首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of anti-thyrotropin-releasing hormone (TRH) anti-serum treatment during the neonatal period on the development of rat thyroid function were studied. On postnatal days 2 and 4, rats were administered anti-TRH anti-serum ip, and they were serially decapitated at the 4th, 8th and 12th week after birth. TRH, thyrotropin (TSH), thyroxine (T4) and 3,3',5-triiodothyronine (T3) were measured by radioimmunoassay. Immunoreactive TRH (ir-TRH) in the hypothalamus did not change significantly after anti-TRH anti-serum treatment, and plasma ir-TRH tended to decrease. The plasma ir-TRH and TSH responses to cold were significantly inhibited. The plasma TSH response to TRH was also significantly inhibited. The plasma basal TSH levels were significantly lower than in controls. The plasma T4 and T3 levels were found to be lower than those in the controls. Findings suggested that treatment with anti-TRH anti-serum during the neonatal period disturbed the development of rat thyroid function, inhibiting TRH release and altering thyrotroph sensitivity to TRH.  相似文献   

2.
1H NMR data of a series of thyroid hormone analogues, e.g., thyroxine (T4), 3,5,3'-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3), 3,3'-diiodothyronine (3,3'-T2), 3,5-diiodothyronine (3,5-T2), 3',5'-diiodothyronine (3',5'-T2), 3-monoidothyronine (3-T1), 3'-monoiodothyronine (3'-T1), and thyronine (TO) in dimethylsulfoxide (DMSO) have been obtained on a 300 MHz spectrometer. The chemical shift and coupling constant are determined and tabulated for each aromatic proton. The inner tyrosyl ring protons in T4, T3, and 3,5-T2 have downfield chemical shifts with respect to those of the outer phenolic ring protons. Four-bond cross-ring coupling has been observed in all the monoiodinated rings. However, this long-range coupling does not exist in T4, diiodinated on both rings, and T0, containing no iodines on the rings. There is no evidence that at 30 degrees C these iodothyronines have any motional constraint in DMSO solution. In addition to identification of the hormones, the potential use of some characteristic peaks as probes in binding studies is discussed.  相似文献   

