首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The serotonin metabolite 5-hydroxytryptophol was studied in human cerebrospinal fluid. A minor fraction (approximately 13%) was found in conjugated form from which it was liberated by treatment with sulphatase containing beta-glucuronidase activity. A concentration gradient of 5-hydroxytryptophol concentration was shown on lumbar tapping and the concentration in ventricular CSF was about 2.5 times higher than that in lumbar CSF. 5-Hydroxytryptophol and 5-hydroxyindoleacetic acid concentrations were significantly correlated in healthy, psychotic, and depressed subjects, but not in alcoholics. 5-Hydroxytryptophol concentrations in CSF of psychotic and depressed subjects were not different from those of healthy controls (4.22 pmol/ml +/- 0.15, SEM). In healthy subjects, hereditary factors seemed to have little influence on the CSF level of 5-hydroxytryptophol.  相似文献   

3.
A rapid and highly sensitive procedure for simultaneous determination of serotonin, 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid and homovanillic acid is described. After precipitation of proteins with perchloric acid the samples are applied directly to a high performance liquid chromatograph, with electrochemical detection. As little as 20 pg of serotonin, 5-hydroxyindoleacetic acid, and 3,4-dihydroxyphenylacetic acid and 200 pg of homovanillic acid can be detected. One chromatographic run requires less than 10 min.  相似文献   

4.
The effects of L-tryptophan (50 mg/kg i.p.) on extracellular concentrations of tryptophan and the 5-hydroxytryptamine (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA) were determined in the rat striatum and cerebellum, regions with rich and poor 5-HT innervation, respectively. Determinations were on perfusates from dialysis probes in the brains of conscious, freely moving rats. The pharmacokinetic profiles of dialysate tryptophan after tryptophan load (peak concentration, time to peak concentration, area under curve, and half-life) in the two regions did not differ significantly. The dialysate 5-HIAA concentration in the striatum rose two- to threefold after the administration of tryptophan. Therefore, as 5-HIAA was undetectable in the cerebellum either before or after the administration of tryptophan, the increase of 5-HIAA in the striatum is unlikely to depend appreciably on its production within the cerebral vasculature or outside the brain or on its entering the striatum through a blood-brain barrier damaged by placement of the dialysis probe. Overall, the findings strengthen previous evidence that extracellular 5-HIAA concentrations determined by cerebral dialysis are a valid measure of the metabolism of 5-HT of brain neuronal origin.  相似文献   

5.
3,4-Dihydroxyphenylethylamine (DA, dopamine) and 5-hydroxytryptamine (5-HT) turnover values were determined in freely moving male rats by measuring the rates of accumulation of the acidic metabolites of the above transmitters, i.e., 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in cisternal cerebrospinal fluid (CSF) samples after probenecid (200 mg/kg i.p.) administration. Determinations on samples before and after acid hydrolysis showed that the latter procedure was necessary for DA turnover determination. Thus whereas total (DOPAC + HVA) increased linearly with time after probenecid, free (DOPAC + HVA) did not. This was because the percentage of DOPAC + HVA in conjugated form increased with time. Determinations on a group of 28 rats during the dark (red light) period showed that cisternal amine metabolite concentrations before probenecid injection did not parallel turnover values. This was probably because individual differences in metabolite egress strongly affect the pre-probenecid values. The poor correlations between CSF tryptophan and 5-HT turnover suggested that differences of brain tryptophan concentration were not major determinants of differences of brain 5-HT metabolism within this group of normal rats. Considering that the rats were of similar weight and that the turnover values were all determined at approximately the same time of day, the three- to fourfold ranges of the turnover values are remarkable. The positive correlation between the DA and 5-HT turnovers of individual rats suggests the existence of common effects on DA and 5-HT turnover in normal rats.  相似文献   

