首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiovascular effects of cocaine in anesthetized and conscious rats   总被引:1,自引:0,他引:1  
D K Pitts  C E Udom  J Marwah 《Life sciences》1987,40(11):1099-1111
This study examined the cardiovascular and respiratory effects of cocaine and procaine in anesthetized and conscious rats. Intravenous cocaine (0.16-5 mg/Kg) elicited a rapid, dose dependent increase in mean arterial pressure of relatively short duration. In pentobarbital anesthetized (65 mg/Kg, i.p.) animals, the pressor phase was generally followed by a more prolonged depressor phase. These effects on arterial pressure were generally accompanied by a significant tachypnea and at larger doses (2.5 and 5 mg/Kg, i.v.), bradycardia. Procaine (0.31 and 1.25 mg/Kg, i.v.) produced similar cardiovascular and respiratory effects (depressor phase, tachypnea) in pentobarbital anesthetized animals. In conscious-restrained animals, both cocaine and procaine (1.25 mg/kg, i.v.) produced pressor responses. The subsequent depressor response was, however, absent in both cases. The cardiovascular effects of cocaine (0.25-1 mg/Kg, i.v.) in urethane anesthetized (1.25 g/Kg, i.p.) animals were essentially similar to those observed in conscious animals. Procaine (1mg/Kg) did not produce any significant cardiovascular effects in urethane anesthetized animals, but did elicit tachypnea. Reserpine pretreatment (10 mg/Kg, i.p.) did not significantly attenuate the pressor response in urethane anesthetized animals. Phentolamine pretreatment (3 mg/Kg, i.v.) did significantly antagonize the pressor effect in urethane anesthetized animals. These results suggest that: the depressor phase is likely due to a interaction between local anesthetic activity (cocaine and procaine) and barbiturate anesthesia, the cardiovascular effects of cocaine in conscious animals are more similar to those observed in urethane anesthetized rats than in pentobarbital anesthetized rats and the pressor effect in urethane anesthetized rats is apparently due to a reserpine resistant catecholaminergic mechanism.  相似文献   

2.
Experiments were designed to determine the hemodynamic responses of conscious, unrestrained rats given intracerebroventricular (i.c.v.) injections of dynorphin A-(1-13) and the possible central receptor mechanisms mediating those changes. Male Sprague-Dawley rats (300 gb. wt.) received i.c.v. injections (by gravity flow in a total volume of 3 or 5 microliter) of control solutions of sterile saline (SS) or dimethylsulfoxide (DMSO) or 1.5, 3.0 or 6.1 nmol of dynorphin A-(1-13). Blood pressure and heart rate changes were monitored over 2 h after administration; as well, feeding activity was visually assessed and scored over this period. Other groups of conscious rats were pretreated i.c.v. with equimolar doses (3.0-24.4 nmol) of specific receptor antagonists (naloxone HCl, phentolamine HCl, propranolol HCl, yohimbine HCl or prazosin HCl) 10 min before subsequent i.c.v. administration of SS or DMSO/SS or 6.1 nmol of dynorphin A-(1-13). I.c.v. injection of dynorphin A-(1-13) caused a dose-related pressor response, associated temporally with tachycardia. As well, dynorphin evoked feeding activity and some grooming, which occurred when the rats were hypertensive and tachycardic and decreased as heart rate and blood pressure returned to control levels. I.c.v. pretreatment studies indicated that naloxone HCl (12.2 nmol), phentolamine HCl (12.2 nmol) and prazosin HCl (6.1 nmol) blocked the pressor response, tachycardia as well as feeding activity of rats subsequently given dynorphin. The results suggest the pressor and tachycardic effects of conscious rats following i.c.v. dynorphin administration may, in part, be due to behavioral activation (feeding). As well, these data indicate that both opioid as well as alpha 1-adrenergic receptors within the CNS are involved in mediating the pressor, tachycardic and feeding responses of conscious rats given i.c.v. injections of dynorphin A.  相似文献   

