首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both wild type and cr-1 mutant (adenylate cyclase and cyclic AMP-deficient) strains of Neurospora crassa contain fructose 2,6-bisphosphate at levels of 27 nmol/g dry tissue weight. This level decreases by about 50% in both strains upon depriving the cells of carbon or nitrogen sources for 3 h. An increase in cyclic AMP levels produced by addition of lysine to nitrogen-starved cells produced no increase in fructose 2,6-bisphosphate levels. Both strains respond to short-term addition of salicylate, acetate, or 2,4-dinitrophenol with an increase in fructose 2,6-bisphosphate. Thus, the above-described regulation of fructose 2,6-bisphosphate levels is cyclic AMP-independent. A suspension of the wild type produces a transient increase of fructose 2,6-bisphosphate in response to administration of glucose, whereas the mutant strain does not respond unless it is fed exogenous cyclic AMP. Substitution of acetate for sucrose as a sole carbon source for growth leads to a differential decrease in fructose 2,6-bisphosphate levels between the two strains: the wild type strain has 63% and the cr-1 mutant strain has 37% of the levels of fructose 2,6-bisphosphate on acetate as compared to sucrose-grown controls. This may be the basis for an advantage of cr-1 over wild type in growth on acetate. Thus, although most regulation of fructose 2,6-bisphosphate is cyclic AMP-independent, the levels can be regulated by a combination of carbon source and cyclic AMP levels.  相似文献   

2.
Both wild type and cr-1 mutant (adenylate cyclase and cyclic AMP-deficient) strains of Neurospora crassa contain fructose 2,6-biphosphate at levels of 2t nmol/g dry tissue weight. This level decreases by about 50% in both strains upon depriving the cells of carbon or nitrogen sources for 3 h. An increase in cyclic AMP levels produced by addition of lysine to nitrogen-starved cells produced no increase in fructose 2,6-biphosphate levels. Both strains respond to short-term addition of salicylate, acetate, or 2,4-dinitrophenol with an increase in fructose 2,6-biphosphate. Thus, the above-described regulation of fructose 2,6-biphosphate levels is cyclic AMP-independent. A suspension of the wild type produces a transient increase of fructose 2,6-biphosphate in response to administration of glucose, whereas the mutant strain does not respond unless it is fed exogenous cyclic AMP. Substitution of acetate for sucrose as a sole carbon source for growth leads to a differential decrease in fructose 2,6-biphosphate levels between the two strains: the wild type strain has 63% and the cr-1 mutant strain has 37% of the levels of fructose 2,6-biphosphate on acetate as compared to sucrose-grown controls. This may be the basis for an advantage of cr-1 over wild type in growth on acetate. Thus, although most regulation of fructose 2,6-biphosphate is cyclic AMP-independent, the levels can be regulated by a combination of carbon source and cyclic AMP levels.  相似文献   

3.
1. Cultures of Escherichia coli growing on gluconate use both gluconate and glucose when glucose is added. 2. Glycerol-grown cells adapt to gluconate utilization even in media containing glucose as well as gluconate. 3. The rates of gluconate utilization by cells growing on a mixture of glucose and gluconate, and the specific activities of the gluconate uptake system and of gluconate kinase, are greater if adenosine 3':5'-cyclic monophosphate (cyclic AMP) is present in the medium than in its absence. 4. Growth on media containing gluconate and cyclic AMP is accompanied by the formation of methyl glyoxal and pyruvate, and progressive inhibition of growth. 5. A mutant devoid of adenylate cyclase activity (cya) grew well on glucose in the absence of exogenous cyclic AMP but grew only poorly on gluconate; neither the gluconate uptake system nor gluconate kinase was adequately induced. The addition of cyclic AMP promoted growth on gluconate and facilitated the induction of proteins required for gluconate catabolism. 6. Phage Pl-mediated transduction of cya+ into the cya-mutant also restored the wild-type phenotype in its ability to adapt to gluconate utilization.  相似文献   