6.
The effects of tryptophan administration on neurochemical estimates of synthesis [5-hydroxytryptophan (5-HTP) accumulation following administration of a decarboxylase inhibitor], storage [5-hydroxytryptamine (5-HT) concentrations], and metabolism [5-hydroxyindoleacetic acid (5-HIAA) concentrations] of 5-HT in selected regions of the hypothalamus were determined using HPLC coupled to an electrochemical detector. Tryptophan methyl ester HCl (30-300 mg/kg i.p.) produced a dose-dependent increase in the rate of 5-HTP accumulation throughout the hypothalamus but had no effect on the rate of accumulation of 3,4-dihydroxyphenylalanine. Peak 5-HTP levels were attained by 30 min following administration of tryptophan (100 mg/kg i.p.) and were maintained for an additional 60 min. Tryptophan also produced concomitant dose-dependent increases in 5-HT and 5-HIAA concentrations in these same regions without changes in the 5-HIAA/5-HT ratio. These results indicate that exogenous tryptophan administration selectively increases the synthesis, storage, and metabolism of 5-HT in the hypothalamus without altering the synthesis of catecholamines. Inhibition of 5-HT uptake with chlorimipramine or fluoxetine produced modest (10-40%) reductions in 5-HIAA concentrations throughout the hypothalamus, revealing that only a minor portion of 5-HIAA is derived from released and recaptured 5-HT, whereas the major portion of this metabolite reflects intraneuronal metabolism of unreleased 5-HT. In both chlorimipramine- and fluoxetine-treated rats, 5-HIAA concentrations were significantly increased by tryptophan administration, indicating that the increase in synthesis of 5-HT following precursor loading is accompanied by an increase in the intraneuronal metabolism of 5-HT.  相似文献   

7.
Idazoxan, a highly specific and selective alpha 2-adrenoceptor antagonist, caused a dose-dependent increase in the concentration of homovanillic acid (HVA) a metabolite of 3,4-dihydroxyphenylethylamine, in cisternal CSF of freely moving rats. This increase in HVA level could be antagonized by the alpha 2-adrenoceptor agonist medetomidine. The increase was directly proportional to the concurrent elevation in level of 3-methoxy-4-hydroxyphenylglycol, a metabolite of noradrenaline, in the CSF of individual rats and followed a similar time course. It is suggested that the HVA level in CSF may be increased under conditions of enhanced noradrenergic activity and that, in such situations, it reflects noradrenergic rather than dopaminergic neuronal activity. Care should be taken, therefore, when changes in central dopaminergic activity are assessed by measurements of HVA level in CSF.  相似文献   

8.
Using a specific and sensitive high pressure liquid chromatographic technique for the measurement of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and tryptophan (TRP), we found that there were no changes in 5-HT or 5-HIAA in the rat cortex when left in situ for 6 h at room temperature or 24 h at 4 degrees C. Only a minimal 14% increase in 5-HT was observed after 24 h at 4 degrees C in the striatum of the same animals. Concentrations of TRP, however, were increased significantly in both brain regions by these postmortem delay procedures. A second study revealed that there were significant regional 5-HT and 5-HIAA concentration differences within the cerebral cortex. The frontal cortex was shown to have the highest concentrations of 5-HT and 5-HIAA. Further, within the frontal cortex, 5-HIAA levels varied, showing apparent progressive rostral to caudal increases. 5-HT concentrations, however, remained constant within the frontal cortex. These results are discussed in reference to the conflicting reports of the previous human suicide and postmortem studies.  相似文献   

9.
A method using reversed-phase ion-pair high-performance liquid chromatography with electrochemical detection for the simultaneous determination of tryptophan (TRP), 3,4-dihydroxyphenylalanine (DOPA), and their metabolites in whole brain, small-brain parts, and cerebrospinal fluid of rats has been developed. The sample preparation requires only homogenization in perchloric acid and centrifugation before injection onto the column. With a LiChrosorb RP-18 (10 micrometer) column and a mobile phase consisting of a phosphate (NaH2PO4, 0.1 M)-methanol mixture with octylsulfonate (2.6 x 10(-3) M) at pH 3.35 and 26 degrees C, the separation of DOPA, dopamine, norepinephrine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, 4-hydroxy-3-methoxyphenylalanine, TRP, 5-hydroxytryptophan (5-HTP), serotonin, and 5-hydroxyindoleacetic acid was achieved. The method has been applied to study the effect of alpha-monofluoromethyldopa alone and in combination with L-DOPA or L-5-HTP, on the catechol and 5-OH indole levels in brain and CSF of the rat.  相似文献   

