首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated that a locus on proximal Chr 4 modifies disease severity in the juvenile cystic kidney (jck) mouse, a model of polycystic kidney disease (PKD) that carries a mutation of the Nek8 serine-threonine kinase. In this study, we used QTL analysis of independently constructed B6.D2 congenic lines to confirm this and showed that this locus has a highly significant effect. We constructed sub-congenic lines to more specifically localize the modifier and have determined it resides in a 3.2 Mb interval containing 28 genes. These include Invs and Anks6, which are both excellent candidates for the modifier as mutations in these genes result in PKD and both genes are known to genetically and physically interact with Nek8. However, examination of strain-specific DNA sequence and kidney expression did not reveal clear differences that might implicate either gene as a modifier of PKD severity. The fact that our high-resolution analysis did not yield an unambiguous result highlights the challenge of establishing the causality of strain-specific variants as genetic modifiers, and suggests that alternative strategies be considered.  相似文献   

2.
Fukui H  Shiba D  Asakawa K  Kawakami K  Yokoyama T 《FEBS letters》2012,586(16):2273-2279
Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease. Among 12 reported Nphp gene products, Inv/Nphp2, Nphp3 and Nek8/Nphp9 are localized to the proximal segment in the primary cilium. However, the functional relationships are unknown. This study focused on phenotype analysis of nek8 knockdown embryos and the genetic relationship between nek8 and inv in zebrafish. Knockdown of nek8 produced both pronephric cysts and abnormal cardiac looping. Simultaneous knockdown of nek8 and inv synergistically increased the incidence of these defects. Interestingly, nek8 mRNA rescued inv morphant phenotypes, although inv mRNA could not rescue nek8 morphant phenotypes. These results suggest that Nek8 acts downstream of Inv function.  相似文献   

3.
The jck murine model, which results from a double point mutation in the nek8 gene, has been used to study the mechanism of autosomal recessive polycystic kidney disease (ARPKD). The renal proteome of jck mice was characterized by two-dimensional gel electrophoresis combined with mass spectrometry (MALDI-TOF/TOF). Four newly identified proteins were found to accumulate in the kidneys of jck mice with polycystic kidney disease (PKD) compared with their wild-type littermates. The proteins galectin-1, sorcin, and vimentin were found to be induced 9-, 9-, and 25-fold, respectively, in the PKD proteome relative to the wild type. The identity of these proteins was established by peptide mass fingerprinting and de novo MS/MS sequencing of selected peptides. Up-regulation of these three proteins may be due to the nek8 mutation, and their function may be related to the signaling and structural processes in the primary cilium. Additionally a series of protein isoforms observed only in the ARPKD kidney was identified as the major urinary protein (MUP). Peptide sequencing demonstrated that the isoforms MUP1, MUP2, and MUP6 are contained in this series. The MUP series showed a number of male-specific isoforms and a phosphorylation of the entire series with an increasing degree of phosphorylation of the acidic isoforms. In addition, the MUP series was localized to the cyst fluid of PKD mice, and a cellular mislocalization of galectin-1, sorcin, and vimentin in PKD tubular epithelial cells was shown. The abnormal and extremely high accumulation of the MUPs in the ARPKD kidney may be linked to a defect in protein transport and secretion. The discovery of these proteins will provide new information on the molecular and cellular processes associated with the mechanism of ARPKD.  相似文献   

4.
We sought to use ultrasonography to quantify renal size and echogenicity in a mouse model of polycystic kidney disease. We imaged 36 wild-type (WT) and juvenile cystic kidney (jck) mice by using a standard ultrasound unit and 10-5 MHz linear transducer. Mice were imaged at 3 (6 WT, 7 jck), 6 (7 WT, 5 jck), and 9 (6 WT, 5 jck) wk of age. Kidney length, width, and height were recorded for volume calculation. Sagittal images of both kidneys were recorded for assessment of intensity. Quantitative values were obtained from areas of similar depth and gain settings. Kidney and liver intensities were determined for calculation of their ratio. Representative histologic kidney sections were stained with hematoxylin and eosin and digitized for calculation of cyst number, mean cyst area, and percentage cystic area. We found that renal volume was greater in jck than WT mice at 3 (P < 0.0001), 6 (P < 0.0001), and 9 (P < 0.0001) wk of age. In addition, kidney intensity and kidney:liver ratio were higher in jck than WT mice at 3 (P < 0.002 for both parameters), 6 (P < 0.04), and 9 wk (P < 0.008). Kidneys with smaller mean cyst size and less percentage cystic space had higher intensity values. We therefore conclude that ultrasound measures of renal volume and intensity can noninvasively identify jck-affected mice as early as 3 wk of age. Cortical intensity is greater in jck versus WT mice and appears affected by percentage cyst area and mean cyst size.  相似文献   

