRCM-serine protease 1 cleaved C-terminal to all pairs of basic residues known to be cleaved in vivo. In addition, the enzyme cleaved between two pairs of basic amino acids found in NT(1-76) which are also known to be cleaved in vivo. Many potential "tryptic-like" cleavage sites were not cleaved by the enzyme. However, IRCM-serine protease 1 cleaved C-terminal to Phe-Arg in the three melanocyte-stimulating hormone sequences of pro-opiomelanocortin. In order to better understand the physiological role of IRCM-serine protease 1, differential centrifugation was used to study the subcellular distribution of the enzyme from porcine pituitary anterior lobe homogenates. We present evidence that the active enzyme form, isolated from the subcellular fractions, possesses a similar molecular architecture as the enzyme isolated from frozen tissue (Mr 38,000 catalytic domain linked via disulfide bridge(s) to another polypeptide chain(s) to form an Mr 88,000 monomeric structure). The majority of IRCM-serine protease activity is found to be associated with small vesicles (150,000 X g for 5 h) of as yet undetermined nature. In addition, a latent activity was found to be associated with a 27,000 X g (15 min) pellet containing the majority of mature secretory granules. If IRCM-serine protease 1 participates in prohormone maturation in vivo, we propose a model in which this protease is present in an enzymatically active form in small vesicles, possibly within clathrin-coated structures (prosecretory granules) which are then transformed to mature secretory granules by a process which would also inactivate most of the enzyme.  相似文献   

7.
The Escherichia coli K12 outer-membrane proteins OmpA, OmpC, OmpF, PhoE, and LamB (all of transmembrane nature) can serve as phage receptors. We have shown previously that one OmpA-specific phage, Ox2, can give rise to the host range mutants Ox2h10 and Ox2h12, with the latter being derived from the former [Morona, R. & Henning, U. (1984) J. Bacteriol. 159, 579-582]. Unlike Ox2, both host range phages can use the OmpA and OmpC proteins as receptors and Ox2h12 is better adapted to the OmpC protein than Ox2h10. In a search for the site(s) of OmpC protein involved in phage recognition, it was found that proteinase K is able to cleave all of the proteins mentioned above. OmpC protein (Mr = 38306) could be cleaved from outside the cell by proteinase K resulting in two fragments of Mr approximately equal to 21000 and Mr approximately equal to 17500. The use of OmpC-PhoE hybrid proteins allowed us to assign the approximately equal to 21000-Mr fragment to the CO2H-terminal moiety of the protein. Proteinase K treatment of intact cells abolished their activity to neutralize the OmpC-specific phage Tulb and reduced this ability towards phage Ox2h12. The OmpA, OmpF, PhoE and LamB proteins were cleaved by the protease not in intact cells but only when acting on cell envelopes. The sizes of the OmpC protein fragments and the results obtained with the hybrid proteins very strongly suggest that the protein is cleaved from outside the cell at a region involving amino acid residues 150-178 of the 346-residue protein, which shows homology to two regions of the OmpA protein which are involved in its phage receptor site (loc. cit.). These areas also exhibit some homology to a region of the LamB protein which is thought to be part of this protein's receptor site [Charbit et al. (1984) J. Mol. Biol. 175, 395-401]. This suggests that there is a common denominator for proteinaceous phage receptor site because the LamB-specific phage lambda and phage Tulb are of completely different nature. We conclude that the region of the OmpC protein in question is cell-surface-exposed and acts as a phage receptor site.  相似文献   