10.
The concentrations of the acidic dopamine (DA) catabolites homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) measured in human CSF are supposed to reflect the "turnover" of DA in the brain. The notion of "turnover" is, however, not synonymous with impulse nerve activity in the dopaminergic systems. Significant amounts of DOPAC and HVA could, indeed, be demonstrated in brain structures wherein dopaminergic innervation has not been documented. It must also be noted that DA is not only a neurotransmitter itself, but also a precursor of norepinephrine and epinephrine. Furthermore, in lumbar CSF, levels of biogenic amine catabolites partially reflect metabolism in the spinal cord and may have limited relevance to neurotransmission in the brain. To elucidate these points further, we determined the concentrations of DOPAC and HVA in 22 areas of six human brains and eight levels of six human spinal cords. The data were correlated with the concentration of DA. Quantitative determinations were done using HPLC with electrochemical detection, after solvent and ion-pair extraction. In this study, significant amounts of both DOPAC and HVA were demonstrated in brain structures not previously associated with dopaminergic innervation. The relatively lower DA concentration in these structures suggests that in these regions, the DOPAC and HVA concentrations are unrelated to dopaminergic neurotransmission. The possible role of capillary walls and glial cells in the catabolism of DA must be further evaluated. The demonstration of DOPAC and HVA in the spinal cord is another argument against the hypothesis that CSF levels of HVA and DOPAC reflect closely the activity of the dopaminergic systems in the brain.  相似文献   

11.
Lumbar punctures were performed on four occasions over a 5-day period (8:30 a.m. on days 1, 3, and 5; 2:30 p.m. on day 2) on 10 normal volunteers (five of each sex; mean age, 27.7 years) to assess, with repeated sampling, the day-to-day variation of selected CSF parameters. Two subjects abstained from the lumbar puncture on day 5 due to headache after the third puncture. Lumbar CSF was analyzed for concentrations of free and total gamma-aminobutyric acid (GABA), homocarnosine, homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), total protein, albumin, and immunoglobulin (Ig)G. No significant concentration differences were found between the afternoon and next morning samples. No differences were found in concentrations of free GABA, total GABA, homocarnosine, 5-HIAA, or albumin across the study. In contrast, HVA concentrations significantly increased by day 5, whereas total protein and IgG decreased during the study. The most likely explanation for these changes involves the known concentration gradients in the CSF column.  相似文献   

12.
Abstract: HPLC and gas chromatography-mass spectrometry analyses of 18 amino acids, N -acetylaspartate, N -acetylaspartyglutamate, and 5-hydroxyindoleacetic acid, derived from serotonin, and homovanillic acid, derived from dopamine, were performed in CSF collected from a group of patients with schizophrenia who either had been drug free for at least 1 year (n = 5) or were drug naive for psychotropic drugs (n = 21) and in 15 control subjects. Significant differences were found only for taurine (15% lower in the patients) and isoleucine (7% higher). A number of unidentified substances were detected, one of which proved to be markedly reduced (16%) among the schizophrenic patients. Liquid chromatography-mass spectrometry with continuous flow-fast atom bombardment interface allowed us to identify this substance as γ-glutamyglutamine. The decreased level of γ-glutamylglutamine may reflect a deficiency in the γ-glutamyltransferase system, a system probably involved in glutamate uptake, or a deficiency in glutamine, an important precursor of releasable glutamate. Although glutamate was nonsignificantly reduced in the patients, it was one of the five substances (including γ-glutamylglutamine) that were necessary for the best discrimination between the schizophrenic patients and the controls. These findings support the notion that the glutamatergic system is affected in schizophrenic disorders. In addition, they underscore the need to apply rigid bioanalytical techniques and use drug-naive patients to gain in-depth information on the pathophysiology of brain disorders such as schizophrenia.  相似文献   

13.
Patients with normal pressure hydrocephalus who had three lumbar punctures during 1 week ingested either water, a protein breakfast, or a carbohydrate breakfast 2.5 h before each of the lumbar punctures. The CSF was analyzed for biogenic amine precursors and metabolites. The protein meal raised CSF tyrosine levels, a finding consistent with animal data, but did not alter those of tryptophan or any of the biogenic amine metabolites. The carbohydrate meal increased CSF 3-methoxy-4-hydroxyphenylethylene glycol, an unexplained finding. The carbohydrate meal did not affect CSF tryptophan, tyrosine, 5-hydroxyindoleacetic acid, or homovanillic acid. Our results support the idea that in humans protein or carbohydrate meals do not alter plasma amino acid levels sufficiently to cause appreciable changes in CNS tryptophan levels or 5-hydroxytryptamine synthesis.  相似文献   

