首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of commercially available mesophilic glycosidases in the enzymatic synthesis of glycosides of different types is a well established method suffering from some drawbacks such as a poor yield. Substrates with three or four hydroxyl groups have been subjected to enzymatic glucosylation using crude homogenate of the thermophilic archaeon Sulfolobus solfataricus containing a β-glycosidase activity able to transfer glucose, galactose and fucose from different donors. The stereochemistry of this reaction was interpreted in terms of interaction with a possible “glucose” active site of the enzyme. In addition masked or protected derivatives of tetritols and some simple unsaturated alcohols were glycosylated yielding glycosides in yields very competitive with those obtained using mesophilic enzymes, examples of further chemical manipulation of these compounds were reported. When using a scarce amount of acceptor, a reasonable amount of products could be obtained by adding different aliquots of donor at time intervals.  相似文献   

2.
The synthesis of semisynthetic β-lactam antibiotics from 7-amino-cephalosporanic or 6-amino-penicillanic acids and phenyl-glycine esters is catalysed by immobilised cephalexin-synthetase The synthetic activity of the biocatalyst correlates with its activity in the hydrolysis of the phenyl-glycine esters.  相似文献   

3.
A selection of different glycosidases was screened for the glycosylation of 1-propanethiol. The β-glucosidases from almond, Aspergillus niger and Caldocellum saccharolyticum were capable of 1-propanethioglucoside (1-PTG) formation. The almond β-glucosidase showed the highest activity in this reversed hydrolysis type of reaction using glucose as glucosyl donor. Besides 1-propanethiol, also thioglucosides of 2-propanethiol and furfuryl mercaptan were formed by the almond β-glucosidase. The substrate specificity of the almond β-glucosidase with respect to thioglucosylation is restricted to primary and secondary aliphatic thiols. Once the thioglucosides are formed, they are not hydrolyzed at a significant rate by almond β-glucosidase. As a consequence the synthesis of 1-PTG could be observed at very low aglycone concentrations (0.5% v/v based on the reaction solution) and high yields (68% based on 1-PT and 41% based on glucose) were obtained. An excess of aglycone, otherwise frequently applied in reversed hydrolysis glycosylation, is therefore not necessary in the glucosylation of 1-PT.  相似文献   

4.
Enzymes find widespread industrial use in the modification of the functional properties of plant polysaccharides both in vivo and in vitro. Reactions catalysed include depolymerization, debranching and de-esterification, depending on the specific enzyme or enzyme mixture employed and on the particular industrial requirement. Depolymerization of pentosans and/or barley β-glucans to destroy their viscosity-building properties is essential in starch and gluten manufacture, in the mashign of barley malt and in the production of maltosaccharide syrups. Depolymerization of pectin is required in juice clarification and to allow concentration. However, in other instances the aim may be to maintain or, at most, only slightly alter the molecular size of functional polysaccharides, i.e. in the conversion of guar galactomannan to a locust-bean type galactomannan and in the enzymic treatment of wheat-flour doughs. Enzymes may also be used to produce specific oligosaccharide fragments from polysaccharides and as diagnostic tools in the measurement of a particular polysaccharide in a mixture.  相似文献   

