首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge of the vesicular origin of circulating dopamine beta-hydroxylase (DbetaH) is indispensable for any attempts to explain the parallelism or lack of it between circulating enzyme and catecholamines as they may relate to physiological stress, forms of hypertension, neurological disorders, and the response to pharmacological agents. The present study represents an effort to evaluate and to place in proper perspective data based on the DbetaH activity found in the region of the light vesicle peak of noradrenaline (NA), which is used as a quantitative measure of a population of small terminal vesicles. Distributions of vesicles and subvesicular components are compared with DbetaH and NA in sucrose-D2O density gradients used to prepare relatively pure fractions of large dense cored vesicles (LDV) from bovine splenic nerve. Although NA in sedimentable particles of the light vesicle peak is likely to be a valid measure of a small vesicle population, the following is demonstrated: (1) A substantial fraction (25%-37%) of the total sedimentable DbetaH activity can be proven to distribute in the region of the light vesicle peak from a tissue with an insignificant small vesicle population. Based on studies of vesicles from sequential nerve segments, this enzyme activity probably corresponds to a population of "immature" LDV which are undergoing axoplasmic transport and have not synthesized their full complement of transmitter. (2) Physical lysis which depletes the matrix of LDV causes redistribution of DbetaH activity from the heavy vesicle peak into the region of the light vesicle peak. Analogously, DbetaH associated with exocytosed LDV and retrograde transport particles is also likely to contaminate the region of the light vesicle peak. (3) Based on available data, it can be calculated that each small dense cored vesicle could contain only 0.1-0.5 molecules of DbetaH and that a contamination of only 0.016% LDV can account for all of the DbetaH reported to occur in the light vesicle peak of normal rat vas deferens preparations.  相似文献   

2.
The bovine splenic nerve trunk contins mast cells, ganglion cells, small intensely flurescent (SIF) cells, and varicosities which exhibit a brilliant fluorescence characteristic for noradrenaline (NA) and dopamine (DA) after formaldehyde exposure. All these catecholamine-rich structure could contribute particles to isolated nerve vesicle fractions. Mast cells are recognized ultrastructurally by their large (300–800nm) dense granules. SIF cells may be represented by cells and processes containing dense cored vesicles (120–140 nm) which are larger than the typical vesicles in axons and terminals. Terminal-like areas with typical large dense cored vesicles (LDV, 75 nm) and small dense cored vesicles (SDV, 45–55 nm) probably correspond to the fluorescent varicosities. The LDV constitute about 40% of all vesicle in terminal-like areas and terminals. Their staining properties indicate the presence of protein, phospholipids, and ATP. Tyramine depletes NA without loss of matrix density. The LDV can fuse with the terminal membrane, and released material outside omega profiles is interpreted to depict exocytosis. Large and small vesicles are easily distinguished from the very large mast cell granules and the moderately dense Schwann cell vesicles. Neither appear to contaminate the LDV fractions but the latter may contain a small population of SIF cell vesicles. Golgi vesicles from the Schwann cells mainly occur in the lighter zones of the gradient.  相似文献   

3.
The bovine splenic nerve trunk contains mast cells, ganglion cells, small intensely fluorescent (SIF) cells, and varicosities which exhibit a brilliant fluorescence characteristic for noradrenaline (NA) and dopamine (DA) after formaldehyde exposure. All these catecholamine-rich structures could contribute particles to isolated nerve vesicle fractions. Mast cells are recognized ultrastructurally by their large (300-800 nm) dense granules. SIF cells may be represented by cells and processes containing dense cored vesicles (120-140 nm) which are larger than the typical vesicles in axons and terminals. Terminal-like areas with typical large dense cored vesicles (LDV, 75 nm) and small dense cored vesicles (SDV, 45-55 nm) probably correspond to the fluorescent varicosities. The LDV constitute about 40% of all vesicles in terminal-like areas and terminals. Their staining properties indicate the presence of protein, phospholipids, and ATP. Tyramine depletes NA without loss of matrix density. The LDV can fuse with the terminal membrane, and released material outside omega profiles is interpreted to depict exocytosis. Large and small vesicles are easily distinguished from the very large mast cell granules and the moderately dense Schwann cell vesicles. Neither appear to contaminate the LDV fractions but the latter may contain a small population of SIF cell vesicles. Golgi vesicles from the Schwann cells mainly occur in the lighter zones of the gradient.  相似文献   