8.
Abstract Processing of human immunodeficiency virus (HIV) proteins by the HIV-1 protease is essential for HIV infectivity. In addition, several studies have revealed cleavage of human proteins by this viral protease during infection; however, no large-scale HIV-1 protease degradomics study has yet been performed. To identify putative host substrates in an unbiased manner and on a proteome-wide scale, we used positional proteomics to identify peptides reporting protein processing by the HIV-1 protease, and a catalogue of over 120 cellular HIV-1 protease substrates processed in vitro was generated. This catalogue includes previously reported substrates as well as recently described interaction partners of HIV-1 proteins. Cleavage site alignments revealed a specificity profile in good correlation with previous studies, even though the ELLE consensus motif was not cleaved efficiently when incorporated into peptide substrates due to subsite cooperativity. Our results are further discussed in the context of HIV-1 infection and the complex substrate recognition by the viral protease.  相似文献   

9.
The protein content of muscle is determined by the relative rates of synthesis and degradation. The balance between this process determines the number of functional contractile units within each muscle cell. Myofibril-bound protease, protease M previously reported in mouse skeletal muscle could be solubilized from the myofibrillar fraction by salt and acid treatment and partially purified by Mono Q and Superose 12 chromotagraphy. Isolated protease M activity in vitro on whole myofibrils resulted in myosin, actin, troponin T, α-actinin and tropomyosin degradation. Protease M is serine type and was able to hydrolyze trypsin-type synthetic substrates but not those of chymotrypsin type. In gel filtration chromatography, protease M showed Mr 120.0 kDa. The endogenous inhibitor (MHPI) is a glycoprotein (110.0 kDa) that efficiently blocks the protease M-dependent proteolysis of myofibrillar proteins in a dose-dependent way, as shown by electrophoretic analysis and synthetic substrates assays. Protease M-Inhibitor system would be implicated in myofibrillar proteins turnover.  相似文献   

10.
Addition of an N-terminal fusion partner can greatly aid the expression and purification of a recombinant protein in Escherichia coli. We investigated two genetically engineered proteases designed to remove the fusion partner after the protein of interest has been expressed. Recombinant human insulin-like growth factor-II (hIGF-II) has been produced from E. coli-derived fusion proteins using a novel enzymatic cleavage system that uses a mutant of alpha-lytic protease. Initially, two potential fusion protein linkers were designed, Pro-Ala-Pro-His (PAPH) and Pro-Ala-Pro-Met (PAPM), and were tested as substrates in the form of synthetic dodecapeptides. Using mass spectrometry and reverse-phase HPLC, the position of cleavage was confirmed and the kinetics of synthetic peptide cleavage were examined. Use of the linkers in hIGF-II fusion proteins produced in E. coli was then evaluated. The fusion proteins constructed consist of the first 11 amino acids of porcine growth hormone linked N-terminally to hIGF-II by six amino acids that include the dipeptide Val-Asn followed by a variable tetrapeptide protease cleavage motif. Mass spectrometry and N-terminal sequencing confirmed that proteolytic cleavage of the fusion proteins had occurred at the predicted sites. Using the fusion proteins as substrates, the cleavage of the rationally designed motifs by the alpha-lytic protease mutant was compared. The fusion protein containing the motif PAPM had a k(cat)/K(M) ratio indicating a 1.6-fold preference over the PAPH fusion protein for cleavage by this enzyme. Furthermore, when hIGF-II fusion proteins containing the designed cleavable linkers were processed with the engineered alpha-lytic protease, they gave greatly improved yields of native hIGF-II compared to an analogous fusion protein cleaved by H64A subtilisin. Comparison of the peptide and protein cleavage studies shows that the efficient proteolysis of the cleavage motifs is an inherent property of the designed sequences and is not determined by secondary or tertiary structure in the fusion proteins.  相似文献   