3.
In the current study, we aimed to determine the cardiovascular effects of arachidonic acid and peripheral mechanisms mediated these effects in normotensive conscious rats. Studies were performed in male Sprague Dawley rats. Arachidonic acid was injected intracerebroventricularly (i.c.v.) at the doses of 75, 150 or 300 microg and it caused dose- and time-dependent increase in mean arterial pressure and decrease in heart rate in normal conditions. Maximal effects were observed 10 min after 150 and 300 microg dose of arachidonic acid and lasted within 30 min. In order to evaluate the role of main peripheral hormonal mechanisms in those cardiovascular effects, plasma adrenaline, noradrenaline, vasopressin levels and renin activity were measured after arachidonic acid (150 microg; i.c.v.) injection. Centrally injected arachidonic acid increased plasma levels of all these hormones and renin activity. Intravenous pretreatments with prazosin (0.5 mg/kg), an alpha1 adrenoceptor antagonist, [beta-mercapto-beta,beta-cyclopentamethylenepropionyl1, O-Me-Tyr2-Arg8]-vasopressin (10 microg/kg), a vasopressin V1 receptor antagonist, or saralasin (250 microg/kg), an angiotensin II receptor antagonist, partially blocked the pressor response to arachidonic acid (150 microg; i.c.v.) while combined administration of these three antagonists completely abolished the effect. Moreover, both individual and combined antagonist pretreatments fully blocked the bradycardic effect of arachidonic acid. In conclusion, our findings show that centrally administered arachidonic acid increases mean arterial pressure and decreases heart rate in normotensive conscious rats and the increases in plasma adrenaline, noradrenaline, vasopressin levels and renin activity appear to mediate the cardiovascular effects of the drug.  相似文献   

4.
Intracerebroventricular (i.c.v.) choline (50–150 g) increased blood pressure and decreased heart rate in spinal cord transected, hypotensive rats. Choline administered intraperitoneally (60 mg/kg), also, increased blood pressure, but to a lesser extent. The pressor response to i.c.v. choline was associated with an increase in plasma vasopressin. Mecamylamine pretreatment (50 g; i.c.v.) blocked the pressor, bradycardic and vasopressin responses to choline (150 g). Atropine pretreatment (10 g; i.c.v.) abolished the bradycardia but failed to alter pressor and vasopressin responses. Hemicholinium-3 [HC-3 (20 g; i.c.v.)] pretreatment attenuated both bradycardia and pressor responses to choline. The vasopressin V1 receptor antagonist, (-mercapto-, -cyclopenta-methylenepropionyl1, O-Me-Tyr2, Arg8)-vasopressin (10 g/kg) administered intravenously 5 min after choline abolished the pressor response and attenuated the bradycardia-induced by choline. These data show that choline restores hypotension effectively by activating central nicotinic receptors via presynaptic mechanisms, in spinal shock. Choline-induced bradycardia is mediated by central nicotinic and muscarinic receptors. Increase in plasma vasopressin is involved in cardiovascular effects of choline.  相似文献   

5.
Britton KT  Southerland S 《Peptides》2001,22(4):607-612
Intracerebroventricular injection of neuropeptide Y (NPY) produces potent 'anxiolytic' effects in animal models of anxiety. Administration of opioid receptor antagonists suppresses NPY-induced food intake and thermogenesis. The present study examined whether the opiate antagonist naloxone would also suppress the 'anxiolytic' effects of neuropeptide Y. Following training and stabilization of responding in an operant conflict model of anxiety, rats were injected with either NPY or diazepam. Both NPY (veh., 2, 4, 6 microg, i.c.v.) and chlordiazepoxide (veh., 2, 4, 6 mg/kg, i.p.) produced a dose-dependent increase in punished responding in the conflict test. The 'anxiolytic' effects of NPY were not blocked by the administration of flumazenil (3, 6, 12 mg/kg, i.p.). The administration of naloxone (0.25-2.0 mg/kg, s.c.) antagonized the effects of NPY. Central administration of the selective mu opiate antagonist CTAP (1 microg, i.c.v.) partially blocked NPY-induced conflict responding. These results support the hypothesis that NPY may play an important role in experimental anxiety independent of the benzodiazepine receptor and further implicate the opioid system in the behavioral expression of anxiety.  相似文献   