4.
Despite the evidence in support, the extent of which is outlined in this review, the occurrence of cyclic AMP in tissues of higher plants has been doubted by a number of previous reviewers. Recent MS and other evidence vindicates earlier identification of an adenosine nucleotide from plant tissues as adenosine 3′:5′-cyclic monophosphate. The additional demonstration of 3′: 5′-cyclic nucleotide phosphodiesterases in higher plants, together with adenylate cyclase, a specific cyclic AMP binding protein, and calmodulin, means that plants possess all the necessary components for a functional cyclic AMP-regulated system. Whether such a system does function in plants is considered as are also the reported physiological effects of exogenously supplied cyclic AMP on plant tissues.  相似文献   

5.
Abstract We have detected cyclic AMP in the culture medium of amino acid-producing coryneform bacteria. Extracellular concentrations of cyclic AMP vary depending on the nutritional medium, the growth phase and the carbon source. It is also shown that the activity of Brevibacterium flavum adenylate cyclase in intact cells is stimulated in the presence of glucose. Furthermore, addition of cyclic AMP to B. flavum cultures decreased amino acid production similarly to the effect produced by the addition of inorganic phosphate.  相似文献   

6.
It has been clarified whether the utilization of mannose by Escherichia coli requires adenosine 3',5'-cyclic monophosphate (cyclic AMP). Using an adenylyl cyclase deficient mutant (CA8306B) and a cyclic AMP receptor protein (CRP) deficient mutant (5333B) we have shown that the utilization of mannose is dependent on the cyclic AMP - CRP complex. 2-Deoxyglucose (DG) is a nonmetabolizable glucose analog specific for the phosphotransferase system (PTS) which transports mannose (termed here PTSM). Growth of CA8306B on glycerol is unaffected by addition of the analog, whereas growth of the strain on glycerol plus cyclic AMP ceases immediately upon addition of DG. These results suggest that the formation of PTSM is dependent on cyclic AMP. In addition, CA8306B grown on glycerol plus cyclic AMP can immediately utilize mannose when transferred to a medium containing mannose as a sole carbon source, whereas the same strain grown on glycerol without cyclic AMP cannot utilize mannose when so transferred. The results suggest that the formation of PTSM does not require an exogenous inducer.  相似文献   

7.
We report that in Escherichia coli, chemotaxis to sugars transported by the phosphotransferase system is mediated by adenylate cyclase, the nucleotide cyclase linked to the phosphotransferase system. We conclude that adenylate cyclase is required in this chemotaxis pathway because mutations in the cyclase gene (cya) eliminate or impair the response to phosphotransferase system sugars, even though other components of the phosphotransferase system known to be required for the detection of these sugars are relatively unaffected by such mutations. Moreover, merely supplying the mutant bacteria with the products of this enzyme, cyclic AMP and cyclic GMP, does not restore the chemotactic response. Because a residual chemotactic response is observed in certain strains with residual cyclic GMP synthesis but no cyclic AMP synthesis, it appears that the guanylate cyclase activity rather than the adenylate cyclase activity of the enzyme may be required for chemotaxis to sugars transported by the phosphotransferase system. Mutations in the cyclic nucleotide phosphodiesterase gene, which increase the level of both cyclic AMP and cyclic GMP, also reduce chemotaxis to these sugars. Therefore, it appears that control of the level of a cyclic nucleotide is critical for the chemotactic response to phosphotransferase system sugars.  相似文献   