5.
Polycystic kidney disease and related syndromes involve dysregulation of cell proliferation in conjunction with ciliary defects. The relationship between cilia and cell cycle is enigmatic, but it may involve regulation by the NIMA-family of kinases (Neks). We previously showed that the Nek Fa2p is important for ciliary function and cell cycle in Chlamydomonas. We now show that Fa2p localizes to an important regulatory site at the proximal end of cilia in both Chlamydomonas and a mouse kidney cell line. Fa2p also is associated with the proximal end of centrioles. Its localization is dynamic during the cell cycle, following a similar pattern in both cell types. The cell cycle function of Fa2p is kinase independent, whereas its ciliary function is kinase dependent. Mice with mutations in Nek1 or Nek8 have cystic kidneys; therefore, our discovery that a member of this phylogenetic group of Nek proteins is localized to the same sites in Chlamydomonas and kidney epithelial cells suggests that Neks play conserved roles in the coordination of cilia and cell cycle progression.  相似文献   

6.
Cystic kidney diseases are characterized by multiple renal cysts and are the leading cause of inherited renal disease. Oxylipins are bioactive lipids derived from fatty acids formed via cyclooxygenase, lipoxygenase and cytochrome P450 activity, and are important regulators of renal health and disease. Oxylipins are altered in nephronophthisis, a type of cystic kidney disease. To further investigate and to determine whether other cystic renal diseases share these abnormalities, a targeted lipidomic analysis of renal oxylipins was performed in orthologous models of autosomal dominant polycystic kidney disease 1 (Mx1Cre+ Pkd1flox/flox mouse) and 2 (Pkd2ws25/− mouse), autosomal recessive polycystic kidney disease (PCK rat) and nephronophthisis (jck/jck mouse). Kidney cyclooxygenase oxylipins were consistently higher in all diseased kidneys, even in very early stage disease. On the other hand, cytochrome P450 epoxygenase derived oxylipins were lower only in the autosomal recessive polycystic kidney disease and nephronophthisis models, while lipoxygenase and cytochrome P450 hydroxylase derived oxylipins were lower only in nephronophthisis. Sex effects on renal oxylipin alterations were observed but they did not always coincide with sex effects on disease. For oxylipins with sex effects, arachidonic acid derived oxylipins formed via cyclooxygenases and lipoxygenases were higher in females, while oxylipins from other fatty acids and via cytochrome P450 enzymes were higher in males. The consistent and unique patterns of oxylipin alterations in the different models indicates the importance of these bioactive lipids in cystic renal diseases, suggesting that pharmacological agents (e.g. cyclooxygenase inhibitors) may be useful in treating these disorders, for which effective treatment remains elusive.  相似文献   

7.
Familial glomerulocystic kidney disease (GCKD) is a dominantly inherited condition characterized by glomerular cysts and variable renal size and function; the molecular genetic etiology is unknown. Mutations in the gene encoding hepatocyte nuclear factor (HNF)-1beta have been associated with early-onset diabetes and nondiabetic renal disease-particularly renal cystic disease. We investigated a possible role for the HNF-1beta gene in four unrelated GCKD families and identified mutations in two families: a nonsense mutation in exon 1 (E101X) and a frameshift mutation in exon 2 (P159fsdelT). The family members with HNF-1beta gene mutations had hypoplastic GCKD and early-onset diabetes or impaired glucose tolerance. We conclude that there is genetic heterogeneity in familial GCKD and that the hypoplastic subtype is a part of the clinical spectrum of the renal cysts and diabetes syndrome that is associated with HNF-1beta mutations.  相似文献   