5.
Optimization of hexyl-g-glycoside synthesis from lactose in hexanol at low water activity and high temperature was investigated using g-glycosidases from hyperthermophilic organisms: Sulfolobus solfataricus (LacS) and Pyrococcus furiosus (CelB). The method for water activity adjustment by equilibration with saturated salt solutions was adapted for use at high temperature. The influence of enzyme immobilization (on XAD-4, XAD-16, or Celite), addition of surfactants (AOT or SDS), substrate concentration, water activity, and temperature (60-90°C) on enzymatic activity and hexyl-g-glycoside yield were examined. Compared to other g-glycosidases in lactose conversion into alkyl glycoside, these enzymes showed high activity in a hexanol one-phase system and synthesized high yields of both hexyl-g-galactoside and hexyl-g-glucoside. Using 32 λg/l lactose (93 λmM), LacS synthesized yields of 41% galactoside (38.1 λmM) and 29% glucoside (27.0 λmM), and CelB synthesized yields of 63% galactoside (58.6 λmM) and 28% glucoside (26.1 λmM). With the addition of SDS to the reaction it was possible to increase the initial reaction rate of LacS and hexyl-g-galactoside yield (from 41 to 51%). The activity of the lyophilized enzyme was more influenced by the water content in the reaction than the enzyme on solid support. In addition, it was concluded that for the lyophilized enzyme preparation the enzymatic activity was much more influenced by the temperature when the water activity was increased. A variety of different glycosides were prepared using different alcohols as acceptors.  相似文献   

6.
Enzyme catalysis in water-immiscible organic solvents is strongly influenced by the amount of water present in the reaction mixture. Effects of substitution of part of the water by other polar solvents were studied. In an alcoholysis reaction catalyzed by chymotrypsin deposited on celite, it was possible to exchange half of the water by formamide, ethylene glycol or dimethyl sulfoxide with often increased initial reaction rate. Furthermore, these substitutions caused the suppression of the competing hydrolysis reaction. However, formamide caused enzyme inactivation, and ethylene glycol participated as a reactant in the alcoholysis to some extent, hence dimethyl sulfoxide was considered the best water substitute among the solvents tested. These effects were noted for chymotrypsin catalyzed alcoholysis in several water immiscible solvents and also for interesterification reactions catalyzed by Candida cylindracea lipase on celite. In the latter case a change in the stereoselectivity was observed. At a low water content a high stereoselectivity was observed; when the amount of polar solvent was increased, either by doubling the water content or adding an equal amount of DMSO, the stereoselectivity decreased.  相似文献   

7.
The effect of four organic solvents on β-fructofuranosidase mediated synthesis of oligosaccharides from sucrose were investigated. Amongst the solvents examined, butyl acetate proved to be the best for oligosaccharide synthesis. Starting with the equivalent of 44.6 g/L of sucrose, 247 U of enzyme and 91.6% (by vol.) of butyl acetate results in the production of 8.8 g/L of oligosaccharides within 30 min, with trisaccharides constituting more than 60% of the oligosaccharides. The efficiency for conversion of sucrose to oligosaccharides is greater than 19%, and this exceeds the 11.6% (in 24 h) previously achieved with 1271 U of the same enzyme in aqueous medium. Use of butyl acetate as the bulk phase therefore modifies the reaction environment in favour of enhanced and accelerated rate of oligosaccharide synthesis by this β-fructofuranosidase.  相似文献   

8.
The Trichoderma reesei beta-xylosidase (EC 3.2.1.37) is used to catalyze the production of alkyl beta-D-xyloside. Two general methods of production are tested and compared using the same enzyme: transglycosylation and reverse hydrolysis. Using both methods, primary, secondary, and tertiary alcohols are studied as acceptors. In kinetically controlled process (transglycosylation), the chosen donor is methyl beta-D-xyloside and primary, secondary, and tertiary alkyl alcohols are accepted. In the equilibrium-controlled synthesis, the donor is xylose whereas acceptors are only primary and secondary alcohols. The influence of the donor concentration is investigated in both processes. The yields of the kinetically controlled reactions are higher compared with those of the equilibrium-controlled synthesis. The specificity of the beta linkage is confirmed by proton nuclear magnetic resonance ((1)H NMR) analysis. (c) 1994 John Wiley & Sons, Inc.  相似文献   