8.
1. The effect of carbon source variation in bacterial growth media on their growth rate, inducible enzyme and cyclic AMP synthesis was examined: an inverse relationship between the culture's growth rate and its differential rate of inducible enzyme (tryptophanase and beta-galactosidase), and cyclic AMP synthesis was found. 2. The effect of the culture's growth phase on its sensitivity or resistance to glucose catabolite repression was determined in the wild type and a catabolite insensitive mutant (ABDROI): the wild type's sensitivity to glucose repression was not affected, whereas the insensitivity of the mutant was found to be limited to its early logarithmic phase of growth. At late log, or stationary phase, the mutant was found to be sensitive to glucose repression. 3. Examination of the kinetics of glucose uptake by the mutant, using alpha-[1 4-C] methyl-glucoside showed evidence for two transport systems each with a different affinity to glucose. A low affinity transport system (apparent Km of 3.4-10-minus 5 M) which appears mostly at the early logarithmic phase of growth. A high affinity transport system (apparent Km of 1.2-10-minus 5 M) which appears mostly at the late log and stationary phases of growth. 4. The effect of the culture density variation on its sensitivity to glucose repression showed that sensitivity to glucose catabolic repression is primarily a reflection of the formation of an allosteric effector molecule between glucose and its specific transport molecule which in turn regulates the activity of the adenylate cyclase.  相似文献   

9.
Wild-type Salmonella typhimurium could not grow with exogenous cyclic adenosine 3',5'-monophosphate (AMP) as the sole source of phosphate, but mutants capable of cyclic AMP utilization could be isolated provided the parental strain contained a functional cyclic AMP phosphodiesterase.All cyclic AMP-utilizing mutants had the growth and fermentation properties of cyclic AMP receptor protein (crp) mutants, and some lacked cyclic AMP binding activity in vitro. The genetic defect in each such mutant was due to a single point mutation, which was co-transducible with cysG. crp mutants isolated by alternative procedures also exhibited the capacity to utilize cyclic AMP. crp mutants synthesized cyclic AMP at increased rates and contained enhanced cellular cyclic AMP levels relative to the parental strains, regardless of whether or not cyclic AMP phosphodiesterase was active. Moreover, adenylate cyclase activity in vivo was less sensitive to regulation by glucose, possibly because the enzyme II complexes of the phosphotransferase system, responsible for glucose transport and phosphorylation, could not be induced to maximal levels. This possibility was strengthened by the observation that enzyme II activity (measured both in vitro by sugar phosphorylation and in vivo by sugar transport and chemotaxis) was inducible in the parental strain but not in crp mutants. The results suggest that the cyclic AMP receptor protein regulates cyclic AMP metabolism as well as catabolic enzyme synthesis.  相似文献   

10.
(1) In order to determine the cellular localization of the secretin- and pancreozymin-sensitive adenylate cyclase in rat pancreas, the occurence of this enzyme system has been investigated in isolated pancreatic cells. (2) Digestion of rat pancreatic lobules with collagenase yields a preparation of isolated cells which upon differential morphological analysis appears to consist for 97% of acinar cells and to contain for fewer centro-acinar and ductal cells than undissociated lobules. (3) Expressed per mg protein, the isolated cells contain the same amount of DNA, chymotrypsin and lactic dehydrogenase as the undissociated tissue. The stimulated adenylate cyclase activity is nearly entirely recovered in the isolated acinar cells, as is also the case for the low Km adenosine 3',5-cyclic monophosphate phosphodiesterase activity and the adenosine 3',5'-cyclic monophosphate (cyclic AMP) content. Marked losses are noted for the basal adenylate cyclase and the high Km cyclic AMP phosphodiesterase activities. (4) Washing the isolated acinar cells in Krebs-Ringer bicarbonate medium containing 10 mM 1-methyl-3-isobutylxanthine causes a cyclic AMP level 2.6 times that in cells washed in Krebs-Ringer bicarbonate alone. The cyclic AMP level is further increased by subsequently incubating the cells for 10 min in the presence of 3-10(-7) M pancreozymin-C-octapeptide or secretin to values 1.7 or 4.7 times the control level in cells incubated for 10 min with 1-methyl-3-isobutylxanthine alone. (5) It is suggested that the adenylate cyclase of the acinar cells may be involved, with another factor, in the stimulation of enzyme secretion, whereas a ductular cyclase would function in the regulation of the bicarbonate-dependent fluid secretion.  相似文献   