11.
We describe the characterization and purification of a trypsin-like serine protease isolated from cloned long-term culture cytolytic T cell line (CTLL AK). High amounts of proteolytic activity were isolated from extracts of CTLL AK after either nitrogen cavitation or detergent lysis. Trypsin-like protease was detected by using either the ester compound N alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester or a panel of low molecular amide substrates. The latter compounds were preferentially cleaved at the carboxyl termini of lysine and arginine residues. The enzyme activity was completely inhibited by two serine esterase inhibitors, diisopropylfluorophosphate and phenylmethanesulfonyl fluoride, and by aprotinin and meta-aminobenzamidine, which are known to block trypsin-like proteases. The pH optimum for CTLL AK-derived protease activity is 8 to 9. Analysis of the enzyme by gel filtration revealed that the cell-bound proteolytic activity was associated with a complex that could not be dissociated by treatment with Triton X-100. The CTLL AK-derived protease activity was found to reside in two proteins with relative molecular masses (Mr) of 32,000 and 40,000 daltons as determined by affinity labeling with [3H]diisopropylfluorophosphate and sodium dodecyl sulfate gel electrophoresis. High levels of enzyme activity were found in a panel of H-Y-specific cloned T cell lines with either cytolytic/suppressor (CTLL) or helper potential (THL), indicating a lack of correlation between trypsin-like protease activity and a particular T cell function. High enzyme activity was also detected in tumorigenic variants of CTLL. Furthermore, it was excluded that the trypsin-like activity detected was attributable to plasminogen activator activity. In contrast to cloned T effector cells and their in vitro or in vivo derived variants, considerably less activity was found in normal nonactivated or activated lymphocyte populations. The possible role of the trypsin-like serine protease in the function of T effector cells is discussed.  相似文献   

12.
Caspases, Asp-specific cysteine protease, cleave proteins upon apoptosis. To identify and characterize new caspase substrate in the nucleus, the proteome of the rat liver extracts was analyzed after the treatment with caspases. One of the identified proteins was KSRP/FBP2 that is preferentially cleaved by caspase-3 and 7 at two sites after Asp102 and Asp183. The second site was cleaved only in the protein produced in cells, but not in in vitro translated protein. These results indicate that more than the primary sequence may be important for the recognition by caspases.  相似文献   

13.
Calcium-activated neutral protease with low affinity for calcium (CANP II, Mr 76,000) can be purified to apparent homogeneity by casein affinity chromatography but contains cyclic-AMP dependent protein kinase activity. CANP II-associated kinase from bovine brain copurifies with protease activity through multiple chromatographic procedures but can be separated by cyclic-AMP affinity chromatography. Isolated protein kinase has subunits of Mr 80,000, 53,000 and 42,000. The kinase preferentially "autophosphorylates" CANP II, but histones, phosphorylase b and neurofilament proteins are also good substrates. The concentrations for half-maximal phosphorylation activity (Km) of cyclic-AMP, (32P)ATP and Mr 150,000 neurofilament protein substrate are 0.2, 6.0 and 0.5 microM, respectively. The specific activity of CANP II associated kinase in phosphorylating neurofilament proteins is intermediate between that of neurofilament- and MAPs 2-associated kinases.  相似文献   

14.
Lon protease from Escherichia coli degraded lambda N protein in a reaction mixture consisting of the two homogeneous proteins, ATP, and MgCl2 in 50 mM Tris, Ph 8.0. Genetic and biochemical data had previously indicated that N protein is a substrate for Lon protease in vivo (Gottesman, S., Gottesman, M., Shaw, J. E., and Pearson, M. L. (1981) Cell 24, 225-233). Under conditions used for N protein degradation, several lambda and E. coli proteins, including native proteins, oxidatively modified proteins, and cloned fragments of native proteins, were not degraded by Lon protease. Degradation of N protein occurred with catalytic amounts of Lon protease and required the presence of ATP or an analog of ATP. This is the first demonstration of the selective degradation of a physiological substrate by Lon protease in vitro. The turnover number for N protein degradation was approximately 60 +/- 10 min-1 at pH 8.0 in 50 mM Tris/HCl, 25 mM MgCl2 and 4 mM ATP. By comparison the turnover number for oxidized insulin B chain was 20 min-1 under these conditions. Kinetic studies suggest that N protein (S0.5 = 13 +/- 5 microM) is intermediate between oxidized insulin B chain (S0.5 = 160 +/- 10 microM) and methylated casein (S0.5 = 2.5 +/- 1 microM) in affinity for Lon protease. N protein was extensively degraded by Lon protease with an average of approximately six bonds cleaved per molecule. In N protein, as well as in oxidized insulin B chain and glucagon, Lon protease preferentially cut at bonds at which the carboxy group was contributed by an amino acid with an aliphatic side chain (leucine or alanine). However, not all such bonds of the substrates were cleaved, indicating that sequence or conformational determinants beyond the cleavage site affect the ability of Lon protease to degrade a protein.  相似文献   