9.
The Sulfolobus solfataricus β-glycosidase (Sβgly) is a thermostable and thermophilic glycosyl-hydrolase with broad substrate specificity. The enzyme hydrolizes β-D-gluco-, fuco-, and galactosides, and a large number of /Winked glycoside dimers and oligomers, linked β1-3, β1-4, and β1-6, It is able to hydrolize oligosaccharides with up to 5 glucose residues. Furthermore, it is also able to promote transglycosylation reactions. The corresponding gene has been cloned and overexpressed both in yeast and Escherichia coli. Based on sequence and functional data, the Sβgly has been assigned to the so-called BGA family of glycosyl-hydrolases, including β-glycosidases, β-galactosidases and phosho-β-galactosidases from mesophilic and thermophilic organisms of the three domains. The Sβgly has been crystallized and the resolution of its structure is in progress. Because of its special properties, the enzymes has considerable biotechnological potential.  相似文献   

10.
-Chymotrpysin (EC 3.4 21.1) was immobilized by deposition on celite and subsequent cross-linking with glutaraldehyde. The effects of different mixtures of aqueous buffer and acetonitrile on the immobilized preparation were evaluated using a dipeptide synthesis as model reaction. The initial reaction rate at 6-95% of water increased with increasing water content. The maximum yield of peptide had two maxima; the first one at 6% of water (92%) and the second one at 80% of water (39%). The presence of two maxima was due to severe enzyme inactivation at intermediate water contents (50-60%). The immobilisation procedure slowed the inactivation of -chymotrypsin. Cross-linked enzyme was inactivated to a lesser extent than both free enzyme and enzyme that had been deposited on celite. The increased resistance to inactivation was, however, not sufficient to make peptide synthesis attractive at intermediate water contents (50-60%). In order to obtain good peptide yields, low water contents (below 10%) should be used.  相似文献   

11.
We studied enzymatic adipyl-7-ADCA hydrolysis as a new process for the production of 7-aminodeacetoxycephalosporanic acid (7-ADCA), one of the building blocks for cephalosporin antibiotics like cephalexin and cefadroxil. Adipyl-7-ADCA hydrolysis carried out with immobilised glutaryl acylase was considerably enhanced by addition of phenylglycine amide, the side-chain donor used for cephalexin synthesis; unlike reactions carried out with free enzyme. The rate enhancing effect was not specifically related to phenylglycine amide; we found a linear relationship between the reaction rate and the buffering capacity of the added substance. These observations can be explained by a pH-gradient in the immobilised enzyme, the pH inside the particle being lower (corresponding to low enzyme activity) than outside. It was concluded that the buffer reduced the pH-gradient inside the biocatalyst, and therewith, caused the reaction rate enhancing effects. Further, chloride ions decreased the reaction rate strongly, while sodium, magnesium, sulphate, and potassium did not influence the reaction rate much. For an actual process, it is important to use a buffer that is appropriate for the reaction-pH. In that way the amount of enzyme required in a process can be reduced considerably, in our case a factor of three was found.  相似文献   

12.
Cheng GI  Shei CT  Sung K 《Chirality》2007,19(3):235-238
An alternative route from (1R)-(+)-camphor to chiral N-substituted camphor-derived beta-amino alcohol (4b-e) consists of four steps with a total yield of 28%. N-Alkylation of camphor-derived beta-amino alcohol (4a) involves condensation and hydride reduction in one pot without isolation of intermediates. Condensation of 4a with aldehydes or ketones generates a mixture of 1,3-oxazolidines (6) and imino-alcohols (7), which are reduced to 4b-e by NaBH(4).  相似文献   

13.
-Chymotrypsin was crosslinked to give a water-insoluble polymer by treatment with the bifunctional reagent glutaraldehyde. The specific activity of the crosslinked enzyme in aqueous media was three orders of magnitude lower than for the native chymotrypsin. In a medium containing more than 50% (v/v) of dimethylformamide the specific activities of both enzymes were comparable. In addition, the insoluble polymer was more stable in the presence of 60% (v/v) dimethylformamide compared with the native enzyme. Therefore, in this medium enzymatic peptide synthesis could be successfully accomplished with the crosslinked enzyme, but not with the same amount of native chymotrypsin.  相似文献   