11.
Inorganic phosphate inhibited the biosynthesis of the macrolide antibiotic turimycin in different strains of Streptomyces hygroscopicus. In the wild type strain a depression was observed with increasing phosphate concentrations. A total inhibition was found at 0.1 M phosphate. In a high producing mutant a minimum of turimycin production occured when the phosphate concentration was between 5 mM and 10 mM. Above this concentration the antibiotic synthesis increased again but the production period shifted to a later period of cultivation. Addition of inorganic phosphate resulted in an initial increase of intracellular cyclic AMP content. But a second elevation characterizing the normal level of cyclic AMP throughout the growth phase was prevented by phosphate. Exogenous cyclic AMP as well as positive effectors of the adenylyl cyclase system were able to overcome the phosphate suppression. Cyclic AMP abolished the reduction of protein synthesis following phosphate addition and caused the reappearance of a protein band which may be responsible for the turimycin biosynthesis.  相似文献   

12.
The strong repression of inducible synthesis of the enzymes of fatty acid degradation by glucose can be partially relieved by the addition of cyclic adenosine 3',5' monophosphate (cyclic AMP) to the growth medium. This reversal of the glucose effect by cyclic AMP is not observed in a mutant (K29) that is unable to grow on fatty acids as sole carbon source and that was found to synthesize low levels of several enzymes specified by the fad regulon. In a revertant selected for the ability to grow on oleate these effects are concomitantly relieved. By both genetic (co-transduction of the mutation with the strA locus) and biochemical experiments (an extract of the mutant strain does not show the cyclic AMP-dependent stimulation of the deoxyribonucleic acid-directed in vitro synthesis of the enzymes of the gal operon), it is demonstrated that the mutant lacks functional cyclic AMP receptor protein (CR protein). It is concluded that, like many other inducible enzyme systems, expression of the enzymes of the fad system requires cyclic AMP and the CR protein.  相似文献   

13.
Cyclic adenosine monophosphate (AMP) has numerous important effects on cell structure and function, but its role in endothelial cells is unclear. Since cyclic AMP has been shown to affect transmembrane transport, cell growth and morphology, cellular adhesion, and cytoskeletal organization, it may be an important determinant of endothelial barrier properties. To test this we exposed bovine pulmonary artery endothelial cell monolayers to substances known to increase cyclic AMP and measured their effect on endothelial permeability to albumin and endothelial cell cyclic AMP concentrations. Cholera toxin (CT), a stimulant of the guanine nucleotide binding subunit of adenylate cyclase, led to a concentration-dependent 2-6-fold increase in cyclic AMP which was associated with a 3-10-fold reduction in albumin transfer across endothelial monolayers. The effect was not specific to albumin as similar barrier-enhancing effects were also noted with an unrelated macromolecule, fluorescein isothiocyanate (FITC)-dextran (MW 70,000). Barrier enhancement with cyclic AMP elevation was also observed with forskolin, a stimulant of the catalytic subunit of adenylate cyclase. The temporal pattern of barrier enhancement seen with these agents paralleled their effects on increasing cyclic AMP, and the barrier enhancement could be reproduced by incubation with either dibutyryl cyclic AMP or Sp-cAMPS, cyclic AMP-dependent protein kinase agonists. Furthermore, the forskolin effect on barrier enhancement was partially reversed with Rp-cAMPS, an antagonist of cyclic AMP-dependent protein kinase. Since endothelial actin polymerization may be an important determinant of endothelial barrier function, we sought to determine whether the cyclic AMP-induced effects were associated with increases in the polymerized actin pool (F-actin). Both cholera toxin and forskolin led to apparent endothelial cell spreading and quantitative increases in endothelial cell F-actin fluorescence. In conclusion, increased endothelial cell cyclic adenine nucleotide activity was an important determinant of endothelial barrier function in vitro. The barrier enhancement was associated with increased endothelial apposition and increases in F-actin, suggesting that influences on cytoskeletal assembly may be involved in this process.  相似文献   