6.
The components of the renin-angiotensin system exist in the brain but their physiological role is uncertain. The effects of two angiotensin converting enzyme (ACE) inhibitors, MK 421 (or its diacid) and captopril, on brain ACE activity, as measured by inhibition of the pressor response to intracerebroventricularly (i.c.v.) administered angiotensin I (AI), and the potential contribution of the central nervous system to their antihypertensive activity were evaluated in the present series of experiments. The diacid of MK 421 (1 and 10 ug) and captopril (3 and 10 ug) given i.c.v. to conscious normotensive rats reduced the pressor response to i.c.v. AI indicating that they can inhibit brain ACE. Responses to AII were unaffected. Oral administration of maximal antihypertensive doses of MK 421 (10 mg/kg) and of captopril (30 mg/kg) to normotensive rats did not attenuate pressor responses to i.c.v. AI indicating that brain ACE was not inhibited under these circumstances. Intracerebroventricular administration of MK 421 diacid, (10 and 30 ug) and captopril (30 and 100 ug) did not lower baseline blood pressure of spontaneously hypertensive rats. These experiments indicate that MK 421 and captopril can inhibit brain ACE but that the central renin-angiotensin system probably does not contribute to their antihypertensive activity.  相似文献   

7.
Hemodynamic (blood pressure and heart rate) responses of conscious drug-naive rats were studied following intravenous (i.v.) infusion of sterile saline, morphine sulphate, and then naloxone hydrochloride, as well as of other groups previously injected with morphine sulphate. Those groups chronically given morphine sulphate received twice daily injections of morphine sulphate (5 mg/kg, s.c. per injection) for 3 or 6 days before testing with the i.v. infusion of morphine sulphate. Drugs were infused (135 microL/min) through an indwelling femoral venous catheter via a Harvard infusion pump, and blood pressure was recorded from the abdominal aorta via a femoral arterial catheter. Other pretreatment studies were done to determine the receptor mechanisms mediating the blood pressure responses of drug-naive and chronic morphine-treated rats, whereby equimolar doses (0.32 mumol) of specific receptor antagonists were given as a bolus i.v. injection 5 min after saline but before subsequent infusion with morphine sulphate. Intravenous infusion of morphine sulphate (7.5 mg/kg total over 15 min) to drug-native rats caused a transient but precipitous fall in mean arterial pressure and mean heart rate with an associated rise in mean pulse pressure; these effects were blocked in other groups pretreated with atropine. Interestingly, however, rats chronically injected with morphine sulphate for 3 days previously evoked a transient pressor response when subsequently infused i.v. with morphine sulphate, actions that were blocked in other groups when pretreated i.v. with 0.32 mumol of phentolamine, yohimbine, prazosin, or guanethidine. A greater and persistent pressor response occurred following morphine infusion to groups of rats previously injected over 6 days with morphine sulphate, which was associated with tachycardia during the later stages of the 15-min morphine sulphate infusion period. The prolonged pressor and tachycardic responses of this 6-day chronically injected group were completely blocked in another group pretreated i.v. with both phentolamine and propranolol (0.32 mumol). The results suggest that morphine sulphate infusion to conscious, drug-naive rats evokes classical hypotensive effects due to decreases in mean heart rate caused by activation of parasympathetic vagal activity. With 3 or 6 days of chronic morphine sulphate administration beforehand, subsequent i.v. infusion of morphine sulphate evoked pressor actions felt to be caused by a progressive activation of the sympathetic nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Arginine vasopressin (AVP) is an important neurohormone in the regulation of many aspects of central nervous system, yet its modulation on the respiratory function remains largely unknown. The aims of this study were to investigate the modulation of phrenic (PNA) and hypoglossal nerve activity (HNA) by central administration of AVP and to identify the involvement of AVP V1A receptors in this modulation. Animals were anesthetized with urethane (1.2 g/kg, i.p.), paralyzed with gallamine triethiodide (5 mg/kg, i.v.), and artificially ventilated. The rat was then placed on a stereotaxic apparatus in a prone position. PNA and HNA were monitored at normocapnia in hyperoxia. Microinjection of AVP into the medial ventrolateral medulla (VLM) and/or rostral ventral respiratory group (rVRG) produced a dose-dependent inhibition on both PNA and HNA, whereas the microinjection of AVP into the region of lateral VLM resulted in a similar inhibition of these nerve activities and a pressor response. Systemic administration of phentolamine abolished the pressor effect but did not affect the inhibition of PNA and HNA evoked by AVP injection into the lateral VLM and/or rVRG, suggesting that AVP-induced inhibition of PNA and HNA was not due to the side effect of pressor response. These cardiopulmonary modulations were totally abolished by the central pretreatment of AVP V1A receptor antagonist. Our results suggested that AVP may activate neurons located at the VLM and/or rVRG via the AVP V1A receptor to inhibit respiratory-related HNA and thus to regulate upper airway aperture.  相似文献   