14.
Stressful treatments and immune challenges have been shown previously to elevate brain concentrations of tryptophan. The role of the autonomic nervous system in this neurochemical change was investigated using pharmacological treatments that inhibit autonomic effects. Pretreatment with the ganglionic blocker chlorisondamine did not alter the normal increases in catecholamine metabolites, but prevented the increase in brain tryptophan normally observed after footshock or restraint, except when the duration of the footshock period was extended to 60 min. The footshock- and restraint-related increases in 5-hydroxyindoleacetic acid (5-HIAA) were also prevented by chlorisondamine. The increases in brain tryptophan caused by intraperitoneal injection of endotoxin or interleukin-1 (IL-1) were also prevented by chlorisondamine pretreatment. The footshock-induced increases in brain tryptophan and 5-HIAA were attenuated by the beta-adrenergic antagonist propranolol but not by the alpha-adrenergic antagonist phenoxybenzamine or the muscarinic cholinergic antagonist atropine. Thus the autonomic nervous system appears to be involved in the stress-related changes in brain tryptophan, and this effect is due to the sympathetic rather than the parasympathetic limb of the system. Moreover, the main effect of the sympathetic nervous system is exerted on beta- as opposed to alpha-adrenergic receptors. We conclude that activation of the sympathetic nervous system is responsible for the stress-related increases in brain tryptophan, probably by enabling increased brain tryptophan uptake. Endotoxin and IL-1 also elevate brain tryptophan, presumably by a similar mechanism. The increase in brain tryptophan appears to be necessary to sustain the increased serotonin catabolism to 5-HIAA that occurs in stressed animals, and which may reflect increased serotonin release.  相似文献   

15.
Rats were given L-tryptophan, 50 mg/kg i.p., and its concentration in the CNS was monitored in individual freely moving animals using repeated sampling of cisternal CSF and concurrent striatal dialysis. The 5-hydroxytryptamine metabolite 5-hydroxyindoleacetic acid (5-HIAA) was also measured. Results were compared with changes of central tryptophan and 5-HIAA concentrations in brains of rats killed at various times after administration of L-tryptophan, 50 mg/kg i.p. Tryptophan changes in CSF were proportionate to those in whole brain and followed essentially identical time courses. Results for the striatal dialysate and whole striatum also paralleled each other. Similarly, results for 5-HIAA showed proportionality between CSF and brain and between dialysate and striatum. The data obtained were used to determine pharmacokinetic data for individual rats, i.e., areas under curves for both tryptophan and 5-HIAA and half-lives for the decline of tryptophan. Kinetic parameters varied considerably from rat to rat. However, mean half-lives for tryptophan in CSF, brain, dialysate, and striatum were all comparable. Results in general show the value of repeated CSF sampling and intracerebral dialysis for concurrent monitoring of changes of indole metabolism in the whole brain and a specific brain region, respectively. The methods should be suitable for the continuous monitoring of changes of central transmitter metabolism in parallel with observation of behavior following environmental or dietary changes or drug administration. They also should be of use in the investigation of drug kinetics in the CNS.  相似文献   

16.
Abstract: Quinolinic acid (QUIN), an excitotoxic tryptophan metabolite, has been identified and measured in human cerebrospinal fluid (CSF) using a mass-fragmentographic method. Furthermore, its content has been evaluated in frontal cortex obtained at autopsy from the cadavers of patients who died after hepatic coma. During the coma, the concentration of QUIN in the CSF was 152 ± 38 pmol ml-1. In contrast, the concentration in control patients affected by different pathologies was 22 ± 7 pmol ml-1. In the frontal cortex of patients who died after episodes of hepatic encephalopathy, the content of QUIN was three times higher than in controls (2.6 ± 0.6 versus 0.80 ± 0.08 nmol/g wet weight). As a result of these investigations we are now able to extend our previous observations on the increase of QUIN in the brains of rats used as experimental models of hepatic encephalopathy to man. QUIN should therefore be added to the list of compounds possibly involved in the pathogenesis and symptomatology of brain disorders associated with liver failure.  相似文献   