8.
The NIMA family protein kinases Nek9/Nercc1 and the highly similar Nek6 and Nek7 form a signaling module activated in mitosis, when they are involved in the control of spindle organization and function. Here we report that Nek9, the module upstream kinase, binds to DYNLL/LC8, a highly conserved protein originally described as a component of the dynein complex. LC8 is a dimer that interacts with different proteins and has been suggested to act as a dimerization hub promoting the organization and oligomerization of partially disorganized partners. We find that the interaction of LC8 with Nek9 depends on a (K/R)XTQT motif adjacent to the Nek9 C-terminal coiled coil motif, results in Nek9 multimerization, and increases the rate of Nek9 autoactivation. LC8 binding to Nek9 is regulated by Nek9 activity through the autophosphorylation of Ser(944), a residue immediately N-terminal to the (K/R)XTQT motif. Remarkably, LC8 binding interferes with the interaction of Nek9 with its downstream partner Nek6 as well as with Nek6 activation, thus controlling both processes. Our work sheds light into the control of signal transduction through the module formed by Nek9 and Nek6/7 and uncovers a novel manner in which LC8 can regulate partner physiology by interfering with protein complex formation. We suggest that this and other LC8 functions can be specifically regulated by partner phosphorylation.  相似文献   

9.
The major form of autosomal dominant polycystic kidney disease (ADPKD) results from mutation of a gene (PKD1) of unknown function that is essential for the later stages of renal tubular differentiation. In this report, we describe a novel cell culture system for studying how PKD1 regulates this process. We show that expression of human PKD1 in MDCK cells slows their growth and protects them from programmed cell death. MDCK cells expressing PKD1 also spontaneously form branching tubules while control cells form simple cysts. Increased cell proliferation and apoptosis have been implicated in the pathogenesis of cystic diseases. Our study suggests that PKD1 may function to regulate both pathways, allowing cells to enter a differentiation pathway that results in tubule formation.  相似文献   

10.
Transport of chloride through the cystic fibrosis transmembrane conductance regulator (CFTR) channel is a key step in regulating fluid secretion in vertebrates [1, 2]. Loss of CFTR function leads to cystic fibrosis [1, 3, 4], a disease that affects the lungs, pancreas, liver, intestine, and vas deferens. Conversely, uncontrolled activation of the channel leads to increased fluid secretion and plays a major role in several diseases and conditions including cholera [5, 6] and other secretory diarrheas [7] as well as polycystic kidney disease [8-10]. Understanding how CFTR activity is regulated in?vivo has been limited by the lack of a genetic model. Here, we used a forward genetic approach in zebrafish to uncover CFTR regulators. We report the identification, isolation, and characterization of a mutation in the zebrafish cse1l gene that leads to the sudden and dramatic expansion of the gut tube. We show that this phenotype results from a rapid accumulation of fluid due to the uncontrolled activation of the CFTR channel. Analyses in zebrafish larvae and mammalian cells indicate that Cse1l is a negative regulator of CFTR-dependent fluid secretion. This work demonstrates the importance of fluid homeostasis in development and establishes the zebrafish as a much-needed model system to study CFTR regulation in?vivo.  相似文献   

11.
Tuberous sclerosis is an autosomal dominant trait characterized by the development of hamartomatous growths in many organs. Renal cysts are also a frequent manifestation. Major genes for tuberous sclerosis and autosomal dominant polycystic kidney disease, TSC2 and PKD1, respectively, lie adjacent to each other at chromosome 16p13.3, suggesting a role for PKD1 in the etiology of renal cystic disease in tuberous sclerosis. We studied 27 unrelated patients with tuberous sclerosis and renal cystic disease. Clinical histories and radiographic features were reviewed, and renal function was assessed. We sought mutations at the TSC2 and PKD1 loci, using pulsed field- and conventional-gel electrophoresis and FISH. Twenty-two patients had contiguous deletions of TSC2 and PKD1. In 17 patients with constitutional deletions, cystic disease was severe, with early renal insufficiency. One patient with deletion of TSC2 and of only the 3' UTR of PKD1 had few cysts. Four patients were somatic mosaics; the severity of their cystic disease varied considerably. Mosaicism and mild cystic disease also were demonstrated in parents of 3 of the constitutionally deleted patients. Five patients without contiguous deletions had relatively mild cystic disease, 3 of whom had gross rearrangements of TSC2 and 2 in whom no mutation was identified. Significant renal cystic disease in tuberous sclerosis usually reflects mutational involvement of the PKD1 gene, and mosaicism for large deletions of TSC2 and PKD1 is a frequent phenomenon.  相似文献   