9.
Cardiovascular effects of the essential oil of Croton zehntneri (EOCZ) were investigated in conscious rats. In these preparations, intravenous (i.v.) injections of EOCZ (1-20 mg kg(-1)) and its main constituents anethole and estragole (both at 1-10 mg kg(-1)) elicited brief and dose-dependent hypotension and bradycardia (phase I) that were followed by a significant pressor effect associated with a delayed bradycardia (phase II). The initial hypotension and bradycardia (phase I) of EOCZ were unchanged by atenolol (1.5 mg kg(-1), i.v.) or L-NAME (20 mg kg(-1), i.v.) pretreatment, but were respectively reversed into pressor and tachycardic effects by methylatropine (1 mg kg(-1), i.v.) pretreatment. The subsequent pressor effect and the delayed bradycardia (phase II) remained unaffected by atenolol, but were abolished by L-NAME and methylatropine pretreatment, respectively. In rat endothelium-containing aorta preparations, the vasoconstrictor responses to phenylephrine were enhanced and reduced, respectively, by the lower (1-30 microg mL(-1)) and higher (300-1000 microg mL(-1)) concentrations of EOCZ. Only the enhancement of phenylephrine-induced contraction was abolished by either the incubation with L-NAME (50 microM) or in the absence of the endothelium. These data show, for the first time, that i.v. administration EOCZ induces an initial hypotension followed by a pressor response, two effects that appear mainly attributed to the actions of anethole and estragole. The EOCZ-induced hypotension (phase I) is mediated by a cholinergic mechanism and seems to result mainly from the concomitant bradycardia. The pressor response of EOCZ (phase II) seems to be caused by an indirect vasoconstrictive action of EOCZ most likely through inhibition of endothelial nitric oxide production.  相似文献   

10.
We previously reported the stimulatory effect of endogenous nitric oxide (NO) on gastric acid secretion in the isolated mouse whole stomach and histamine release from gastric histamine-containing cells. In the present study, we investigated the effects of endogenous and exogenous NO on gastric acid secretion in urethane-anesthetized rats. Acid secretion was studied in gastric-cannulated rats stimulated with several secretagogues under urethane anesthesia. The acid secretory response to the muscarinic receptor agonist bethanechol (2 mg/kg, s.c.), the cholecystokinin(2) receptor agonist pentagastrin (20 microg/kg, s.c.) or the centrally acting secretagogue 2-deoxy-D-glucose (200 mg/kg, i.v.) was dose-dependently inhibited by the NO synthase inhibitor N(omega)-nitro-L-arginine (L-NNA, 10 or 50 mg/kg, i.v.). This inhibitory effect of L-NNA was reversed by a substrate of NO synthase, L-arginine (200 mg/kg, i.v.), but not by D-arginine. The histamine H(2) receptor antagonist famotidine (1 mg/kg, i.v.) completely inhibited the acid secretory response to bethanechol, pentagastrin or 2-deoxy-D-glucose, showing that all of these secretagogues induced gastric acid secretion mainly through histamine release from gastric enterochromaffin-like cells (ECL cells). On the other hand, histamine (10 mg/kg, s.c.)-induced gastric acid secretion was not inhibited by pretreatment with L-NNA. The NO donor sodium nitroprusside (0.3-3 mg/kg, i.v.) also dose-dependently induced an increase in acid secretion. The sodium nitroprusside-induced gastric acid secretion was significantly inhibited by famotidine or by the soluble guanylate cyclase inhibitor methylene blue (50 mg/kg, i.v.). These results suggest that NO is involved in the gastric acid secretion mediated by histamine release from gastric ECL cells.  相似文献   

11.
The effects of capsaicin analogs on adrenaline secretion were investigated in rats. Capsaicin (20-100 microg/kg, i.v.) caused biphasic adrenaline secretion. Capsazepine (20 mg/kg, i.v.), a specific competitive antagonist of the vanilloid (capsaicin) receptor, strongly inhibited both phases of adrenaline secretion by capsaicin (50 microg/kg). Next, the effects of two capsaicin analogs on the adrenal catecholamine secretion were examined. Resiniferatoxin (20-200 ng/kg, i.v.), a naturally occurring phorbolester-like compound, provoked slow onset adrenaline secretion in a dose-dependent manner. Olvanil (2.46-246 microg/kg, i.v.), a synthesized non pungent capsaicin analog, also stimulated delayed catecholamine secretion dose-dependently. Capsazepine (20 mg/kg, i.v.) pretreatment prevented the resiniferatoxin (50 ng/kg)- and olvanil (24.6 microg/kg)-induced catecholamine secretion. These results suggest that some vanilloids (capsaicin, resiniferatoxin, olvanil) excite adrenaline secretion and such excitation is via the vanilloid receptor.  相似文献   