14.
Cyclic AMP inhibits growth rate of E. coli Hfr 3000. Doubling times in glucose minimal medium increased from 60 to about 90 minutes with the addition of 5 mM cAMP. This effect is specific since it was not observed when the cyclic nucleotide was replaced by 5′ AMP, ADP, ATP or adenosine. Half maximal inhibition was obtained with 1 to 3 mM cyclic AMP. This inhibition occurs only with those carbon sources which are known to decrease intracellular cyclic AMP levels, i.e. glucose and pyruvate. No inhibition was observed with succinate, malate or glycerol.  相似文献   

15.
Activation of human blood platelet adenylate cyclase is initiated through the binding of prostaglandin E1 to the membrane receptors. Incubation of platelet membrane with [3H]prostaglandin E1 at pH 7.5 in the presence of 5 mM MgCl2 showed that the binding of the autacoid was rapid, reversible and highly specific. The binding was linearly proportional to the activation of adenylate cyclase. Although the membrane-bound radioligand could not be removed either by GTP or its stable analogue 5'-guanylylimido diphosphate, 150 nM cyclic AMP displaced about 40% of the bound agonist from the membrane. Scatchard analyses of the binding of the prostanoid to the membrane in the presence or absence of cyclic AMP showed that the nucleotide specifically inhibited the high-affinity binding sites without affecting the low-affinity binding sites. Incubation of the membrane with 150 mM cyclic AMP and varying amounts of prostaglandin E1 (25 nM to 1.0 microM) showed that the percent removal of the membrane-bound autacoid was similar to the percent inhibition of adenylate cyclase at each concentration of the agonist. At a concentration of 25 nM prostaglandin E1, both the binding of the agonist and the activity of adenylate cyclase were maximally inhibited by 40%. With the increase of the agonist concentration in the assay mixture, the inhibitory effects of the nucleotide gradually decreased and at a concentration of 1.0 microM prostaglandin E1 the effect of the nucleotide became negligible. These results show that cyclic AMP inhibits the activation of adenylate cyclase by low concentrations of prostaglandin E1 through the inhibition of the binding of the agonist to high-affinity binding sites.  相似文献   

16.
The adenyl cyclase and phosphodiesterase metabolizing adenosine 3',5'-cyclic monophosphate (cyclic AMP) were detected in mycelia of strains of Coprinus macrorhizus which form fruiting bodies, but not in those of strains which do not form fruiting bodies. The adenyl cyclase synthesized cyclic AMP from adenosine triphosphate. The phosphodiesterase degr[UNK]ded cyclic AMP to adenosine-5'-monophosphate and was inhibited by adenosine-3'-monophosphate, theophylline, and caffeine. The strains which form fruiting bodies incorporated and metabolized cyclic AMP, but strains which do not form fruiting bodies did not. The possible participation of cyclic AMP in the induction of fruiting bodies is discussed.  相似文献   

17.
The action of adenosine on lutropin (LH)-stimulated cyclic AMP production and LH-induced desensitization of adenylate cyclase in rat Leydig tumour cells was investigated. Adenosine and N6-(phenylisopropyl)adenosine caused a dose-dependent potentiation of LH-stimulated cyclic AMP production at concentrations (0.01-10 microM) which alone did not produce an increase in cyclic AMP production. However, 2-deoxyadenosine had no effect either alone or in combination with LH on cyclic AMP production. The potentiation produced by adenosine was unaffected by concentrations of the specific nucleoside-transport inhibitor dipyridamole, which inhibited [3H]adenosine uptake by up to 90%. The phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine, but not RO-10-1724, inhibited the adenosine-induced potentiation. In the presence of adenosine, the kinetics of LH-stimulated cyclic AMP production were linear with time up to 2h, compared with those with LH alone, which showed a characteristic decrease in rate of cyclic AMP production after the first 15-20 min. Consistent with the altered kinetics, adenosine also inhibited the LH-induced desensitization of adenylate cyclase. These results suggest that adenosine has effects on rat tumour Leydig cells through receptors on the external surface of the plasma membrane. This receptor has characteristics similar to those of the R-type receptors, which have been shown either to stimulate or to inhibit adenylate cyclase. However, the effects of adenosine in the present studies does not involve a direct inhibition or activation of adenylate cyclase, but may involve an as yet undefined receptor-mediated modulation of adenylate cyclase.  相似文献   