12.
Nek2 kinase, a NIMA-related kinase, has been suggested to play both meiotic and mitotic roles in mammals, but its function(s) during development is poorly understood. We have isolated here cDNAs encoding a Xenopus homolog of mammalian Nek2 and have shown that Xenopus Nek2 has two structural variants, termed Nek2A and Nek2B. Nek2A, most likely a C-terminally spliced form, corresponds to the previously described human and mouse Nek2, while Nek2B is most probably a novel, C-terminally unspliced form of Nek2. As a consequence of this (probable) alternative splicing, Nek2B lacks the C-terminal 70-amino-acid sequence of Nek2A, which contains a PEST sequence (or a motif for rapid degradation). Western blot analysis reveals that Nek2A is expressed predominantly in the testis (presumably in spermatocytes) and very weakly in the stomach and, during development, only after the neurula stage. By contrast, Nek2B is expressed mainly in the ovary and in both primary and secondary oocytes and early embryos up to the neurula stage. These results suggest that Nek2A and Nek2B may play both meiotic and mitotic roles, but in a spatially and temporally complementary manner during Xenopus development, and that Nek2B, rather than Nek2A (or the conventional form of Nek2), may play an important role in early development. We discuss the possibility that a counterpart of Xenopus Nek2B might also exist and function in early mammalian development.  相似文献   

13.
The Aspergillus nidulans protein NIMA (never in mitosis, gene A) is a protein kinase required for the initiation of mitosis, whereas its inactivation is necessary for mitotic exit. Here, we demonstrate that human NIMA-related kinase 6 (Nek6) is required for mitotic progression of human cells. Nek6 is phosphorylated and activated during M phase. Inhibition of Nek6 function by either overexpression of an inactive Nek6 mutant or elimination of endogenous Nek6 by siRNA arrests cells in M phase and triggers apoptosis. Time-lapse recording of the cell cycle progression of cells expressing kinase-inactive Nek6 reveals mitotic arrest at the metaphase stage prior to cells entering apoptosis. In contrast to NIMA and the closely related mammalian Nek2 kinase, which regulate centrosome function and separation, our data demonstrate an important function for Nek6 during mitosis and suggest that Nek6 kinase is required for metaphase-anaphase transition.  相似文献   

14.
Bardet-Biedl syndrome (BBS) is a multisystemic disorder characterized by postaxial polydactyly, progressive retinal dystrophy, obesity, hypogonadism, renal dysfunction, and learning difficulty. Other manifestations include diabetes mellitus, heart disease, hepatic fibrosis, and neurological features. The condition is genetically heterogeneous, and eight genes (BBS1-BBS8) have been identified to date. A mutation of the BBS1 gene on chromosome 11q13 is observed in 30%-40% of BBS cases. In addition, a complex triallelic inheritance has been established in this disorder--that is, in some families, three mutations at two BBS loci are necessary for the disease to be expressed. The clinical features of BBS that can be observed at birth are polydactyly, kidney anomaly, hepatic fibrosis, and genital and heart malformations. Interestingly, polydactyly, cystic kidneys, and liver anomalies (hepatic fibrosis with bile-duct proliferation) are also observed in Meckel syndrome, along with occipital encephalocele. Therefore, we decided to sequence the eight BBS genes in a series of 13 antenatal cases presenting with cystic kidneys and polydactyly and/or hepatic fibrosis but no encephalocele. These fetuses were mostly diagnosed as having Meckel or "Meckel-like" syndrome. In six cases, we identified a recessive mutation in a BBS gene (three in BBS2, two in BBS4, and one in BBS6). We found a heterozygous BBS6 mutation in three additional cases. No BBS1, BBS3, BBS5, BBS7, or BBS8 mutations were identified in our series. These results suggest that the antenatal presentation of BBS may mimic Meckel syndrome.  相似文献   

15.
Autosomal dominant polycystic kidney disease (ADPKD) is genetically heterogeneous, with at least three chromosomal loci (PKD1, PKD2, and PKD3) that account for the disease. Mutations in the PKD2 gene, on the long arm of chromosome 4, are expected to be responsible for approximately 15% of cases of ADPKD. Although ADPKD is a systemic disease, it shows a focal expression, because <1% of nephrons become cystic. A feasible explanation for the focal nature of events in PKD1, proposed on the basis of the two-hit theory, suggests that cystogenesis results from the inactivation of the normal copy of the PKD1 gene by a second somatic mutation. The aim of this study is to demonstrate that somatic mutations are present in renal cysts from a PKD2 kidney. We have studied 30 renal cysts from a patient with PKD2 in which the germline mutation was shown to be a deletion that encompassed most of the disease gene. Loss-of-heterozygosity (LOH) studies showed loss of the wild-type allele in 10% of cysts. Screening of six exons of the gene by SSCP detected eight different somatic mutations, all of them expected to produce truncated proteins. Overall, >/=37% of the cysts studied presented somatic mutations. No LOH for the PKD1 gene or locus D3S1478 were observed in those cysts, which demonstrates that somatic alterations are specific. We have identified second-hit mutations in human PKD2 cysts, which suggests that this mechanism could be a crucial event in the development of cystogenesis in human ADPKD-type 2.  相似文献   