15.
We show here for the first time that actin, troponin C, Alzheimer amyloid precursor protein (AAP), and pro-interleukin 1 beta (pro-IL-1 beta), are substrates of the protease encoded by the human immunodeficiency virus (HIV) type-1. As has been seen in other non-viral protein substrates of the HIV protease, the presence of Glu residues in the P2' position appears to play an important role in substrate recognition. Three of the four bonds cleaved in actin, two of the three in troponin C, and all of the bonds hydrolyzed in AAP and pro-IL-1 beta have a P2' Glu residue. In fact, Glu residues are accommodated in all positions from P4 to P4' surrounding the scissile bond in substrates of the HIV proteases, and as many as 4 adjacent Glu residues were seen in one of the bonds cleaved in AAP. This study of non-viral protein substrates has also revealed unexpected amino acids such as Gly, Arg, and Glu in the scissile bond itself rather than the more conventional hydrophobic amino acids. The HIV-2 protease hydrolyzed actin in a manner similar to that of the HIV-1 enzyme, but its cleavage of troponin C was distinct in that it split a bond adjacent to a triplet of Glu residues in P2, P3, and P4 that was refractory to the HIV-1 enzyme. Documentation of cleavage sites in the several important cellular proteins noted above has extended our understanding of the features in a substrate that are recognized by these multi sub-site proteases of retroviral maturation. Moreover, the present work adds to an accumulating body of evidence which demonstrates that these enzymes can damage crucial structural and regulatory cellular proteins if ever their activity is expressed outside the viral particle itself.  相似文献   

16.
Peptide mapping analysis of the avian progesterone receptor   总被引:2,自引:0,他引:2  
Progesterone receptor from the chicken oviduct has been shown to exist as two 8 S forms (I and II). Form I contains a protein of Mr = 75,000 and form II contains a protein of Mr = 110,000. In addition to these hormone-binding proteins, both receptor forms contain a protein with Mr = 90,000 that does not bind steroid. To investigate the possibility that these proteins are structurally related, they were isolated by preparative sodium dodecyl sulfate gel electrophoresis and subjected to peptide mapping analyses after digestion with Staphylococcus aureus V-8 protease, papain, or alpha-chymotrypsin. Receptor proteins labeled with [32P]orthophosphate in tissue minces were also subjected to peptide mapping analysis. The electrophoretic patterns of peptide fragments of the 90-kDa protein from receptor forms I and II were identical but were different from the peptide patterns obtained from the 75- and 110-kDa proteins which generated similar peptide patterns, indicating that these are structurally related. However, some differences were evident, indicating that these latter two proteins are not identical substrates for proteases. A one-dimensional comparison of the phosphopeptide patterns from the 75- and 110-kDa proteins also showed them to be similar, but not identical. Two-dimensional maps of phosphopeptides generated from the 75- and 110-kDa protein after complete tryptic digestion revealed multiple sites of phosphorylation which were identical except for one phosphopeptide that was unique to the 110-kDa protein. These results show the two progesterone-binding proteins to be very similar in structure, but to differ considerably from the 90-kDa protein.  相似文献   