4.
The dopamine β-hydroxylase (DβH) content and activity of large dense-core noradrenergic vesicles purified from bovine splenic nerve were determined using two assay procedures : enzymic activity expressed in Units per mg protein and homospecific activity based on radioimmunoassay expressed in Units per mg DβH antigen. Approximately two-thirds of the total enzyme activity is latent in these vesicles, even after various treatments designed to compromise vesicle integrity. DβH can be completely unmasked by brief treatment with 0.01-0.05% Triton X-100 and activity increases from 0.20 to 0.64 Units per mg vesicle protein. Calculations based on both assay methods suggested that an average of 7% (range 3-15%) of the total vesicle protein was DβH and that the average vesicle contained about 4 molecules of enzyme (range 2-9 molecules). The estimated homospecific activities indicated an average of 25 and 50% (range 18-72%) of the vesicle enzyme was inactive in the various samples using the two antibodies. The vesicle can synthesize up to 30 molecules of noradrenaline/s per molecule of DβH at near optimal substrate concentration, and 60-270 molecules of norepinephrine/s per vesicle. The assumptions used in the various calculations were critically analyzed and, based on the methods employed, it is tentatively considered to be unlikely that there could be more than 5-12 molecules of DβH per vesicle. The possibility that circulating DβH originates primarily, if not exclusively, from the large dense-core vesicle type is considered and the functional implications of the data support the concept of vesicle reuse during several cycles of exocytosis involving a quantal size equal to a fraction of the vesicle transmitter content.  相似文献   

5.
In response to an external stimulus, neuronal cells release neurotransmitters from small synaptic vesicles and endocrine cells release secretory proteins from large dense core granules. Despite these differences, endocrine cells express three proteins known to be components of synaptic vesicle membranes. To determine if all three proteins, p38, p65, and SV2, are present in endocrine dense core granule membranes, monoclonal antibodies bound to beads were used to immunoisolate organelles containing the synaptic vesicle antigens. [3H]norepinephrine was used to label both chromaffin granules purified from the bovine adrenal medulla and rat pheochromocytoma (PC12) cells. Up to 80% of the vesicular [3H]norepinephrine was immunoisolated from both labeled purified bovine chromaffin granules and PC12 postnuclear supernatants. In PC12 cells transfected with DNA encoding human growth hormone, the hormone was packaged and released with norepinephrine. 90% of the sedimentable hormone was also immunoisolated by antibodies to all three proteins. Stimulated secretion of PC12 cells via depolarization with 50 mM KCl decreased the amount of [3H]norepinephrine or human growth hormone immunoisolated. Electron microscopy of the immunoisolated fractions revealed large (greater than 100 nm diameter) dense core vesicles adherent to the beads. Thus, large dense core vesicles containing secretory proteins possess all three of the known synaptic vesicle membrane proteins.  相似文献   

6.
Chromogranin A (CGA) has been localized to the large dense cored vesicles (LDV) of sympathetic neurons. SDS-PAGE and immunoblotting of soluble LDV proteins from ox and dog adrenergic neuronal cell bodies, axons and nerve terminals, revealed an increasing number of CGA-immunoreactive forms, consistent with proteolytic processing during axonal transport. Splenic nerve electrical stimulation (10 Hz, 2 min) revealed that, apart from CGA, these CGA-processing products are released from the sheep spleen. The secretion of CGA-derived fragments from sympathetic neurons might suggest a role in the regulation of synaptic transmission.  相似文献   