3.
The effects of alpha-neoendorphin, kyotorphin, melatonin or diphenylhydantoin (DPH) on thyrotropin-releasing hormone (TRH) and thyrotropin (TSH) release in rats were studied. alpha-neoendorphin (1.0 mg/kg), kyotorphin (1.0 mg/kg), melatonin (2.5 mg/kg) or DPH (75 mg/kg) was injected iv or ip, and the rats were serially decapitated. TRH, TSH and thyroid hormone were determined by radioimmunoassay. The hypothalamic immunoreactive (ir-TRH) contents decreased significantly after melatonin injection, but not after alpha-neoendorphin, kyotorphin or DPH. The plasma ir-TRH concentrations decreased significantly after DPH injection, but not after alpha-neoendorphin, kyotorphin or melatonin. The plasma TSH levels decreased significantly in a dose-related manner with a nadir at 10 min. after melatonin, at 30 min. after DPH and at 40 min. after alpha-neoendorphin or kyotorphin injection. The plasma thyroid hormone levels did not change significantly after these drugs injection. The plasma ir-TRH and TSH responses to cold were inhibited by these drugs, but the plasma TSH response to TRH was not influenced. In the L-DOPA- or 5-hydroxy-tryptophan (5-HTP)-pretreated group, the inhibitory effect of alpha-neoendorphin or kyotorphin on TSH levels was prevented, but not in the haloperidol- or para-chloprophenylalanine (PCPA)- pretreated group. In the haloperidol- or PCPA-pretreated group, the inhibitory effect of melatonin on TSH levels was prevented, but not in the L-DOPA- or 5-HTP-pretreated group. These drugs alone did not affect plasma TSH levels in terms of the dose used. The inactivation of TRH immunoreactivity by hypothalamus or plasma in vitro after these drugs injection did not differ from that of the control.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To investigate the thyroid hormone metabolism in altered states of thyroid function, serum concentrations of 3, 3'-diiodothyronine (3, 3'-T2), 3', 5'-T2 and 3, 5-T2 as well as T4, T3 and rT3 were determined by specific radioimmunoassays in 17 hyperthyroid and 10 hypothyroid patients, before and during the treatment. Serum T4, T3, rT3, 3, 3'-T2 and 3', 5'-T2 concentrations were all higher in the hyperthyroid patients than in age-matched controls and decreased to the normal ranges within 3 to 4 months following treatment with antithyroid drugs. In the hypothyroid patients, these iodothyronine concentrations were lower than in age-matched controls and returned to the normal ranges after 2 to 3 months treatment with T4. In contrast, serum 3, 5-T2 concentrations in hyperthyroid patients (mean +/- SE : 4.0 +/- 0.5 ng/dl) were not significantly different from those in controls (3.9 +/ 0.4 ng/dl), although they tended to decrease in 3 of 6 patients after the antithyroid drug therapy. Serum 3, 5-T2 levels in the hypothyroid patients (3.8 +/- 0.6 ng/dl) were also within the normal range and showed no significant change following the T4 replacement therapy. However, serum 3, 5-T2 as well as 3, 3'T2 concentrations rose significantly with a marked rise in serum T3 following T3 administration, 75 micrograms/day for 7 days, in Graves' patients in euthyroid state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We investigated changes in the hypothalamic-pituitary-thyroid axis before, during, and after fasting in twenty-one non-obese euthyroid patients with psychosomatic diseases. Blood samples for free T3 (FT3), T3, free T4 (FT4), T4, reverse T3 (rT3), and TSH were obtained from all patients before and on the 5th day of fasting, and in 11 of the same individuals on the 5th day of refeeding. Serum TSH and T3 responses to TRH were also evaluated in 10 patients before and on the 5th day of fasting. During the fast, FT3, T3 and TSH levels decreased significantly and rT3 levels increased significantly whereas FT4 and T4 levels remained within the normal range. Maximal delta TSH, peak TSH levels, max delta T3, peak T3 levels, and net secretory responses to TRH decreased significantly. Peak TSH levels and max delta TSH to TRH correlated well with basal levels of TSH. A statistically significant negative correlation between basal levels of FT4 and TSH was observed. After refeeding, there was a significant increase only in TSH which returned to prefasting values. These results demonstrated that in a state of "low T3" during acute starvation a reduction in serum T3 might depend partly on TSH-mediated thyroidal secretion.  相似文献   

6.
Present data about hormonal regulation of haemostasis are often contradictory and are mostly based on clinical observations. The aim of the current research is to study the effects of the hormones of hypothalamic-pituitary-thyroid (HPT) axis on plasma levels (i.e. on the synthesis and secretion) of vitamin K-dependent coagulation factors in rats. The study was carried out on 65 male Wistar rats, divided into five groups. The animals were injected subcutaneously (s.c.) once daily for three consecutive days as follows: the first group was injected with Thyrotropin releasing hormone (TRH), in a dose of 0.06 mg/kg b.w.; the second group by Thyroid stimulating hormone (TSH), with a dose of 1 MU/kg b.w., the third and the fourth group respectively with Liothyroninum (Triiodothyronin ? T3) and Levothyroxinum (Thyroxin ? T4) with a dose of 0.08 mg/kg b.w. each. The control group rats were injected with saline (the solvent of the hormones), following the same schedule and volume per kg b.w. The necessary quantity of blood was acquired by a cardiac puncture under ether narcosis, and antigen levels of plasma factors II, VII, IX and X (FII:Ag, FVII:Ag, FIX:Ag and FX:Ag) were determined by ELISA kits (Diagnostica Stago, France). TRH, TSH, T3 and T4 significantly decreased the plasma antigen levels of FII and FVII (p<0.001). TRH, T3 and TSH reduced significantly FIX:Ag level( p<0.001 for TRH and T3 and p<0.05 for TSH) while T4 did not exert significant changes ( p>0.05). FX:Ag level was also significantly reduced by TRH, T3 (p<0.001), TSH and T4 (p<0.01). Plasma levels of vitamin K-dependent coagulation factors F??:Ag, FV??:Ag, F?Х:Ag and FХ:Ag are significantly reduced under the influence of the hormones of hypothalamic-pituitary-thyroid axis which signifies their decreased synthesis and secretion. T4 does not induce substantial changes in FIX:Ag plasma level.  相似文献   