17.
Elucidation of protease substrate degradomes is essential for understanding the function of proteolytic pathways in the protease web and how proteases regulate cell function. We identified matrix metalloproteinase-2 (MMP-2) cleaved proteins, solubilized pericellular matrix, and shed cellular ectodomains in the cellular context using a new multiplex proteomics approach. Tryptic peptides of intact and cleaved proteins, collected from conditioned culture medium of Mmp2(-/-) fibroblasts expressing low levels of transfected active human MMP-2 at different time points, were amine-labeled with iTRAQ mass tags. Peptide identification and relative quantitation between active and inactive protease transfectants were achieved following tag fragmentation during tandem MS. Known substrates of MMP-2 were identified thereby validating this technique with many novel MMP-2 substrates including the CX(3)CL1 chemokine fractalkine, osteopontin, galectin-1, and HSP90alpha also being identified and biochemically confirmed. In comparison with ICAT-labeling and quantitation, 8-9-fold more proteins and substrates were identified by iTRAQ. "Peptide mapping," the location of multiple peptides identified within a particular protein by iTRAQ in combination with their relative abundance ratios, enabled the domain shed and general location of the cleavage site to be identified in the native cellular substrate. Hence this advance in degradomics cell-based screens for native protein substrates casts new light on the roles for proteases in cell function.  相似文献   

18.
Genetic studies have established that the cysteine protease CED-3 plays a central role in coordinating programmed cell death in Caenorhabditis elegans. However, it remains unclear how CED-3 activation results in cell death because few substrates for this protease have been described. We have used a global proteomics approach to seek substrates for CED-3 and have identified 22 worm proteins that undergo CED-3-dependent proteolysis. Proteins that were found to be substrates for CED-3 included the cytoskeleton proteins actin, myosin light chain, and tubulin, as well as proteins involved in ATP synthesis, cellular metabolism, and chaperone function. We estimate that approximately 3% of the C. elegans proteome is susceptible to CED-3-dependent proteolysis. Notably, the endoplasmic reticulum chaperone calreticulin, which has been implicated in the recognition of apoptotic cells by phagocytes, was cleaved by CED-3 and was also cleaved by human caspases during apoptosis. Inhibitors of caspase activity blocked the appearance of calreticulin on the surface of apoptotic cells, suggesting a mechanism for the surface display of calreticulin during apoptosis. Further analysis of these substrates is likely to yield important insights into the mechanism of killing by CED-3 and its human caspase counterparts.  相似文献   

19.
20.
Flaviviruses are serious human pathogens for which treatments are generally lacking. The proteolytic maturation of the 375-kDa viral polyprotein is one target for antiviral development. The flavivirus serine protease consists of the N-terminal domain of the multifunctional nonstructural protein 3 (NS3) and an essential 40-residue cofactor (NS2B(40)) within viral protein NS2B. The NS2B-NS3 protease is responsible for all cytoplasmic cleavage events in viral polyprotein maturation. This study describes the first biochemical characterization of flavivirus protease activity using full-length NS3. Recombinant proteases were created by fusion of West Nile virus (WNV) NS2B(40) to full-length WNV NS3. The protease catalyzed two autolytic cleavages. The NS2B/NS3 junction was cleaved before protein purification. A second site at Arg(459) decreasing Gly(460) within the C-terminal helicase region of NS3 was cleaved more slowly. Autolytic cleavage reactions also occurred in NS2B-NS3 recombinant proteins from yellow fever virus, dengue virus types 2 and 4, and Japanese encephalitis virus. Cis and trans cleavages were distinguished using a noncleavable WNV protease variant and two types of substrates as follows: an inactive variant of recombinant WNV NS2B-NS3, and cyan and yellow fluorescent proteins fused by a dodecamer peptide encompassing a natural cleavage site. With these materials, the autolytic cleavages were found to be intramolecular only. Autolytic cleavage of the helicase site was insensitive to protein dilution, confirming that autolysis is intramolecular. Formation of an active protease was found to require neither cleavage of NS2B from NS3 nor a free NS3 N terminus. Evidence was also obtained for product inhibition of the protease by the cleaved C terminus of NS2B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号