7.
Abstract— Synaptic vesicles were prepared from guinea-pig cerebral cortex on a continuous D2O-H2O(1:1)-sucrose gradient and purified in the presence of 1 m m -EGTA by chromatography on columns of glass beads of controlled pore size. As markers, endogenous ACh, NA, dopamine and DβH were measured.
Two distinct populations of synaptic vesicles were recognized between the layers of 0.2–0.3 m - and 0.3–0.5 m -sucrose, which differed from each other both in electron microscopic appearance and transmitter content. The less dense vesicles had a much higher ACh content than the more dense vesicles which were composed mainly of somewhat larger particles with high NA and dopamine content. DβH was found to be present in substantial amounts in guinea-pig cortex and was located in the synaptic vesicle fractions having high CA content.
After glass bead chromatography the vesicle preparations were morphologically homogeneous, practically free from other subcellular elements and were contaminated with each other by not more than 10%
The yields were 0.2 and 0.1 mg protein g cortex−1 tissue for 'cholinergic' and 'adrenergic' vesicle preparations, respectively.  相似文献   

8.
Acetylcholinesterase (AChE) activity at the synapses of presynaptic boutons on presumed alpha-motoneurons in the chicken ventral horn was studied histochemically at the light- and electron-microscope levels. At the light-microscope level, many dot-like AChE-active sites were observed on the soma and dendrites of presumed alpha-motoneurons. On electron microscopy, reaction products for AChE activity were observed mainly in the synaptic clefts of the four kinds of presynaptic boutons: (1) S type boutons, (2) boutons containing small, spherical, dense cored vesicles (diameter range, 60-105 nm) and spherical, clear vesicles, (3) boutons containing medium-sized, spherical, dense cored vesicles (65-115 nm) and spherical, clear vesicles, and (4) boutons containing large, spherical, dense cored vesicles (80-130 nm) and spherical, clear vesicles. In the light of previous physiological and biochemical studies, the present results suggest the possibility that each of these presynaptic boutons which are AChE-active in their synaptic clefts may contain acetylcholine, substance P, or enkephalins which acts as a neurotransmitter or modulator.  相似文献   

9.
We are carrying out a study about the synaptic relations between identified synaptic profiles in the dorsal lateral geniculate nucleus (dLGN) of the rabbit. Here, the types of synaptic vesicle containing profiles of the dLGN are described. There are presynaptic large profiles containing round vesicles and pale mitochondria (RLP terminals) and small profiles that contain round vesicles and dark mitochondria (RSD terminals) which respectively arise from the retina and the visual cortex. Another type of presynaptic profile contains elliptical vesicles (F-boutons) which can be subdivided according to their cytoplasmic content. These F-boutons arise from dLGN interneurons. We have found different sized vesicles that have a dense core within RLP, and F terminals and a possible RSD terminal. The significance of the coexistance of pale and dense cored vesicles in the presynaptic profiles of the rabbit dLGN is discussed.  相似文献   

10.
K S Lu  H S Lin 《Histochemistry》1979,61(2):177-187
The pineal gland of adult golden hamsters (Mesocricetus auratus) was studied by various cytochemical methods at the electron microscopic level: (1) the modified chromaffin reaction specific for 5-hydroxytryptamine (5-HT), (2) argentaffin reaction, (3) zinc-iodide-osmium (ZIO) mixture reaction and (4) acid phosphatase reaction. In the pinealocytes, the dense-cored vesicles (80-160 nm in diameter) show both chromaffinity and argentaffinity, while the population of dense bodies (150-400 nm in diameter) is reactive to ammoniacal silver solution and ZIO mixture but not to the modified chromaffin reaction. After incubation for demonstration of acid phosphatase activity, reaction products are localized in some, but not all, of the dense bodies, in some of the small vesicles in the Golgi region and in one or two inner Golgi saccules. In nerve fibers in the pineal gland, small granulated vesicles are also reactive to the modified chromaffin reaction and ZIO mixture. Based upon these cytochemical results the following conclusions have been reached: (1) dense cored vesicles in the pinealocytes and small granulated vesicles in the nerve fibers of the hamster pineal gland contain 5-HT, and (2) the population of dense bodies in the pinealocytes is heterogeneous, some are lysosomes and the other are possibly the granules responsible for the secretion of pineal peptides.  相似文献   