14.
Upon laser flash photolysis of β-carotene in chloroform instantaneous bleaching of β-carotene and concomitant formation of near infrared absorbing species are observed. One species, absorbing with maximum at 920 nm, is formed during the laser pulse (10 ns) and is practically gone in one millisecond, the decay showing a bi-exponential behaviour. The second species, absorbing with maximum at 1000 nm, is formed from the species absorbing at 920 nm by first order kinetics with a rate constant of 4.9·104 s-1 at 20°C. This second species decays by second order kinetics and is gone within a few milliseconds. An additional slow bleaching of β-carotene and formation of the species absorbing at 920 nm is observed. This slow bleaching/formation of transient absorption is probably due to processes involving free radicals generated during the instantaneous bleaching. The species absorbing at 920 nm is suggested to be either (i) a free radical adduct formed from β-carotene and chloroform or (ii) β-carotene after abstraction of a hydrogen atom. The species absorbing at 1000 nm is most likely the radical cation. Formation and decay of the near infrared absorbing species and bleaching of β-carotene are independent of whether oxygen is present or absent in the solutions.  相似文献   

15.
γ-L-Glutamyltaurine is a naturally occurring peptide and known to have several physiological functions in mammals. This paper describes a new method for the enzymatic production of γ-L-glutamyltaurine from L-glutamine and taurine through the transpeptidation reaction of γ-glutamyltranspeptidase (EC 2.3.2.2) of Escherichia coli K-12. The optimum conditions for the production of γ-L-glutamyltaurine were 200 mM L-glutamine, 200 mM taurine and 0.2 U/ml γ-glutamyltranspeptidase, pH 10, and 1-h incubation at 37°C. Forty-five mM γ-L-glutamyltaurine was obtained, the yield being 22.5%. γ-L-Glutamyltaurine was purified on Dowex 1 × 8 and C18 columns, and identified by means of NMR and a polarimeter.  相似文献   

16.
The effect of the microenvironment and immobilization method on the activity of immobilized β-galactosidase was investigated. Immobilization was done on Teflon membranes grafted with different acrylic monomers by γ-radiation and activated by two different coupling agents through the functional groups of the grafted monomers. 2-Hydroxyethyl methacrylate (HEMA) and methacrylic acid (MAA) were grafted on the membrane, and 1,6-hexamethylenediamine (HMDA) was used as a spacer. Glutaraldehyde or cyanuric chloride were used as coupling agents to bind the enzyme to the membrane. Four different catalytic membranes were obtained using the same solid support. Direct comparison between the isothermal behaviour of the biocatalyst in its free and immobilized form was carried out. In particular the dependence of the isothermal activity on the temperature and pH was studied and the kinetic parameters determined. The influence of the microenvironment on the observed activity of the four membranes was evidenced and discussed. The way of improving the yield of these catalytic membranes is discussed also.  相似文献   

17.
The biochemical conversion of cellulosic biomass to ethanol, a promising alternative fuel, can be carried out efficiently and economically using the simultaneous saccharification and fermentation (SSF) process. The SSF integrates the enzymatic hydrolysis of cellulose to glucose, catalyzed by the synergistic action of cellulase and beta-glucosidase, with the fermentative synthesis of ethanol. Because the enzymatic step determines the ethanol. Because the enzymatic step determines the availability of glucose to the ethanologenic fermentation, the kinetic of cellulose hydrolysis by cellulase and beta-glucosidase and the susceptibility of the two enzymes to inhibition by hydrolysis and fermentation products are of significant importance to the SSF performance and were investigated under realistic SSF conditions. A previously developed SSF mathematical model was used to conceptualize the depolymerization of cellulose. The model was regressed to the collected data to determine the values of the enzyme parameters and was found to satisfactorily predict the kinetics of cellulose hydrolysis. Cellobiose and glucose were identified as the strongest inhibitors of cellulase and beta-glucosidase, respectively. Experimental and modeling results are presented in light of the impact of enzymatic hydrolysis on fuel ethanol production. (c) 1993 Wiley & Sons, Inc.  相似文献   