17.
Abstract: To detect and identify lipid peroxides in the CFS following subarachnoid hemorrhage (SAH), CSF samples were obtained sequentially from 10 patients who developed typical vasospasm and were analyzed by HPLC and gas chromatography-mass spectrometry. One of the peaks appearing on the 7th day after SAH was identified as 5-hydroxy eicosatetraenoic acid. On HPLC, an identical peak was detected in samples from other SAH patients. The results gave unequivocal evidence that peroxides of arachidonic acid are present in the CSF following SAH, and a correlation between them and the occurrence of vasospasm seemed likely. The hypothesis that lipid peroxides are involved in the genesis of vasospasm deserves further investigation.  相似文献   

18.
An automated microbore liquid chromatographic assay with dual electrochemical detection is described for the determination of serotonin, dopamine and their metabolites, 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid and homovanillic acid. Due to the chemical instability of the compounds, the addition of an antioxidant is required for automated analysis over a long period of time (e.g., 20 h). Therefore, the time stability of these substances was tested with different antioxidants. The stability for serotonin and 5-hydroxyindoleacetic acid was poor in acidic medium containing Na2EDTA but could greatly be improved by the addition of

-cysteine and ascorbic acid. Using this assay, the neurotransmitters and their metabolites could easily be determined in microdialysates obtained from different rat brain areas.  相似文献   

19.
Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), noradrenaline (NA), 3-methoxy-4-hydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) in the CSF of patients with Huntington's disease (HD) were measured by HPLC. CSF DA, DOPAC, and MHPG levels were found to be increased in HD patients. Levels of HVA, 5-HIAA, and NA in the CSF of HD patients did not differ from those of controls. Changes in CSF DA and DOPAC levels were consistent with previous findings of increased DA tissue content in some brain areas of patients with HD. These results suggest that CSF DOPAC levels could be a more reliable index of overactive dopaminergic brain systems in HD than CSF HVA levels.  相似文献   

20.
Extracellular levels of endogenous serotonin (5-HT) and its major metabolite, 5-hydroxyindoleacetic acid (5-HIAA), were measured in the caudate-putamen of anesthetized and awake rats using intracerebral microdialysis coupled to HPLC with fluorimetric detection. A dialysis probe (of the loop type) was perfused with Ringer solution at 2 microliters/min, and samples collected every 30 or 60 min. Basal indole levels were followed for up to 4 days in both intact and 5,7-dihydroxytryptamine (5,7-DHT) lesioned animals. Immediately after the probe implantation, the striatal 5-HT levels were about 10 times higher than the steady-state levels that were reached after 7-8 h of perfusion. The steady-state baseline levels, which amounted to 22.5 fmol/30 min sampling time, remained stable for 4 days. In 5,7-DHT-denervated animals, the steady-state levels of 5-HT, measured during the second day after probe implantation, were below the limit of detection (less than 10 fmol/60 min). However, during the first 6 h post-implantation, the 5-HT output was as high as in intact animals, which suggests that the high 5-HT levels recovered in association with probe implantation were blood-derived. As a consequence, all other experiments were started after a delay of at least 12 h after implantation of the dialysis probe. In awake, freely moving animals, the steady-state 5-HT levels were about 60% higher than in halothane-anesthetized animals, whereas 5-HIAA was unaffected by anesthesia. KCl (60 and 100 mM) added to the perfusion fluid produced a sharp increase in 5-HT output that was eight-fold at the 60 mM concentration and 21-fold at the 100 mM concentration. In contrast, 5-HIAA output dropped by 43 and 54%, respectively. In 5,7-DHT-lesioned animals, the KCl-evoked (100 mM) release represented less than 5% of the peak values obtained for the intact striata. Omission of Ca2+ from the perfusion fluid resulted in a 70% reduction in baseline 5-HT output, whereas the 5-HIAA levels remained unchanged. High concentrations of tetrodotoxin (TTX) added to the perfusion medium (5-50 microM) resulted in quite variable results. At a lower concentration (1 microM), however, TTX produced a 50% reduction in baseline 5-HT release, whereas the 5-HIAA output remained unchanged. The 5-HT reuptake blocker, indalpine, increased the extracellular levels of 5-HT sixfold when added to the perfusion medium (1 microM), and threefold when given intraperitoneally (5 mg/kg). By contrast, the 5-HIAA level remained unaffected during indalpine infusion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号