11.
Matsuno  Akira  Kawaguti  Siro 《Hydrobiologia》1991,216(1):39-43
Atorella japonica were observed by TEM to examine the nerve plexus in the capitulum of the polyp and the cross-striated muscle cells of the strobila. The nerve plexus included a number of neuromuscular junctions and many interneural synapses. Neuromuscular junctions contained two types of synaptic vesicle: clear and small (ca 75 nm diam.), and dense cored and large (ca 120 nm diam.). The first type of vesicle always appeared near the presynaptic membrane and the second type was distributed behind the former. In interneural synapses, two types of vesicle which were similar to neuromuscular synaptic vesicles were recognized. They were distributed in a pattern similar to that of the neuromuscular synaptic vesicles, but these vesicles were found on both sides of the two synaptic membranes.  相似文献   

12.
研究采用ABC免疫组化方法及电镜观察发现;豚鼠胆囊含有SP免疫反应的神经元,神经纤维及肥大细胞,这些神经纤维束是被神经膜细胞完全或不完全包裹的无髓神经纤维。其神经纤维内含有的突触小泡形态大小不一。电镜下分可为3种类型;(1)以小型无芯小泡为主以及少量大型有芯小泡。(2)以小型有芯小泡为主以及少量无芯小泡和大型有芯小泡。(3)以大型有芯小泡为主以及少量小型无芯小泡。用SP免疫电镜组化方法观察。豚鼠胆囊的SP免疫反应阳性神经纤维内散在分布的突触小泡多为第3种。但在血管,淋巴管周围SP免疫反应阳性神经纤维内的突触小泡多为小型有芯小泡,胆囊除了受肾上腺素能神经支配外,尚受SP等肽能神经的支配。本研究对豚鼠胆囊SP免疫组织化学反应阳性神经纤维分布特点及神经纤维内突触小泡的超微结构特点进行了研究。  相似文献   

13.
Under certain culture conditions, neonatal rat superior cervical ganglion neurons display not only a number of expected adrenergic characteristics but, paradoxically, also certain cholinergic functions such as the development of hexamethonium-sensitive synaptic contacts and accumulation of choline acetyltransferase (ChAc). The purpose of this study was to determine whether the entire population of cultured neurons was aquiring cholinergic capabilities, or whether this phenomenon was restricted to a subpopulation. After 1--6 and 8 wk in culture, neurons were fixed in KMnO4 after incubation in norepinephrine and prepared for electron microscopy analysis of synaptic vesicle content to determine whether vesicles were dense cored or clear. ChAc, acetylcholinesterase (AChE), and DOPA-decarboxylase (DDC) activities were assayed in sister cultures. In the period from 1 to 8 wk in culture, the average ChAc activity per neuron increased 1,100-fold, and the DDC and AChE activities increased 20- and 30-fold, respectively. After 1 wk in culture, 48 of 50 synaptic boutons contained predominantly dense-cored vesicles, but by 8 wk the synaptic vesicle population was predominantly of the clear type. At intermediate times, the vesicle population in many boutons was mixed. The morphology of the synaptic contacts on neuronal surfaces was that characteristic of autonomic systems, with no definite clustering of the vesicles adjacent to the area of contact. Increased vesicle size correlated with increasing age in culture and the presence of a dense core. Considering these data along with available physiological studies, we conclude that these cultures contain one population of neurons that is initially adrenergic. Over time, under conditions of this culture system, this population develops cholinergic mechanisms. That a neuron may, at a given time, express both cholinergic and adrenergic mechanisms is suggested by the approximately equal numbers of clear and dense-cored vesicles in the boutons found at the intermediate times.  相似文献   