18.
A screening of 16 different fungal strains was performed under different cultivation conditions, using L-rhamnose or L-rhamnose-containing flavonoid glycosides (rutin, hesperidin, and naringin) as specific inducers. No significant constitutive production of alpha-L-rhamnosidases was detected in noninduced cultures, while high levels of these glycosidase activities were obtained using different inducers. New species, so far unknown for the production of alpha-L-rhamnosidases, were identified. More than 30 different alpha-L-rhamnosidase samples were prepared by ammonium sulfate precipitation. Substrate specificity of this alpha-L-rhamnosidase library was tested with various L-rhamnose-containing natural compounds (flavonoids, terpenoids, and saponins). Most of the enzymatic preparations showed broad substrate specificity, and some of them were also acting on sterically hindered substrates (e.g., quercitrin). The screening of the library under different reaction conditions showed the coexistence, in the same preparation, of more than one alpha-L-rhamnosidase activities with different substrate specificity and different stability towards organic cosolvents. To exploit this enzymatic library for synthetic applications, the presence of contaminating alpha-L-arabinosidases and beta-D-glucosidases was investigated. The latter enzymes were observed in several preparations, while alpha-L-arabinosidase content was generally quite low. The selective derhamnosylation of the saponin desglucoruscin was performed on a preparative scale. The enzyme obtained by rhamnose induction of the Aspergillus niger K2 CCIM strain showed high activity towards this substrate and negligible alpha-L-arabinosidase contamination. Therefore, it was chosen as a catalyst for the selective derhamnosylation reaction, which provided the desired product in 70% yield.  相似文献   

19.
The ability of the endopeptidase α-chymotrypsin (EC 3.4.21.1) to catalyse the reaction of various Nα- unprotected di- and tripeptide ester derivatives with H-Leu-NH2, and with a series of C-terminal free di- and tripeptides at −15° C in frozen aqueous solution was investigated. The enzyme is able to synthesize N- and C-terminal unprotected penta- and hexapeptides in up to 92% yield, depending on the amino component used, in a single-step segment-condensation reaction. Freezing the reaction mixture resulted in significantly increased peptide yields compared with the reaction at room temperature. The enzyme shows a modified nucleophilic specificity in frozen solution compared with room temperature. Nucleophilic amino components with positively charged amino acids in P2 -position are accepted. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Advantages of performing penicillin acylase-catalyzed synthesis of new penicillins and cephalosporins by enzymatic acyl transfer to the beta-lactam antibiotic nuclei in the supersaturated solutions of substrates have been demonstrated. It has been shown that the effective nucleophile reactivity of 6-aminopenicillanic (6-APA) and 7-aminodesacetoxycephalosporanic (7-ADCA) acids in their supersaturated solutions continue to grow proportionally to the nucleophile concentration. As a result, synthesis/hydrolysis ratio in the enzymatic synthesis can be significantly (up to three times) increased due to the nucleophile supersaturation. In the antibiotic nuclei conversion to the target antibiotic the remarkable improvement (up to 14%) has been gained. Methods of obtaining relatively stable supersaturated solutions of 6-APA, 7-ADCA, and D-p-hydroxyphenylglycine amide (D-HPGA) have been developed and syntheses of ampicillin, amoxicillin, and cephalexin starting from the supersaturated homogeneous solutions of substrates were performed. Higher synthetic efficiency and increased productivity of these reactions compared to the heterogeneous "aqueous solution-precipitate" systems were observed. The suggested approach seems to be an effective solution for the aqueous synthesis of the most widely requested beta-lactam antibiotics (i.e., amoxicillin, cephalexin, cephadroxil, cephaclor, etc.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号