12.
The central haemodynamic effects of neuropeptide Y (NPY), both alone and together with either noradrenaline (NA) or vasopressin (AVP), have been investigated by microinjecting synthetic peptide into the nucleus tractus solitarius (NTS) of anaesthetized rats. NPY alone elicited dose-dependent changes in blood pressure (BP) and heart rate (HR); 470 fmol inducing a pressor response, and 4.7 pmol a fall in BP. The hypotensive response to 20 nmol NA was significantly modified by both simultaneous and prior injection of an ineffective dose (47 fmol) of NPY. Prior injection of a similar dose of NPY also modified the NTS pressor effect of 10 ng AVP. A relationship between the action of AVP and NPY in the NTS was further indicated by the finding that prior injection of an ineffective dose of AVP (1 ng) reduced the hypotensive response to 4.7 pmol NPY, and by the demonstration of contrasting effects of 4.7 pmol NPY in AVP-deficient Brattleboro rats compared to parent strain LE rats. These results, taken together with the recent localization of NPY-like immunoreactivity in the NTS, suggest a role for NPY in central cardiovascular control. In addition, NPY has been shown to exhibit functional interactions with both an amine neurotransmitter and a neuropeptide present in the NTS of rats.  相似文献   

13.
The cardiovascular actions of centrally administered neuropeptide Y   总被引:1,自引:1,他引:0  
The cardiovascular actions of intracerebroventricular (i.c.v.) administration of neuropeptide Y (NPY) were examined in conscious, unrestrained rats. A prolonged decrease in heart rate (HR) and a fall in mean arterial pressure (MAP) were obtained following i.c.v. administration of NPY (1 and 10 micrograms). Passive immunization with an antiserum directed against NPY confirmed that the slowing of HR following i.c.v. administration of NPY was mediated via a central nervous mechanism and not from leakage of NPY out of the brain. Administration of NPY into different brain parenchymal regions identified a putative site of action in the rostral region of the solitary tract. The mechanism of the decrease in HR caused by centrally administered NPY was investigated by i.c.v. administration of NPY to animals that were pretreated with agents that altered autonomic tone. Administration of NPY to atropine-treated animals produced a reversal of the atropine-induced tachycardia, suggesting that the NPY-induced decrease in HR was not due to augmented vagal tone. However, administration of NPY to animals pretreated with propranolol did not significantly lower HR below that obtained with propranolol alone. These data suggest that i.c.v. administration of NPY may cause a decrease in cardiac sympathetic outflow. The effects of centrally administered NPY on baroreflex function were studied. The changes in HR caused by NPY did not significantly alter baroreflex set-point or gain. These studies provide evidence that NPY acted within a brainstem region to decrease sympathetic nervous outflow, resulting in a decrease in HR and MAP.  相似文献   

14.
Duan GC  Ling YL  Gu ZY  Wei P  Niu ZY  Yang SF 《生理学报》2003,55(2):201-205
为探讨八肽胆囊收缩素(CCK-8)缓解内毒素休克(ES)时肺动脉血压(PAP)增高的机制,观察了CCK-8对脂多糖(LPS)引起家兔ES时PAP变化以及离体肺动脉环(PARs)张力改变的影响。实验用新西兰大耳白雄性家兔40只,分为颈静脉注入LPS(8mg/kg i.v.)复制的家兔ES模型、LPS注入前15min给CCK-8(15μg/kg,i.v.)、LPS注入前15min给CCK受体拮抗剂丙谷胺(Pro 1mg/kg,i.v.)、单独注入CCK-8(15μg/kg,i.v.)和注射生理盐水(对照)共5组。用生理记录仪监测平均动脉压(MAP)和PAP的变化;5h后制备PARs,应用血管张力测定技术,检测各组PARs张力。结果为:(1)ES时MAP降低、PAP升高,CCK-8可完全翻转ES时PAP的增高,而Pro加剧ES时PAP的增高;(2)LPS组的PARs对苯肾上腺素(PE)的收缩反应增强,对ACh内皮依赖性舒张反应降低,而CCK-8可逆转LP5的上述作用。上述结果提示CCK—8可缓解ES时的PAP升高,这可能与其调节肺动脉张力改变有关。  相似文献   