16.
17.
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common human single-gene disorders, and is the most common inherited form of cystic kidney disease. It is estimated that approximately 85% of ADPKD is due to mutations in the PKD1 gene, which is located on chromosome 16p13.3. Mutation analysis in this gene is difficult, because more than two-thirds of reiterated several times at 16p13.1. In this study, mutation screening in 90 ADPKD patients was carried out on exons in the duplicated region of the PKD1 gene (23-34), using genomic long-range PCR followed by nested PCR and single-strand conformation polymorphism (SSCP), and finally cycle sequencing. Two nonconservative missense mutations were detected in exons 25 and 31, and two conservative mutations were found in exons 24 and 29. A novel splicing mutation, which is expected to cause skipping of exon 30, was detected in one case. Moreover, six intronic variants, three silent variants, and one polymorphic variant were detected in this study. Comparison between some of these changes and published sequences from the homologous genes on 16p13.1, revealed supporting evidence for the gene conversion theory as a mechanism responsible for some of the mutations in the PKD1 gene. Factors likely to facilitate gene conversion in this region of the PKD1 gene are discussed.  相似文献   

18.
Joubert syndrome and related disorders (JSRD) are primarily autosomal-recessive conditions characterized by hypotonia, ataxia, abnormal eye movements, and intellectual disability with a distinctive mid-hindbrain malformation. Variable features include retinal dystrophy, cystic kidney disease, and liver fibrosis. JSRD are included in the rapidly expanding group of disorders called ciliopathies, because all six gene products implicated in JSRD (NPHP1, AHI1, CEP290, RPGRIP1L, TMEM67, and ARL13B) function in the primary cilium/basal body organelle. By using homozygosity mapping in consanguineous families, we identify loss-of-function mutations in CC2D2A in JSRD patients with and without retinal, kidney, and liver disease. CC2D2A is expressed in all fetal and adult tissues tested. In ciliated cells, we observe localization of recombinant CC2D2A at the basal body and colocalization with CEP290, whose cognate gene is mutated in multiple hereditary ciliopathies. In addition, the proteins can physically interact in vitro, as shown by yeast two-hybrid and GST pull-down experiments. A nonsense mutation in the zebrafish CC2D2A ortholog (sentinel) results in pronephric cysts, a hallmark of ciliary dysfunction analogous to human cystic kidney disease. Knockdown of cep290 function in sentinel fish results in a synergistic pronephric cyst phenotype, revealing a genetic interaction between CC2D2A and CEP290 and implicating CC2D2A in cilium/basal body function. These observations extend the genetic spectrum of JSRD and provide a model system for studying extragenic modifiers in JSRD and other ciliopathies.  相似文献   

19.
A transcriptional network in polycystic kidney disease   总被引:11,自引:0,他引:11  
  相似文献   

20.
Cardiac hypertrophy appears to be a specialized form of cellular growth that involves the proliferation control and cell cycle regulation. NIMA (never in mitosis, gene A)-related kinase-6 (Nek6) is a cell cycle regulatory gene that could induce centriole duplication, and control cell proliferation and survival. However, the exact effect of Nek6 on cardiac hypertrophy has not yet been reported. In the present study, the loss- and gain-of-function experiments were performed in Nek6 gene-deficient (Nek6−/−) mice and Nek6 overexpressing H9c2 cells to clarify whether Nek6 which promotes the cell cycle also mediates cardiac hypertrophy. Cardiac hypertrophy was induced by transthoracic aorta constriction (TAC) and then evaluated by echocardiography, pathological and molecular analyses in vivo. We got novel findings that the absence of Nek6 promoted cardiac hypertrophy, fibrosis and cardiac dysfunction, which were accompanied by a significant activation of the protein kinase B (Akt) signaling in an experimental model of TAC. Consistent with this, the overexpression of Nek6 prevented hypertrophy in H9c2 cells induced by angiotonin II and inhibited Akt signaling in vitro. In conclusion, our results demonstrate that the cell cycle regulatory gene Nek6 is also a critical signaling molecule that helps prevent cardiac hypertrophy and inhibits the Akt signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号