7.
The effects of histamine (HA) and related compounds on thyrotropin-releasing hormone (TRH) and thyrotropin (TSH) secretion in rats were studied. Histidine (1.0 g/kg), HA (5.0 mg/kg) or histamine antagonists mepyramine (MP) (100 mg/kg) or famotidine (FA) (5.0 mg/kg) were injected intraperitoneally, and the rats were decapitated at various intervals after the injection. The hypothalamic immunoreactive TRH (ir-TRH) content increased significantly after histidine or HA injection, decreased significantly after FA injection, but was not changed by MP. The plasma ir-TRH concentration did not change significantly after injection of these drugs. The plasma TSH levels decreased significantly in a dose-related manner after histidine or HA injection and increased significantly in a dose-related manner after FA injection. The plasma thyroid hormone levels showed no changes. In the FA-pretreated group, the inhibitory effect of histidine or HA on TSH levels was prevented, but not in the MP-pretreated group. The plasma ir-TRH and TSH responses to cold were inhibited by histidine or HA and enhanced by FA. The plasma TSH response to TRH was inhibited by histidine or HA and enhanced by FA. The inactivation of TRH immunoreactivity by hypothalamus or plasma in vitro after histidine, HA, MP or FA was not different from that of the control. These findings suggest that histamine may act both on the hypothalamus and the pituitary to inhibit TRH and TSH release, and that its effects may be mediated via H2-receptor.  相似文献   

8.
The pituitary-thyroid axis of 12 patients, exposed to transsphenoidal pituitary microsurgery because of nonfunctioning adenomas (6), prolactinomas (3) and craniopharyngioma (1), or to major pituitary injury (1 apoplexy, 1 accidental injury), was controlled more than 6 months following the incidents. The patients did not receive thyroid replacement therapy and were evaluated by measurement of the serum concentration of thyroxine (T4), 3,5,3'-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3), T3-resin uptake test and thyrotropin (TSH, IRMA method) before and after 200 micrograms thyrotropin releasing hormone (TRH) iv. The examination also included measurement of prolactin (PRL) and cortisol (C) in serum. Apart from 1 patient with pituitary apoplexy all had normal basal TSH levels and 9 showed a significant TSH response to TRH. Compared to 40 normal control subjects the 12 patients had significantly decreased levels of T4, T3 and rT3 (expressed in free indices), while the TSH levels showed no change. Five of the patients, studied before and following surgery, had all decreased and subnormal FT4I (free T4 index) after surgery, but unchanged FT3I and TSH. The levels of FT4I were positively correlated to both those of FT3I and FrT3I, but not to TSH. The TSH and thyroid hormone values showed no relationship to the levels of PRL or C of the patients exposed to surgery. It is concluded that the risk of hypothyroidism in patients exposed to pituitary microsurgery is not appearing from the TSH response to TRH, but from the thyroid hormone levels.  相似文献   