15.
Britton KT  Akwa Y  Spina MG  Koob GF 《Peptides》2000,21(1):37-44
Central administration of neuropeptide Y (NPY) produces anxiolytic-like behavioral effects in rat models of anxiety. Because previous evidence has suggested a relationship between NPY and corticotropin-releasing factor (CRF) in the brain, we have focused on the interaction of these neuropeptide systems in emotional responsiveness to stressful stimuli. Intracerebroventricular administration of CRF produced a marked response suppression in an operant incremental shock conflict paradigm. NPY [(1 microg, intracerebroventricularly (i.c.v.)] significantly antagonized the response-suppressing effects of CRF (0.75 microg, i.c.v.) on punished responding in the conflict test at doses that produced little or no behavioral effect when administered alone. Central administration of the CRF antagonist [D-Phe(12), Nle(21,38),C(alpha) MeLeu(37)]CRF (D-Phe CRF(12-41)) alone did not alter punished or unpunished responding in the conflict test. However, pretreatment with the CRF antagonist before a subthreshold dose of NPY (1 microg, i.c.v.) produced a significant potentiation of the release of punished responding relative to NPY alone and untreated controls. NPY also antagonized the "anxiogenic-like" behavioral effects of CRF in the elevated plus maze. These findings support the hypothesis that NPY and CRF may reciprocally modulate an animal's behavioral response to stressful stimuli.  相似文献   

16.
The cardiovascular effects of phenylephrine or ephedrine alone and after autonomic blockade was studied in the chronically cannulated fetal lamb (100-145 days), the newborn lamb, and adult sheep. As gestation advanced, phenylephrine and ephedrine produced an increasing pressor response before and after pretreatment with atropine (1 mg/kg). Compared with the fetus, the magnitudes of the pressor responses were somewhat greater in the newborn and much larger in the adult. Both drugs produced a reflex bradycardia in the unatropinized fetus which in the case of ephedrine was followed by a tachycardia. Pretreatment with atropine resulted in an immediate tachycardia after ephedrine but not after phenylephrine administration. Pretreatment with phentolamine (0.15 mg/kg) produced about a 55% inhibition of the phenylephrine pressor response in both the fetus and adult, suggesting a linear relationship between body weight and number of alpha-adrenergic receptors. Pretreatment with metoprolol blocked the tachycardia associated with ephedrine administration to unatropinized fetuses. In summary, the increase in the magnitude of the pressor response to phenylephrine suggested development of the receptor-effector system. The greater development of the response to ephedrine suggested that there was an increasing amount of noradrenaline being released with advancing gestation.  相似文献   

17.
Cardiovascular responses to the intravenous (i.v.) and the intracerebroventricular (i.c.v.) administration of cadmium acetate were evaluated in rats anaesthetized with urethane. Cadmium acetate (1 mg/kg i.v.) caused an initial fall followed by a persistent rise in blood pressure. Cadmium acetate (1 microgram i.c.v.) produced a more marked hypertensive effect. In the spinal-transected rat, the effect of intravenous cadmium was reduced but the effect of intraventricularly administered cadmium was completely abolished. It is, therefore, suggested that both central and peripheral mechanisms are involved in the pressor response to cadmium exposure.  相似文献   

18.
In the present study in normotensive Wistar Kyoto rats (WKY), we investigated whether any angiotensin II (ANG II) increases in vascular cyclic GMP production were via stimulation of AT(2) receptors. Adult WKY were infused for 4h with ANG II (30 ng/kg per min, i.v.) or vehicle (0.9% NaCl, i.v.) after pretreatment with (1) vehicle, (2) losartan (100 mg/kg p.o.), (3) PD 123319 (30 mg/kg i.v.), (4) losartan+PD 123319, (5) icatibant (500 microg/kg i.v.), (6) L-NAME (1 mg/kg i.v.), (7) minoxidil (3 mg/kg i.v.). Mean arterial blood pressure (MAP) was continuously monitored, and plasma ANG II and aortic cyclic GMP were measured at the end of the study. ANG II infusion over 4h raised MAP by a mean of 13 mmHg. This effect was completely prevented by AT(1) receptor blockade. PD 123319 slightly attenuated the pressor effect induced by ANG II alone (123.4+/-0.8 versus 130.6+/-0.6) but did not alter MAP in rats treated simultaneously with ANG II + losartan (113+/-0.6 versus 114.3+/-0.8). Plasma levels of ANG II were increased 2.2-3.7-fold by ANG II infusion alone or ANG II in combination with the various drugs. The increase in plasma ANG II levels was most pronounced after ANG II+losartan treatment but absent in rats treated with losartan alone. Aortic cyclic GMP levels were not significantly changed by either treatment. Our results demonstrate that the AT(2) receptor did not contribute to the cyclic GMP production in the vascular wall of normotensive WKY.  相似文献   