14.
Summary The pineal gland of adult golden hamsters (Mesocricetus auratus) was studied by various cytochemical methods at the electron microscopic level: (1) the modified chromaffin reaction specific for 5-hydroxytryptamine (5-HT), (2) argentaffin reaction, (3) zinc-iodide-osmium (ZIO) mixture reaction and (4) acid phosphatase reaction. In the pinealocytes, the dense-cored vesicles (80–160 nm in diameter) show both chromaffinity and argentaffinity, while the population of dense bodies (150–400 nm in diameter) is reactive to ammoniacal silver solution and ZIO mixture but not to the modified chromaffin reaction. After incubation for demonstration of acid phosphatase activity, reaction products are localized in some, but not all, of the dense bodies, in some of the small vesicles in the Golgi region and in one or two inner Golgi saccules. In nerve fibers in the pineal gland, small granulated vesicles are also reactive to the modified chromaffin reaction and ZIO mixture. Based upon these cytochemical results the following conclusions have been reached: (1) dense cored vesicles in the pinealocytes and small granulated vesicles in the nerve fibers of the hamster pineal gland contain 5-HT, and (2) the population of dense bodies in the pinealocytes is heterogenous, some are lysosomes and the others are possibly the granules responsible for the secretion of pineal peptides.Supported in part by a grant from the National Science Council, Republic of ChinaDedicated to Professor Doctor Huoyao Wei on the occasion of his 70th birthday  相似文献   

15.
Summary

In Cerastoderma glaucum, Sertoli cells are rich in lipids, glycogen and lysosomes, and premeiotic cells exhibited nuage, a prominent Golgi complex and endoplasmic reticulum cisternae encircling the nucleus. The Golgi complex gives rise to proacrosomal vesicles during mid-spermiogenesis, and the round acrosomal vesicle, with a dense fibrillar core, migrates laterally while linked to the plasma membrane as it develops the subacrosomal material. In its final position, the vesicle becomes cap-shaped (0.6 μm) and differentiates into apical light and basal dense regions. The elongated and helicoidal nucleus (8–9.9 μm) has a thin tip (0.3 μm) that invades the subacrosomal space, and in the midpiece (0.8 μm) two of the four mitochondria extend laterally to the nucleus (1.5–2.1 μm). In Spisula subtruncata, Sertoli cells are rich in lipids, glycogen and phagocytosed sperm. Premeiotic cells exhibit nuage, a prominent Golgi complex that gives rise to proacrosomal vesicles from the leptotene stage and a flagellimi that is extruded at zygotene. The acrosomal vesicle forms during the round spermatid stage and differentiates into a large and dense basal region and an apical light region. It then migrates while linked to the plasma membrane by its apical pole. Development of the subacrosomal perforatorium is associated with nuage materials and endoplasmic reticulum vesicles. The mature cap-shaped (0.6 μm) acrosomal vesicle exhibits a large apical and irregular region with floccular contents and a basal dense region. The round nucleus becomes barrel-shaped (1.5 μm) and the midpiece (0.8 μm), with four mitochondria, contains a few glycogen particles.  相似文献   

16.
It has been proposed that the mechanism of formation of the chorion of Oryzias latipes involves the transfer of precursor material from the Golgi bodies of the oocyte to the chorion by means of a population of dense cored vesicles. Thin sectioned ovarian material was investigated by means of several techniques available for the resolution of periodate reactive material at the ultrastructural level. The techniques employed were modifications of the thiocarbohydrazide, thiosemicarbazide, alkaline bismuth subnitrate and silver methenamine reactions. These all demonstrated a positive reaction in the material of the chorion and that of the dense cored vesicles. This finding is in accord with the hypothesis that the dense cored vesicles are transporting material from the Golgi to the growing chorion.  相似文献   