9.
Triiodothyronamine (Triam) is a potential metabolite of triidothyronine (T3), resulting from decarboxylation of the side-chain. In an attempt to elucidate the physiological properties of Triam we have investigated the binding of Triam to beta-adrenergic receptors, using turkey-erythrocytes and performing binding studies with ( (-)(3H)-dihydroalprenolol) ( (-)(3H)-DHA) as a specific beta-adrenergic ligand. The inhibition constant Ki for Triam was determined as 5 X 10(-6) M, compared to dopamine (Ki = 1,3 X 10(-2) M), norepinephrine (Ki = 3 X 10(-4) M), epinephrine (Ki = 5 X 10(-5) M) and isoproterenol (Ki = 3 X 10(-6) M). The inhibition of ( (-)(3H)-DHA)-binding by Triam was further compared with other iodothyronines thyroxine (T4), T3, 3,3',5'-triiodothyronine (rT3) and 3,3'-diiodothyronine (3,3'-T2). It is concluded that Triam binds to beta-adrenergic receptors like naturally occurring amines but different from typical circulating iodothyronines.  相似文献   

10.
Effects of nociceptin on thyrotropin (TSH) and thyrotropin-releasing hormone (TRH) secretion in rats were studied. Nociceptin (150 microgram/kg) was injected intravenously and rats were serially decapitated after the injection. The effects of nociceptin on TRH release from the hypothalamus and TSH release from the anterior pituitary in vitro were also investigated. TRH and thyroid hormones were measured by individual radioimmunoassays. TSH was determined by enzyme immunoassay. TRH contents in the hypothalamus decreased significantly after nociceptin injection, whereas plasma TRH concentrations showed no changes. Plasma TSH concentrations increased significantly in a dose-related manner. The TRH release from the hypothalamus was enhanced significantly in a dose-related manner with the addition of nociceptin. The TSH release from the anterior pituitary in vitro was not affected by the addition of nociceptin. The plasma thyroxine and 3,3',5-triiodothyronine levels did not change significantly after nociceptin administration. The inactivation of TRH by plasma or hypothalamus in vitro after nociceptin injection did not differ from that of controls. The findings suggest that nociceptin acts on the hypothalamus to stimulate TRH and TSH secretion.  相似文献   

11.
In hyperthyroidism, measurement of the serum thyroxine (T4) index or free concentration often suffices to establish the diagnosis. In hyperthyroidism, including 3,3',5-triiodothyronine (T3) toxicosis, thyrotrophin (TSH) response to thyrotrophin-releasing hormone (TRH) is blunted. Sensitive measurement of serum TSH may in the future be the first-line screening test not only for primary hypothyroidism but also for hyperthyroidism. In non-thyroidal illness serum T4, reverse T3 and T3 levels change in relation to severity of disease. In mild disease, T4 is initially increases as the severity of the non-thyroidal illness increases. Reverse T3 increases and serum T3 decreases when the patients become more ill. Serum TSH response to TRH is often blunted. In old age similar changes in serum iodothyronine concentrations may take place, probably related to existing non-thyroidal illness. Also many drugs may have different effects on serum parameters of thyroid function. In acute psychiatric diseases increased serum total and free T4 levels and a blunted TRH test may be encountered.  相似文献   

12.
Triiodothyronine (T3), thyroxine (T4), basal TSH and TSH after stimulation with TRH were determined in healthy subjects and patients treated with D-thyroxine (DT4). After a dosage of 6 mg DT4 the D/L T4 plasma concentration rose about 4-fold 4 hours after application and was only moderately elevated 14 hours later. To achieve constantly elevated T4 levels 3 mg DT4 were applied in the further experiment every 12 hours. The D/L T4 plasma concentration rose 2.5-4-fold and there was a small but significant increase of the D/L T3 plasma concentration. 74 hours after onset of treatment basal TSH was below detectable limits and the increase of TSH 30 min after injection of 200 mug TRH (TRH test) was only about 15% compared to zero time. The time course of TSH suppression was investigated after treatment with DT4 and LT4 (single dosage of 3 mg). TRH-tests were performed before, 10, 26, 50 and 74 hours after the first dosage of D or LT4. There was no difference in the time course of basal TSH and TSH stimulated by TRH. In 10 patients on DT4 long-term therapy, basal and stimulated TSH were found to be below the detectable limits of 0.4 mug/ml. Our results show that (1) plasma half-life of DT4 is less than 1 day, (2) TSH suppression after D and LT4 treatment is very similar, and (3) in patients on long-term DT4 treatment, TSH plasma concentration is below detectable limits even after stimulation with TRH.  相似文献   