19.
Ghrelin, a circulating growth-hormone releasing peptide derived from stomach, stimulates food intake through neuropeptide Y (NPY) neurons of the arcuate nucleus in the hypothalamus (ARC). We examined the effect of ghrelin microinjected into the ARC and the influence of intracerebroventricular (i.c.v.) pretreatment with a GHRH or NPY receptor antagonist on ghrelin-induced food intake in free-feeding male rats. Ghrelin (0.1-1 microg) stimulated food intake in a dose-dependent manner, and this effect was reduced by 55-60% by the Y(5) NPY receptor antagonist (10 microg i.c.v.), but not by the GHRH receptor antagonist MZ-4-71 (10 microg i.c.v.). We also evaluated the effects of passive ghrelin immunoneutralization by the microinjection of anti-ghrelin immunoglobulins (IgGs) intracerebroventricularly or directly into the ARC on food intake in free-feeding and fasted male rats. i.c.v. administration of anti-ghrelin IgGs decreased cumulative food intake over 24 h, whereas microinfusion of anti-ghrelin IgGs into the ARC induced only a short-lived (2 and 6 h) effect. Collectively, these data would indicate that centrally derived ghrelin has a major role in the control of food intake in rats and, in this context, blood-born ghrelin would be effective only in relation to its ability to reach the ARC, which is devoid of blood-brain barrier.  相似文献   

20.
Acetylcholine potently stimulates the hypothalamic-pituitary-adrenal (HPA) axis. Cholinergic receptor agonist carbachol, given intraperitoneally (i.p.) or into the lateral cerebral ventricle (i.c.v.) to non-anesthetized rats acts via multiple pathways to stimulate the HPA axis. The present study sought to determine 1) the functional selectivity of carbachol for cholinergic muscarinic and/or nicotinic receptors involved in the stimulation of HPA axis; 2) the involvement of prostaglandins (PGs) generated by constitutive and inducible cyclooxygenase (COX-1 and COX-2) in the carbachol-induced ACTH and corticosterone secretion in non-stressed rats and animals exposed to social crowding stress for 7 days (24 per a cage for 6). Carbachol was given i.c.v. or i.p. and cholinergic receptor antagonists or cyclooxygenase isoenzyme antagonists were given by the same routes 15 min earlier. One hour after the last injection trunk blood was taken for ACTH and corticosterone determinations. Atropine (0.1 microg i.c.v.), a cholinergic receptor antagonist, totally abolished the carbachol (2 microg i.c.v.)-induced ACTH and corticosterone secretion and mecamylamine (20 microg i.c.v.), a selective nicotinic receptor antagonist, did not affect this secretion. This finding indicates that carbachol functions as a selective central cholinergic muscarinic receptor agonist for the HPA axis stimulation. Crowding stress significantly diminished the carbachol (0.2 mg/kg i.p.)-induced plasma ACTH and corticosterone levels measured 1 hr after administration. Pretreatment with indomethacin (2 mg/kg i.p.), a non-selective cyclooxygenase inhibitor, significantly diminished the ACTH and corticosterone responses to carbachol (0.2 mg/kg i.p.) in control rats and moderately decreased these responses in stressed rats. Piroxicam (0.2 and 2.0 mg/kg i.p.), a COX-1 inhibitor, considerably impaired the carbachol-induced ACTH and corticosterone responses in control rats and markedly diminished these responses in stressed rats. A selective COX-2 blocker, compound NS-398 (0.2 and 2.0 mg/kg i.p.), substantially decreased the carbachol-induced hormones secretion in control rats but did not markedly alter this secretion in stressed rats. These results indicate that in the carbachol-induced HPA axis activation PGs generated by COX-1 are considerably and to a much greater extent involved than PGs generated by COX-2. Social stress markedly diminishes the mediation of PGs generated by COX-1 but PGs synthesized by COX-2 do not substantially participate in the carbachol-induced HPA response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号