18.
Changes in dilution rate did not elicit large and systematic changes in cellular cyclic AMP levels in Escherichia coli grown in a chemostat under carbon or phosphate limitation. However, the technical difficulties of measuring low levels of cellular cyclic AMP in the presence of a large background of extracellular cyclic AMP precluded firm conclusions in this point. The net rate of cyclic AMP synthesis increased exponentially with increasing dilution rate through either the entire range of dilution rates examined (phosphate limitation) or a substantial part of the range (lactose and glucose limitations). Thus, it is probable that growth rate regulates the synthesis of adenylate cyclase. The maximum rate of net cyclic AMP synthesis was greater under lactose than under glucose limitation, which is consistent with the notion that the uptake of phosphotransferase sugars is more inhibitory to adenylate cyclase than the uptake of other carbon substrates. Phosphate-limited cultures exhibited the lowest rate of net cyclic AMP synthesis, which could be due to the role of phosphorylated metabolites in the regulation of adenylate cyclase activity. Under all growth conditions examined, greater than 99.9% of the cyclic AMP synthesized was found in the culture medium. The function of this excretion, which consumed up to 9% of the total energy available to the cell and which evidently resulted from elaborate regulatory mechanisms, remains entirely unknown.  相似文献   

19.
The direct effects of chronic ethanol exposure on adenylate cyclase activity and cyclic AMP content were investigated in primary cerebellar cultures. By morphological criteria these cultures mainly contain granule cells with some astrocytes, and each cell type appears to contain both beta-adrenergic and adenosine-sensitive adenylate cyclase systems. Chronic treatment of the primary cerebellar cultures with 120 mM ethanol for 6 days caused a reduction in the stimulation of cyclic AMP content by isoproterenol and by the adenosine analogue 2-chloroadenosine. Kinetic analysis indicated that the chronic ethanol treatment decreased maximal activation of adenylate cyclase, as well as increased the EC50 values for norepinephrine and 2-chloroadenosine. Activation of norepinephrine-stimulated adenylate cyclase activity by in vitro ethanol was significantly enhanced after the chronic ethanol exposure. However, the chronic treatment did not alter activation of the 2-chloroadenosine-stimulated enzyme by in vitro ethanol. A similar difference in the response to in vitro ethanol after the chronic treatment was observed when cyclic AMP content of the intact cells was measured. The present data indicate that chronic ethanol exposure causes a selective increase in the sensitivity of adenylate cyclase to ethanol in some brain cells and a more generalized desensitization of receptor-stimulated cyclic AMP production.  相似文献   

20.
The germination of spores of Mucor rouxii into hyphae was inhibited by 2 mm dibutyryl cyclic adenosine 3′,5′-monophosphate or 7 mm cyclic adenosine 3′,5′-monophosphate; under these conditions spores developed into budding spherical cells instead of filaments, provided that glucose was present in the culture medium. Removal of the cyclic nucleotides resulted in the conversion of yeast cells into hyphae. Dibutyryl cyclic adenosine 3′,5′-monophosphate (2 mm) also inhibited the transformation of yeast to mycelia after exposure of yeast culture to air.Since in all living systems so far studied adenylate cyclase and cyclic adenosine 3′,5′-monophosphate phosphodiesterase are involved in maintaining the intracellular cyclic adenosine monophosphate level, the activity of both enzymes and the intracellular concentration of cyclic adenosine monophosphate were investigated in yeast and mycelium extracts. Cyclic adenosine monophosphate phosphodiesterase and adenylate cyclase activities could be demonstrated in extracts of M. rouxii. The specific activity of adenylate cyclase did not vary appreciably with the fungus morphology. On the contrary, cyclic adenosine monophosphate phosphodiesterase activity was four- to sixfold higher in mycelial extracts than in yeast extracts and reflected quite accurately the observed changes in intracellular cyclic adenosine monophosphate levels; these were three to four times higher in yeast cells than in mycelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号