13.
Thyroid function was studied in small for gestational age (SGA) or control newborn lambs. Neonatal changes in plasma concentrations of TSH, T3, rT3, total and free T4 were monitored, and thyroid scintigraphs were performed. Responsiveness of the hypothalamic-pituitary-thyroid axis to cold exposure and TRH or TSH administration was assessed. In addition, T4 and T3 kinetic studies were performed. In agreement with results obtained in babies, plasma T3, total T4 and free T4 concentrations were depressed in low birth weight animals, whereas TSH and rT3 levels were not affected. Thyroid size expressed relatively to the body weight was higher in SGA animals, thus suggesting that a partial compensation for low thyroid hormone levels had occurred during the fetal life. Plasma TSH and T4 concentrations increased by a same extent after exposure to cold and TRH or TSH administration in SGA and control lambs; however, the rise in T3 levels was depressed in the former in all stimulation tests. T3 and T4 production rates were similar in the two experimental groups. In SGA lambs, the metabolic clearance rate and the total distribution space of these two hormones were significantly increased; the fast T3 pool was higher, and the slow T3 pool lower than in control animals. All these results demonstrate that, despite low circulating thyroid hormone concentrations, SGA lambs are not hypothyroid. An increased T4 and T3 storage in the extravascular compartment is probably the major factor involved in the occurrence of this plasma deficiency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The influence of an intravenous injection of thyrotrophin-releasing hormone (TRH) and bovine thyrotrophin (TSH) on circulating levels of thyroid hormones and the liver 5'-monodeiodination (5'-D) activity is studied in the chick embryo and the adult chicken. In the 18-day-old chick embryo, an injection of 1 microgram TRH and 0.01 I.U. TSH increase plasma concentrations of triiodothyronine (T3) and of thyroxine (T4). TRH, however, preferentially raises plasma levels of T3, resulting in an increased T3 to T4 ratio, whereas TSH preferentially increases T4, resulting in a decreased T3 to T4 ratio. The 5'-D-activity is also stimulated following TRH but not following TSH administration. The increase of reverse T3 (rT3) is much more pronounced following the administration of TSH. In adult chicken an injection of up to 20 micrograms of TRH never increased plasma concentrations of T4, but increases T3 at every dose used together with 5'-D at the 20 micrograms dose. TSH on the other hand never increased T3 or 5'-D, but elevates T4 consistently. It is concluded that TSH is mainly thyrotropic in the chick embryo or adult chicken whereas TRH is responsible for the peripheral conversion of T4 into T3 by stimulating the 5'-D-activity. The involvement of a TRH induced GH release in this peripheral activity is discussed.  相似文献   

15.
Transport of thyroid hormone across the cell membrane is required for its action and metabolism. Recently, a T-type amino acid transporter was cloned which transports aromatic amino acids but not iodothyronines. This transporter belongs to the monocarboxylate transporter (MCT) family and is most homologous with MCT8 (SLC16A2). Therefore, we cloned rat MCT8 and tested it for thyroid hormone transport in Xenopus laevis oocytes. Oocytes were injected with rat MCT8 cRNA, and after 3 days immunofluorescence microscopy demonstrated expression of the protein at the plasma membrane. MCT8 cRNA induced an approximately 10-fold increase in uptake of 10 nM 125I-labeled thyroxine (T4), 3,3',5-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3) and 3,3'-diiodothyronine. Because of the rapid uptake of the ligands, transport was only linear with time for <4 min. MCT8 did not transport Leu, Phe, Trp, or Tyr. [125I]T4 transport was strongly inhibited by L-T4, D-T4, L-T3, D-T3, 3,3',5-triiodothyroacetic acid, N-bromoacetyl-T3, and bromosulfophthalein. T3 transport was less affected by these inhibitors. Iodothyronine uptake in uninjected oocytes was reduced by albumin, but the stimulation induced by MCT8 was markedly increased. Saturation analysis provided apparent Km values of 2-5 microM for T4, T3, and rT3. Immunohistochemistry showed high expression in liver, kidney, brain, and heart. In conclusion, we have identified MCT8 as a very active and specific thyroid hormone transporter.  相似文献   