17.
Subcellular fractionation of rabbit optic nerve resolves three populations of membranes that are rapidly labelled in the axon. The lightest membranes are greater than 200 nm and are relatively immobile. The intermediate density membranes consist of 84 nm vesicles which disappear from the nerve with kinetics identical to those of the rapid component. A third population of membranes, displaying a distinct protein profile, is present in the most dense region of the gradient. Immunological characterization of these membranes suggests the following. (1) The lightest peak contains rapidly transported glucose transporter and most of the total glucose transporters present in the nerve; this peak is therefore enriched in axolemma. (2) The intermediate peak contains rapidly transported glucose transporters and synaptophysin, an integral synaptic vesicle protein, and about half of the total synaptophysin; this peak therefore contains transport vesicles bound for both the axolemma and the nerve terminal, and these subpopulations can be separated by immunoadsorption with specific antibodies against the aforementioned proteins. (3) The heaviest peak contains rapidly transported synaptophysin and tachykinin neuromodulators and about half of the total synaptophysin, and 80% of the total tachykinins present in the nerve; this peak appears to represent a class of synaptic vesicle precursor bound for the nerve terminal exclusively. (4) Synaptophysin is present in the membranes of vesicles carrying tachykinins. (5) Both the intermediate and the heaviest peaks are enriched in kinesin heavy chain, suggesting that both vesicle classes may be transported by the same mechanism.  相似文献   

18.
U Zunke 《Malacologia》1979,18(1-2):1-5
The structure and some aspects of the development of the eye of Succinea putris were studied with the aid of the electron microscope. The eye is of the closed vesicle type and is composed of retina, cornea, vitreous body, lens and optic nerve. Three different types of cell are to be found in the retina: (1) the small elongated pigment cell with an avoid nucleus, many pigment granulae and short microvilli at the apical end of the cell; (2) the sensory cell type I with a large irregular nucleus, long microvilli, which extend to under the surface of the lens, a large number of light-cored vesicles, 700 A in diameter and the axon; (3) the elongated slender sensory cell type II with many dense cored vesicles, several pigment granulae in the distal region of the cell and short irregular microvilli at the apical end of the cell. This type is few in number. Two results of the study of the embryonic eye are described: the cornea cells differ from those in the adult eye in the nucleus-cytoplasm relation and the optic nerve is smaller than in the adult eye.  相似文献   

19.
Multinuclear (1H and 31P) nuclear magnetic resonance (NMR) spectroscopy and quasi-elastic light scattering have been used to characterize molecular aggregates formed in dilute sodium taurocholate--egg lecithin solutions. When mixed micelles (1.25 g/dL) are diluted with 150 mM aqueous sodium chloride, light-scattering measurements suggest a transformation from mixed micelles to unilamellar vesicle species. Decreased 1H NMR line widths for bile salt resonances are consistent with predominance of a monomer form. The concurrent appearance of a second phospholipid choline methyl resonance indicates two types of phospholipid environment in slow chemical exchange: this behavior is consistent with small unilamellar vesicles. The appearance of bilayer vesicles in dilute model bile solutions is confirmed by addition of a lanthanide shift reagent (Pr3+), which splits the 1H or 31P head-group peak into two components with distinct chemical shift sensitivities. These mixed micelle and vesicle aggregates are also distinguished by their susceptibility to the lipolytic enzyme phospholipase A2 from cobra venom.  相似文献   

20.
Using transmission electron microscopy of serially sectioned tentacles from the sea anemone Aiptasia pallida, we located and characterized two types of neuro‐spirocyte synapses. Clear vesicles were observed at 10 synapses and dense‐cored vesicles at five synapses. The diameters of vesicles at each neuro‐spirocyte synapse were averaged; clear vesicles ranged from 49–89 nm in diameter, whereas the dense‐cored vesicles ranged from 97–120 nm in diameter. One sequential pair of synapses included a neuro‐spirocyte synapse with clear vesicles (81 nm) and a neuro‐neuronal synapse with dense‐cored vesicles (168 nm). A second synapse on the same cell had dense‐cored vesicles (103 nm). An Antho‐RFamide‐labeled ganglion cell and three different neurites were observed adjacent to spirocytes, but no neuro‐spirocyte synapses were present. Many of the spirocytes also were immunoreactive to Antho‐RFamide. The presence of sequential neuro‐neuro‐spirocyte synapses suggests that synaptic modulation may be involved in the neural control of spirocyst discharge. The occurrence of either dense‐cored or clear vesicles at neuro‐spirocyte synapses suggests that at least two types of neurotransmitter substances control the discharge of spirocysts in sea anemones. J. Morphol. 241:165–173, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号