16.
1. Isolated livers from fed male rats were perfused for 2 h with T4 (L-thyroxine), T3 (L-3,3',5-tri-iodothyronine) or rT3 (L-3,3',5'-tri-iodothyronine) at different pH values (7.1--7.6) in a fully synthetic medium, whereby normal metabolic functions were maintained without addition of rat blood constituents or albumin. 2. T3 output into the medium and net T3 production reached a maximum at a pH of the medium of 7.2 and significantly decreased with alteration of the pH when livers were perfused with T4 as a substrate. 3. However, the net T4 and T3 uptake by the liver, as well as the hepatic T4 and T3 content after perfusion, were not dependent on the pH of the perfusion when livers were offered T4 or T3 as substrates respectively. 4. Determination of intracellular pH by the analysis of the distribution of the weak acid dimethyloxazolidinedione allows the conclusion that the pH optimum of iodothyronine 5'-deiodinase in the intact perfused liver corresponds to the maximum determined in vitro for the membrane-bound enzyme localized in the endoplasmic reticulum. 5. The rapid 5'-deiodination of rT3 to 3,3'-T2 (L-3,3'-di-iodothyronine), the fast disappearance of 3,3'-T2, and the fact that no net rT3 production from T4 could be detected, supports the hypothesis that in rat liver iodothyronine 5'-deiodinase activity seems to predominate over iodothyronine 5-deiodinase activity. 6. Thus the rat liver can be considered in normal physiological situations as an organ forming T3 from T4 and deiodinating rT3 originating from extrahepatic tissues, whereby the cellular iodothyronine 5'-deiodination rate is controlled by the intracellular pH.  相似文献   

17.
We have studied the effect of two inhibitors of prostaglandin synthesis on the basal and TRH-stimulated plasma TSH levels in the rat. Animals were injected sc daily with indomethacin 3 mg/0.5 ml) or aspirin (16--30 mg/0.5 ml) for 3 days. The plasma T4 and T3 were consistently lower in the indomethacin or aspirin groups than in the controls, while the basal TSH levels did not change. Indomethacin treatment significantly potentiated the TSH response to synthetic TRH (20 ng. iv) in intact and thyroidectomized rats. The pituitary TSH content was markedly increased by indomethacin, while hypothalamic TRH content did not change. In contrast, aspirin inhibited the TSH response to TRH in intact rats, when pituitary TSH content decreased significantly. No potentiation by aspirin of TRH-stimulated TSH response in the thyroidectomized rats was observed. The increased sensitivity of plasma TSH response to exogenous TRH in the indomethacin group is presumably due to higher pituitary TSH content than in the controls. The action of indomethacin appears to be mediated, at least in part, at the pituitary level. In addition, there is a dissociation between the action of indomethacin and the action of aspirin in the TSH response to TRH.  相似文献   

18.
To clarify the maturation process of the pituitary-thyroid axis during the perinatal period, thyrotropin (TSH) response to thyrotropin releasing hormone (TRH) and serum thyroid hormone levels were examined in 26 healthy infants of 30 to 40 weeks gestation. A TRH stimulation test was performed on 10 to 20 postnatal days. Basal concentrations of serum thyroxine (T4), free thyroxine (free T4) and triiodothyronine (T3) were positively correlated to gestational age and birth weight (p less than 0.001-0.01). Seven infants of 30 to 35 gestational weeks demonstrated an exaggerated TSH response to TRH (49.7 +/- 6.7 microU/ml versus 22.1 +/- 4.8 microU/ml, p less than 0.001), which was gradually reduced with gestational age and normalized after 37 weeks gestation. A similar decrease in TSH responsiveness to TRH was also observed longitudinally in all of 5 high responders repeatedly examined. There was a negative correlation between basal or peak TSH concentrations and postconceptional age in high responders (r = -0.59 p less than 0.05, r = -0.66 p less than 0.01), whereas in the normal responders TSH response, remained at a constant level during 31 to 43 postconceptional weeks. On the other hand, there was no correlation between basal or peak TSH levels and serum thyroid hormones. These results indicate that (1) maturation of the pituitary-thyroid axis is intrinsically controlled by gestational age rather than by serum thyroid hormone levels, (2) hypersecretion of TSH in preterm infants induces a progressive increase in serum thyroid hormones, and (3) although there is individual variation in the maturation process, the feedback regulation of the pituitary-thyroid axis matures by approximately the 37th gestational week.  相似文献   

19.
Regulation of thyrotropin (TSH) release by thyrotropin releasing hormone (TRH) in the anterior pituitary gland (AP) of pregnant rats was studied. The pregnant (day 7, 14, and 21) and diestrous rats were decapitated. AP was divided into 2 halves, and then incubated with Locke's solution at 37 degrees C for 30 min following a preincubation. After replacing with media, APs were incubated with Locke's solution containing 0, or 10 nM TRH for 30 min. Both basal and TRH-stimulated media were collected at the end of incubation. Medial basal hypothalamus (MBH) was incubated with Locke's medium at 37 degrees C for 30 min. Concentrations of TSH in medium and plasma samples as well as the cyclic 3':5' adenosine monophosphate (cAMP) content in APs and the levels of TRH in MBH medium were measured by radioimmunoassay. The levels of plasma TSH were higher in pregnant rats of day 21 than in diestrous rats. The spontaneous release of TSH in vitro was unaltered by pregnancy. TRH increased the release of TSH by AP, which was higher in pregnant than in diestrous rats. Maternal serum concentration of total T3 was decreased during the pregnancy. The basal release of hypothalamic TRH in vitro was greater in late pregnant rats than in diestrous rats. After TRH stimulation, the increase of the content of pituitary cAMP was greater in late pregnant rats than in diestrus animals. These results suggest that the greater secretion of TSH in pregnant rats is in part due to an increase of spontaneous release of TRH by MBH and a decrease of plasma thyroid hormones. Moreover, the higher level of plasma TSH in rats during late pregnancy is associated with the greater response of pituitary cAMP and TSH to TRH.  相似文献   

20.
High-affinity agonists for the retinoic acid X receptors (RXR) have pleotropic effects when administered to humans. These include induction of hypertriglyceridemia and hypothyroidism. We determined the effect of a novel high-affinity RXR agonist with potent antihyperglycemic effects on thyroid function of female Zucker diabetic rats and nondiabetic littermates and in db/db mice. In both nondiabetic and ZFF rats, AGN194204 causes a 70-80% decrease in thyrotropin (TSH), 3,3',5-triiodothyronine, and thyroxine (T(4)) concentrations. In the db/db mouse, AGN194204 causes a time-dependent decrease in thyroid hormone levels with the fall in TSH that was significant after 1 day of treatment preceding the fall in T(4) levels that was significant at 3 days of treatment. Treatment with AGN194204 caused an initial increase in hepatic 5'-deiodinase mRNA levels which then fell to undetectable levels by 3 days of treatment and continued to be low at 7 days of treatment. After treatment for 5 days with AGN194204, both wild-type and thyroid hormone receptor beta (TR beta(-/-))-deficient mice demonstrated a nearly 50% decrease in serum TSH and T(4) concentrations. The results suggest that a high-affinity RXR agonist with antihyperglycemic activity can cause central hypothyroidism independently of TR beta, the main mediator of hormone-induced TSH suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号